1
|
Negrón-Piñeiro LJ, Di Gregorio A. Single-cell Transcriptomic Studies Unveil Potential Nodes of the Notochord Gene Regulatory Network. Integr Comp Biol 2024; 64:1194-1213. [PMID: 38914463 PMCID: PMC11579531 DOI: 10.1093/icb/icae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Transcription factors (TFs) are DNA-binding proteins able to modulate the timing, location, and levels of gene expression by binding to regulatory DNA regions. Therefore, the repertoire of TFs present in the genome of a multicellular organism and the expression of variable constellations of TFs in different cellular cohorts determine the distinctive characteristics of developing tissues and organs. The information on tissue-specific assortments of TFs, their cross-regulatory interactions, and the genes/regulatory regions targeted by each TF is summarized in gene regulatory networks (GRNs), which provide genetic blueprints for the specification, development, and differentiation of multicellular structures. In this study, we review recent transcriptomic studies focused on the complement of TFs expressed in the notochord, a distinctive feature of all chordates. We analyzed notochord-specific datasets available from organisms representative of the three chordate subphyla, and highlighted lineage-specific variations in the suite of TFs expressed in their notochord. We framed the resulting findings within a provisional evolutionary scenario, which allows the formulation of hypotheses on the genetic/genomic changes that sculpted the structure and function of the notochord on an evolutionary scale.
Collapse
Affiliation(s)
- Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
2
|
Popsuj S, Di Gregorio A, Swalla BJ, Stolfi A. Loss of collagen gene expression in the notochord of the tailless tunicate Molgula occulta. Integr Comp Biol 2023; 63:990-998. [PMID: 37403333 PMCID: PMC10714901 DOI: 10.1093/icb/icad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 06/11/2023] [Indexed: 07/06/2023] Open
Abstract
In tunicates, several species in the Molgulidae family have convergently lost the tailed, swimming larval body plan, including the morphogenesis of the notochord, a major chordate-defining trait. Through the comparison of tailless M. occulta and a close relative, the tailed species M. oculata, we show that notochord-specific expression of the Collagen Type I/II Alpha (Col1/2a) gene appears to have been lost specifically in the tailless species. Using CRISPR/Cas9-mediated mutagenesis in the tailed laboratory model tunicate Ciona robusta, we demonstrate that Col1/2a plays a crucial role in the convergent extension of notochord cells during tail elongation. Our results suggest that the expression of Col1/2a in the notochord, although necessary for its morphogenesis in tailed species, is dispensable for tailless species. This loss is likely a result of the accumulation of cis-regulatory mutations in the absence of purifying selective pressure. More importantly, the gene itself is not lost, likely due to its roles in other developmental processes, including during the adult stage. Our study further confirms the Molgulidae as an interesting family in which to study the evolutionary loss of tissue-specific expression of indispensable genes.
Collapse
Affiliation(s)
- Sydney Popsuj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
| | - Billie J Swalla
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Raghavan R, Coppola U, Wu Y, Ihewulezi C, Negrón-Piñeiro LJ, Maguire JE, Hong J, Cunningham M, Kim HJ, Albert TJ, Ali AM, Saint-Jeannet JP, Ristoratore F, Dahia CL, Di Gregorio A. Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. BMC Ecol Evol 2023; 23:63. [PMID: 37891482 PMCID: PMC10605842 DOI: 10.1186/s12862-023-02167-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.
Collapse
Affiliation(s)
- Rahul Raghavan
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Ugo Coppola
- Stazione Zoologica 'A. Dohrn', Villa Comunale 1, 80121, Naples, Italy
- Present Address: Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Julie E Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Justin Hong
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Matthew Cunningham
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd J Albert
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Chitra L Dahia
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY, 10065, USA.
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
4
|
Long J, Mariossi A, Cao C, Mo Z, Thompson JW, Levine MS, Lemaire LA. Cereblon influences the timing of muscle differentiation in Ciona tadpoles. Proc Natl Acad Sci U S A 2023; 120:e2309989120. [PMID: 37856545 PMCID: PMC10614628 DOI: 10.1073/pnas.2309989120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/09/2023] [Indexed: 10/21/2023] Open
Abstract
Thalidomide has a dark history as a teratogen, but in recent years, its derivates have been shown to function as potent chemotherapeutic agents. These drugs bind cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, and modify its degradation targets. Despite these insights, remarkably little is known about the normal function of cereblon in development. Here, we employ Ciona, a simple invertebrate chordate, to identify endogenous Crbn targets. In Ciona, Crbn is specifically expressed in developing muscles during tail elongation before they acquire contractile activity. Crbn expression is activated by Mrf, the ortholog of MYOD1, a transcription factor important for muscle differentiation. CRISPR/Cas9-mediated mutations of Crbn lead to precocious onset of muscle contractions. By contrast, overexpression of Crbn delays contractions and is associated with decreased expression of contractile protein genes such as troponin. This reduction is possibly due to reduced Mrf protein levels without altering Mrf mRNA levels. Our findings suggest that Mrf and Crbn form a negative feedback loop to control the precision of muscle differentiation during tail elongation.
Collapse
Affiliation(s)
- Juanjuan Long
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Chen Cao
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | | | | | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Laurence A. Lemaire
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Biology, Saint Louis University, St. Louis, MO63103
| |
Collapse
|
5
|
Yu D, Iwamura Y, Satou Y, Oda-Ishii I. Tbx15/18/22 shares a binding site with Tbx6-r.b to maintain expression of a muscle structural gene in ascidian late embryos. Dev Biol 2021; 483:1-12. [PMID: 34963554 DOI: 10.1016/j.ydbio.2021.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
The ascidian larval tail contains muscle cells for swimming. Most of these muscle cells differentiate autonomously. The genetic program behind this autonomy has been studied extensively and the genetic cascade from maternal factors to initiation of expression of a muscle structural gene, Myl.c, has been uncovered; Myl.c expression is directed initially by transcription factor Tbx6-r.b at the 64-cell stage and then by the combined actions of Tbx6-r.b and Mrf from the gastrula to early tailbud stages. In the present study, we showed that transcription of Myl.c continued in late tailbud embryos and larvae, although a fusion protein of Tbx6-r.b and GFP was hardly detectable in late tailbud embryos. A knockdown experiment, reporter assay, and in vitro binding assay indicated that an essential cis-regulatory element of Myl.c that bound Tbx6-r.b in early embryos bound Tbx15/18/22 in late embryos to maintain expression of Myl.c. We also found that Tbx15/18/22 was controlled by Mrf, which constitutes a regulatory loop with Tbx6-r.b. Therefore, our data indicated that Tbx15/18/22 was activated initially under control of this regulatory loop as in the case of Myl.c, and then Tbx15/18/22 maintained the expression of Myl.c after Tbx6-r.b had disappeared. RNA-sequencing of Tbx15/18/22 morphant embryos revealed that many muscle structural genes were regulated similarly by Tbx15/18/22. Thus, the present study revealed the mechanisms of maintenance of transcription of muscle structural genes in late embryos in which Tbx15/18/22 takes the place of Tbx6-r.b.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yuri Iwamura
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan.
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
Oda-Ishii I, Yu D, Satou Y. Two distinct motifs for Zic-r.a drive specific gene expression in two cell lineages. Development 2021; 148:269043. [PMID: 34100063 DOI: 10.1242/dev.199538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 11/20/2022]
Abstract
Zic-r.a, a maternal transcription factor, specifies posterior fate in ascidian embryos. However, its direct target, Tbx6-r.b, does not contain typical Zic-r.a-binding sites in its regulatory region. Using an in vitro selection assay, we found that Zic-r.a binds to sites dissimilar to the canonical motif, by which it activates Tbx6-r.b in a sub-lineage of muscle cells. These sites with non-canonical motifs have weak affinity for Zic-r.a; therefore, it activates Tbx6-r.b only in cells expressing Zic-r.a abundantly. Meanwhile, we found that Zic-r.a expressed zygotically in late embryos activates neural genes through canonical sites. Because different zinc-finger domains of Zic-r.a are important for driving reporters with canonical and non-canonical sites, it is likely that the non-canonical motif is not a divergent version of the canonical motif. In other words, our data indicate that the non-canonical motif represents a motif distinct from the canonical motif. Thus, Zic-r.a recognizes two distinct motifs to activate two sets of genes at two timepoints in development. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Reeves WM, Shimai K, Winkley KM, Veeman MT. Brachyury controls Ciona notochord fate as part of a feed-forward network. Development 2021; 148:dev195230. [PMID: 33419874 PMCID: PMC7875503 DOI: 10.1242/dev.195230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022]
Abstract
The notochord is a defining feature of the chordates. The transcription factor Brachyury (Bra) is a key regulator of notochord fate but here we show that it is not a unitary master regulator in the model chordate Ciona Ectopic Bra expression only partially reprograms other cell types to a notochord-like transcriptional profile and a subset of notochord-enriched genes is unaffected by CRISPR Bra disruption. We identify Foxa.a and Mnx as potential co-regulators, and find that combinatorial cocktails are more effective at reprogramming other cell types than Bra alone. We reassess the network relationships between Bra, Foxa.a and other components of the notochord gene regulatory network, and find that Foxa.a expression in the notochord is regulated by vegetal FGF signaling. It is a direct activator of Bra expression and has a binding motif that is significantly enriched in the regulatory regions of notochord-enriched genes. These and other results indicate that Bra and Foxa.a act together in a regulatory network dominated by positive feed-forward interactions, with neither being a classically defined master regulator.
Collapse
Affiliation(s)
- Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Kotaro Shimai
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Konner M Winkley
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Zheng T, Nakamoto A, Kumano G. H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 2020; 460:200-214. [PMID: 31904374 DOI: 10.1016/j.ydbio.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
Protection of the germline from somatic differentiation programs is crucial for germ cell development. In many animals, whose germline development relies on the maternally inherited germ plasm, such protection in particular at early stages of embryogenesis is achieved by maternally localized global transcriptional repressors, such as PIE-1 of Caenorhabditis elegans, Pgc of Drosophila melanogaster and Pem of ascidians. However, zygotic gene expression starts in later germline cells eventually and mechanisms by which somatic gene expression is selectively kept under repression in the transcriptionally active cells are poorly understood. By using the ascidian species Halocynthia roretzi, we found that H3K27me3, a repressive transcription-related chromatin mark, became enriched in germline cells starting at the 64-cell stage when Pem protein level and its contribution to transcriptional repression decrease. Interestingly, inhibition of H3K27me3 together with Pem knockdown resulted in ectopic expression in germline cells of muscle developmental genes Muscle actin (MA4) and Snail, and of Clone 22 (which is expressed in all somatic but not germline cells), but not of other tissue-specific genes such as the notochord gene Brachyury, the nerve cord marker ETR-1 and a heart precursor gene Mesp, at the 110-cell stage. Importantly, these ectopically expressed genes are normally expressed in the germline sister cells (B7.5), the last somatic lineage separated from the germline. Also, the ectopic expression of MA4 was dependent on a maternally localized muscle determinant Macho-1. Taken together, we propose that H3K27me3 may be responsible for selective transcriptional repression for somatic genes in later germline cells in Halocynthia embryos and that the preferential repression of germline sister-lineage genes may be related to the mechanism of germline segregation in ascidian embryos, where the germline is segregated progressively by successive asymmetric cell divisions during cell cleavage stages. Together with findings from C. elegans and D. melanogaster, our data for this urochordate animal support the proposal for a mechanism, conserved widely throughout the animal kingdom, where germline transcriptional repression is mediated initially by maternally localized factors and subsequently by a chromatin-based mechanism.
Collapse
Affiliation(s)
- Tao Zheng
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan.
| | - Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| |
Collapse
|
9
|
Satou Y. A gene regulatory network for cell fate specification in Ciona embryos. Curr Top Dev Biol 2020; 139:1-33. [DOI: 10.1016/bs.ctdb.2020.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Razy-Krajka F, Stolfi A. Regulation and evolution of muscle development in tunicates. EvoDevo 2019; 10:13. [PMID: 31249657 PMCID: PMC6589888 DOI: 10.1186/s13227-019-0125-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/08/2019] [Indexed: 12/16/2022] Open
Abstract
For more than a century, studies on tunicate muscle formation have revealed many principles of cell fate specification, gene regulation, morphogenesis, and evolution. Here, we review the key studies that have probed the development of all the various muscle cell types in a wide variety of tunicate species. We seize this occasion to explore the implications and questions raised by these findings in the broader context of muscle evolution in chordates.
Collapse
Affiliation(s)
- Florian Razy-Krajka
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| |
Collapse
|
11
|
Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo 2019; 10:3. [PMID: 30867897 PMCID: PMC6399929 DOI: 10.1186/s13227-019-0116-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/15/2019] [Indexed: 01/03/2023] Open
Abstract
Background In chordates, cardiac and body muscles arise from different embryonic origins. In addition, myogenesis can be triggered in adult organisms, during asexual development or regeneration. In non-vertebrate chordates like ascidians, muscles originate from embryonic precursors regulated by a conserved set of genes that orchestrate cell behavior and dynamics during development. In colonial ascidians, besides embryogenesis and metamorphosis, an adult can propagate asexually via blastogenesis, skipping embryo and larval stages, and form anew the adult body, including the complete body musculature. Results To investigate the cellular origin and mechanisms that trigger non-embryonic myogenesis, we followed the expression of ascidian myogenic genes during Botryllus schlosseri blastogenesis and reconstructed the dynamics of muscle precursors. Based on the expression dynamics of Tbx1/10, Ebf, Mrf, Myh3 for body wall and of FoxF, Tbx1/10, Nk4, Myh2 for heart development, we show that the embryonic factors regulating myogenesis are only partially co-opted in blastogenesis, and that markers for muscle precursors are expressed in two separate domains: the dorsal tube and the ventral mesenchyma. Conclusions Regardless of the developmental pathway, non-embryonic myogenesis shares a similar molecular and anatomical setup as embryonic myogenesis, but implements a co-option and loss of molecular modules. We then propose that the cellular precursors contributing to heart and body muscles may have different origins and may be coordinated by different developmental pathways. Electronic supplementary material The online version of this article (10.1186/s13227-019-0116-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Mandela Prünster
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| | - Lorenzo Ricci
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France.,2Department of Organismic and Evolutionary Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138 USA
| | - Federico D Brown
- 3Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP CEP 05508-090 Brazil.,4Centro de Biologia Marinha (CEBIMar), Universidade de São Paulo, São Sebastião, SP CEP 11612-109 Brazil
| | - Stefano Tiozzo
- 1Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), CNRS, Sorbonne Université, 06230 Villefranche sur Mer, France
| |
Collapse
|
12
|
Yu D, Oda-Ishii I, Kubo A, Satou Y. The regulatory pathway from genes directly activated by maternal factors to muscle structural genes in ascidian embryos. Development 2019; 146:dev.173104. [PMID: 30674480 DOI: 10.1242/dev.173104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Striated muscle cells in the tail of ascidian tadpole larvae differentiate cell-autonomously. Although several key regulatory factors have been identified, the genetic regulatory pathway is not fully understood; comprehensive understanding of the regulatory pathway is essential for accurate modeling in order to deduce principles for gene regulatory network dynamics, and for comparative analysis on how ascidians have evolved the cell-autonomous gene regulatory mechanism. Here, we reveal regulatory interactions among three key regulatory factors, Zic-r.b, Tbx6-r.b and Mrf, and elucidate the mechanism by which these factors activate muscle structural genes. We reveal a cross-regulatory circuit among these regulatory factors, which maintains the expression of Tbx6-r.b and Mrf during gastrulation. Although these two factors combinatorially activate muscle structural genes in late-stage embryos, muscle structural genes are activated mainly by Tbx6-r.b before gastrulation. Time points when expression of muscle structural genes become first detectable are strongly correlated with the degree of Tbx6-r.b occupancy. Thus, the genetic pathway, starting with Tbx6-r.b and Zic-r.b, which are activated by maternal factors, and ending with expression of muscle structural genes, has been revealed.
Collapse
Affiliation(s)
- Deli Yu
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| |
Collapse
|
13
|
Abstract
Ascidians are tunicates, which constitute the sister group of vertebrates. The ascidian genome contains two Zic genes, called Zic-r.a (also called Macho-1) and Zic-r.b (ZicL). The latter is a multi-copy gene, and the precise copy number has not yet been determined. Zic-r.a is maternally expressed, and soon after fertilization Zic-r.a mRNA is localized in the posterior pole of the zygote. Zic-r.a protein is translated there and is involved in specification of posterior fate; in particular it is important for specification of muscle fate. Zic-r.a is also expressed zygotically in neural cells of the tailbud stage. On the other hand, Zic-r.b is first expressed in marginal cells of the vegetal hemisphere of 32-cell embryos and then in neural cells that contribute to the central nervous system during gastrulation. Zic-r.b is required first for specification of mesodermal tissues and then for specification of the central nervous system. Their upstream and downstream genetic pathways have been studied extensively by functional assays, which include gene knockdown and chromatin immunoprecipitation assays. Thus, ascidian Zic genes play central roles in specification of mesodermal and neural fates.
Collapse
Affiliation(s)
- Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| |
Collapse
|
14
|
Reeves WM, Wu Y, Harder MJ, Veeman MT. Functional and evolutionary insights from the Ciona notochord transcriptome. Development 2017; 144:3375-3387. [PMID: 28928284 DOI: 10.1242/dev.156174] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Abstract
The notochord of the ascidian Ciona consists of only 40 cells, and is a longstanding model for studying organogenesis in a small, simple embryo. Here, we perform RNAseq on flow-sorted notochord cells from multiple stages to define a comprehensive Ciona notochord transcriptome. We identify 1364 genes with enriched expression and extensively validate the results by in situ hybridization. These genes are highly enriched for Gene Ontology terms related to the extracellular matrix, cell adhesion and cytoskeleton. Orthologs of 112 of the Ciona notochord genes have known notochord expression in vertebrates, more than twice as many as predicted by chance alone. This set of putative effector genes with notochord expression conserved from tunicates to vertebrates will be invaluable for testing hypotheses about notochord evolution. The full set of Ciona notochord genes provides a foundation for systems-level studies of notochord gene regulation and morphogenesis. We find only modest overlap between this set of notochord-enriched transcripts and the genes upregulated by ectopic expression of the key notochord transcription factor Brachyury, indicating that Brachyury is not a notochord master regulator gene as strictly defined.
Collapse
Affiliation(s)
- Wendy M Reeves
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yuye Wu
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Matthew J Harder
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael T Veeman
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Abstract
Ascidians are invertebrate chordates with a biphasic life cycle characterized by a dual body plan that displays simplified versions of chordate structures, such as a premetamorphic 40-cell notochord topped by a dorsal nerve cord and postmetamorphic pharyngeal slits. These relatively simple chordates are characterized by rapid development, compact genomes and ease of transgenesis, and thus provide the opportunity to rapidly characterize the genomic organization, developmental function, and transcriptional regulation of evolutionarily conserved gene families. This review summarizes the current knowledge on members of the T-box family of transcription factors in Ciona and other ascidians. In both chordate and nonchordate animals, these genes control a variety of morphogenetic processes, and their mutations are responsible for malformations and developmental defects in organisms ranging from flies to humans. In ascidians, T-box transcription factors are required for the formation and specialization of essential structures, including notochord, muscle, heart, and differentiated neurons. In recent years, the experimental advantages offered by ascidian embryos have allowed the rapid accumulation of a wealth of information on the molecular mechanisms that regulate the expression of T-box genes. These studies have also elucidated the strategies employed by these transcription factors to orchestrate the appropriate spatial and temporal deployment of the numerous target genes that they control.
Collapse
Affiliation(s)
- A Di Gregorio
- New York University College of Dentistry, New York, NY, United States.
| |
Collapse
|
16
|
Kodama H, Miyata Y, Kuwajima M, Izuchi R, Kobayashi A, Gyoja F, Onuma TA, Kumano G, Nishida H. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians. Dev Biol 2016; 416:162-172. [PMID: 27265866 DOI: 10.1016/j.ydbio.2016.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure.
Collapse
Affiliation(s)
- Hitoshi Kodama
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshimasa Miyata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Mami Kuwajima
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ryoichi Izuchi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Ayumi Kobayashi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Fuki Gyoja
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Takeshi A Onuma
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
17
|
Oda-Ishii I, Kubo A, Kari W, Suzuki N, Rothbächer U, Satou Y. A Maternal System Initiating the Zygotic Developmental Program through Combinatorial Repression in the Ascidian Embryo. PLoS Genet 2016; 12:e1006045. [PMID: 27152625 PMCID: PMC4859511 DOI: 10.1371/journal.pgen.1006045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/20/2016] [Indexed: 01/28/2023] Open
Abstract
Maternal factors initiate the zygotic developmental program in animal embryos. In embryos of the chordate, Ciona intestinalis, three maternal factors—Gata.a, β-catenin, and Zic-r.a—are required to establish three domains of gene expression at the 16-cell stage; the animal hemisphere, vegetal hemisphere, and posterior vegetal domains. Here, we show how the maternal factors establish these domains. First, only β-catenin and its effector transcription factor, Tcf7, are required to establish the vegetal hemisphere domain. Second, genes specifically expressed in the posterior vegetal domain have additional repressive cis-elements that antagonize the activity of β-catenin/Tcf7. This antagonizing activity is suppressed by Zic-r.a, which is specifically localized in the posterior vegetal domain and binds to DNA indirectly through the interaction with Tcf7. Third, Gata.a directs specific gene expression in the animal hemisphere domain, because β-catenin/Tcf7 weakens the Gata.a-binding activity for target sites through a physical interaction in the vegetal cells. Thus, repressive regulation through protein-protein interactions among the maternal transcription factors is essential to establish the first distinct domains of gene expression in the chordate embryo. During animal development, transcription factors and signaling molecules transcriptionally regulate one another and constitute a gene regulatory network. This network is evoked by maternally provided factors. Many maternal factors are localized and thereby activate a set of genes in a specific region. In embryos of the chordate, Ciona intestinalis, three maternal factors with localized activities are known. The present study demonstrated that these localized maternal factors interact with one another through a fourth non-localized transcription factor, Tcf7, and negatively regulate one another. These repressive interactions are essential to establish the first distinct domains of gene expression and evoke the gene regulatory network properly. The findings indicate that not only activating target genes but also repressing activities of other transcription factors through protein-protein interactions are important to properly initiate the zygotic program. Intriguingly, in one repressive interaction, a transcription factor loses its binding activity for target sites through an interaction with another transcription factor. Thus, this study provides a description of the entire system in which maternal factors initiate the zygotic developmental program of the Ciona embryo.
Collapse
Affiliation(s)
- Izumi Oda-Ishii
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | - Atsushi Kubo
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | - Willi Kari
- Department of Evolution and Developmental Biology, Zoological Institute, University Innsbruck, Innsbruck, Austria
| | - Nobuhiro Suzuki
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
| | - Ute Rothbächer
- Department of Evolution and Developmental Biology, Zoological Institute, University Innsbruck, Innsbruck, Austria
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kita-Shirakawa Oiwake-cho, Sakyo, Kyoto, Japan
- * E-mail:
| |
Collapse
|
18
|
José-Edwards DS, Oda-Ishii I, Kugler JE, Passamaneck YJ, Katikala L, Nibu Y, Di Gregorio A. Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord. PLoS Genet 2015; 11:e1005730. [PMID: 26684323 PMCID: PMC4684326 DOI: 10.1371/journal.pgen.1005730] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/16/2015] [Indexed: 11/18/2022] Open
Abstract
A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Lavanya Katikala
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Andrikou C, Iovene E, Rizzo F, Oliveri P, Arnone MI. Myogenesis in the sea urchin embryo: the molecular fingerprint of the myoblast precursors. EvoDevo 2013; 4:33. [PMID: 24295205 PMCID: PMC4175510 DOI: 10.1186/2041-9139-4-33] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 10/02/2013] [Indexed: 01/01/2023] Open
Abstract
Background In sea urchin larvae the circumesophageal fibers form a prominent muscle system of mesodermal origin. Although the morphology and later development of this muscle system has been well-described, little is known about the molecular signature of these cells or their precise origin in the early embryo. As an invertebrate deuterostome that is more closely related to the vertebrates than other commonly used model systems in myogenesis, the sea urchin fills an important phylogenetic gap and provides a unique perspective on the evolution of muscle cell development. Results Here, we present a comprehensive description of the development of the sea urchin larval circumesophageal muscle lineage beginning with its mesodermal origin using high-resolution localization of the expression of several myogenic transcriptional regulators and differentiation genes. A few myoblasts are bilaterally distributed at the oral vegetal side of the tip of the archenteron and first appear at the late gastrula stage. The expression of the differentiation genes Myosin Heavy Chain, Tropomyosin I and II, as well as the regulatory genes MyoD2, FoxF, FoxC, FoxL1, Myocardin, Twist, and Tbx6 uniquely identify these cells. Interestingly, evolutionarily conserved myogenic factors such as Mef2, MyoR and Six1/2 are not expressed in sea urchin myoblasts but are found in other mesodermal domains of the tip of the archenteron. The regulatory states of these domains were characterized in detail. Moreover, using a combinatorial analysis of gene expression we followed the development of the FoxF/FoxC positive cells from the onset of expression to the end of gastrulation. Our data allowed us to build a complete map of the Non-Skeletogenic Mesoderm at the very early gastrula stage, in which specific molecular signatures identify the precursors of different cell types. Among them, a small group of cells within the FoxY domain, which also express FoxC and SoxE, have been identified as plausible myoblast precursors. Together, these data support a very early gastrula stage segregation of the myogenic lineage. Conclusions From this analysis, we are able to precisely define the regulatory and differentiation signatures of the circumesophageal muscle in the sea urchin embryo. Our findings have important implications in understanding the evolution of development of the muscle cell lineage at the molecular level. The data presented here suggest a high level of conservation of the myogenic specification mechanisms across wide phylogenetic distances, but also reveal clear cases of gene cooption.
Collapse
Affiliation(s)
| | | | | | | | - Maria Ina Arnone
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli 80121, Italy.
| |
Collapse
|
20
|
Katikala L, Aihara H, Passamaneck YJ, Gazdoiu S, José-Edwards DS, Kugler JE, Oda-Ishii I, Imai JH, Nibu Y, Di Gregorio A. Functional Brachyury binding sites establish a temporal read-out of gene expression in the Ciona notochord. PLoS Biol 2013; 11:e1001697. [PMID: 24204212 PMCID: PMC3812116 DOI: 10.1371/journal.pbio.1001697] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/19/2013] [Indexed: 11/18/2022] Open
Abstract
During notochord formation in chordate embryos, the transcription factor Brachyury employs different regulatory strategies to ensure the sequential activation of downstream genes and thereby the deployment of a specific developmental program at the right time and place. The appearance of the notochord represented a milestone in Deuterostome evolution. The notochord is necessary for the development of the chordate body plan and for the formation of the vertebral column and numerous organs. It is known that the transcription factor Brachyury is required for notochord formation in all chordates, and that it controls transcription of a large number of target genes. However, studies of the structure of the cis-regulatory modules (CRMs) through which this control is exerted are complicated in vertebrates by the genomic complexity and the pan-mesodermal expression territory of Brachyury. We used the ascidian Ciona, in which the single-copy Brachyury is notochord-specific and CRMs are easily identifiable, to carry out a systematic characterization of Brachyury-downstream notochord CRMs. We found that Ciona Brachyury (Ci-Bra) controls most of its targets directly, through non-palindromic binding sites that function either synergistically or individually to activate early- and middle-onset genes, respectively, while late-onset target CRMs are controlled indirectly, via transcriptional intermediaries. These results illustrate how a transcriptional regulator can efficiently shape a shallow gene regulatory network into a multi-tiered transcriptional output, and provide insights into the mechanisms that establish temporal read-outs of gene expression in a fast-developing chordate embryo. Transcription factors control where and when gene expression is switched on by binding to specific stretches of DNA known as cis-regulatory modules (CRMs). In this study, we investigated the architecture and composition of CRMs that direct gene expression in the notochord—a transient rod-like structure found in all embryos that belong to the phylum chordata, which includes humans. Here we used the sea squirt Ciona, a simple chordate, and analyzed how the transcription factor Brachyury ensures the appropriate deployment of its target genes at specific times during the sequential steps of notochord formation. We compared CRMs found in different notochord genes downstream of Brachyury, expecting to find genes associated with greater numbers of Brachyury binding sites to be expressed at higher levels. To our surprise, we found instead that a higher number of functional Brachyury binding sites is typical of CRMs associated with genes that are expressed early in notochord development, while single-site CRMs are characteristic of genes that are turned on during the intermediate stages of this process. Finally, CRMs associated with genes expressed late in notochord development do not contain functional Brachyury binding sites but are controlled by Brachyury indirectly, through the action of intermediary transcription factors. These differences explain how a transcription factor that is present at all stages in a certain cell type can generate a sequential transcriptional output of gene expression.
Collapse
Affiliation(s)
- Lavanya Katikala
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Hitoshi Aihara
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yale J. Passamaneck
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Stefan Gazdoiu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Izumi Oda-Ishii
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Janice H. Imai
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yutaka Nibu
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (YN); (ADG)
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail: (YN); (ADG)
| |
Collapse
|
21
|
From notochord formation to hereditary chordoma: the many roles of Brachyury. BIOMED RESEARCH INTERNATIONAL 2013; 2013:826435. [PMID: 23662285 PMCID: PMC3626178 DOI: 10.1155/2013/826435] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/22/2013] [Indexed: 12/25/2022]
Abstract
Chordoma is a rare, but often malignant, bone cancer that preferentially affects the axial skeleton and the skull base. These tumors are both sporadic and hereditary and appear to occur more frequently after the fourth decade of life; however, modern technologies have increased the detection of pediatric chordomas. Chordomas originate from remnants of the notochord, the main embryonic axial structure that precedes the backbone, and share with notochord cells both histological features and the expression of characteristic genes. One such gene is Brachyury, which encodes for a sequence-specific transcription factor. Known for decades as a main regulator of notochord formation, Brachyury has recently gained interest as a biomarker and causative agent of chordoma, and therefore as a promising therapeutic target. Here, we review the main characteristics of chordoma, the molecular markers, and the clinical approaches currently available for the early detection and possible treatment of this cancer. In particular, we report on the current knowledge of the role of Brachyury and of its possible mechanisms of action in both notochord formation and chordoma etiogenesis.
Collapse
|
22
|
Izzi SA, Colantuono BJ, Sullivan K, Khare P, Meedel TH. Functional studies of the Ciona intestinalis myogenic regulatory factor reveal conserved features of chordate myogenesis. Dev Biol 2013; 376:213-23. [PMID: 23391688 DOI: 10.1016/j.ydbio.2013.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/08/2013] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
Abstract
Ci-MRF is the sole myogenic regulatory factor (MRF) of the ascidian Ciona intestinalis, an invertebrate chordate. In order to investigate its properties we developed a simple in vivo assay based on misexpressing Ci-MRF in the notochord of Ciona embryos. We used this assay to examine the roles of three structural motifs that are conserved among MRFs: an alanine-threonine (Ala-Thr) dipeptide of the basic domain that is known in vertebrates as the myogenic code, a cysteine/histidine-rich (C/H) domain found just N-terminal to the basic domain, and a carboxy-terminal amphipathic α-helix referred to as Helix III. We show that the Ala-Thr dipeptide is necessary for normal Ci-MRF function, and that while eliminating the C/H domain or Helix III individually has no demonstrable effect on Ci-MRF, simultaneous loss of both motifs significantly reduces its activity. Our studies also indicate that direct interaction between CiMRF and an essential E-box of Ciona Troponin I is required for the expression of this muscle-specific gene and that multiple classes of MRF-regulated genes exist in Ciona. These findings are consistent with substantial conservation of MRF-directed myogenesis in chordates and demonstrate for the first time that the Ala/Thr dipeptide of the basic domain of an invertebrate MRF behaves as a myogenic code.
Collapse
Affiliation(s)
- Stephanie A Izzi
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
23
|
Chenevert J, Pruliere G, Ishii H, Sardet C, Nishikata T. Purification of mitochondrial proteins HSP60 and ATP synthase from ascidian eggs: implications for antibody specificity. PLoS One 2013; 8:e52996. [PMID: 23326373 PMCID: PMC3542361 DOI: 10.1371/journal.pone.0052996] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/20/2012] [Indexed: 01/25/2023] Open
Abstract
Use of antibodies is a cornerstone of biological studies and it is important to identify the recognized protein with certainty. Generally an antibody is considered specific if it labels a single band of the expected size in the tissue of interest, or has a strong affinity for the antigen produced in a heterologous system. The identity of the antibody target protein is rarely confirmed by purification and sequencing, however in many cases this may be necessary. In this study we sought to characterize the myoplasm, a mitochondria-rich domain present in eggs and segregated into tadpole muscle cells of ascidians (urochordates). The targeted proteins of two antibodies that label the myoplasm were purified using both classic immunoaffinity methods and a novel protein purification scheme based on sequential ion exchange chromatography followed by two-dimensional gel electrophoresis. Surprisingly, mass spectrometry sequencing revealed that in both cases the proteins recognized are unrelated to the original antigens. NN18, a monoclonal antibody which was raised against porcine spinal cord and recognizes the NF-M neurofilament subunit in vertebrates, in fact labels mitochondrial ATP synthase in the ascidian embryo. PMF-C13, an antibody we raised to and purified against PmMRF, which is the MyoD homolog of the ascidian Phallusia mammillata, in fact recognizes mitochondrial HSP60. High resolution immunolabeling on whole embryos and isolated cortices demonstrates localization to the inner mitochondrial membrane for both ATP synthase and HSP60. We discuss the general implications of our results for antibody specificity and the verification methods which can be used to determine unequivocally an antibody's target.
Collapse
Affiliation(s)
- Janet Chenevert
- Université Pierre et Marie Curie and CNRS, Developmental Biology Unit UMR7009, Villefranche-sur-mer, France.
| | | | | | | | | |
Collapse
|
24
|
Abstract
The study of cis-regulatory DNAs that control developmental gene expression is integral to the modeling of comprehensive genomic regulatory networks for embryogenesis. Ascidian embryos provide a unique opportunity for the analysis of cis-regulatory DNAs with cellular resolution in the context of a simple but typical chordate body plan. Here, we review landmark studies that have laid the foundations for the study of transcriptional enhancers, among other cis-regulatory DNAs, and their roles in ascidian development. The studies using ascidians of the Ciona genus have capitalized on a unique electroporation technique that permits the simultaneous transfection of hundreds of fertilized eggs, which develop rapidly and express transgenes with little mosaicism. Current studies using the ascidian embryo benefit from extensively annotated genomic resources to characterize transcript models in silico. The search for functional noncoding sequences can be guided by bioinformatic analyses combining evolutionary conservation, gene coexpression, and combinations of overrepresented short-sequence motifs. The power of the transient transfection assays has allowed thorough dissection of numerous cis-regulatory modules, which provided insights into the functional constraints that shape enhancer architecture and diversification. Future studies will benefit from pioneering stable transgenic lines and the analysis of chromatin states. Whole genome expression, functional and DNA binding data are being integrated into comprehensive genomic regulatory network models of early ascidian cell specification with a single-cell resolution that is unique among chordate model systems.
Collapse
|
25
|
Nishida H. The maternal muscle determinant in the ascidian egg. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:425-33. [DOI: 10.1002/wdev.22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
José-Edwards DS, Kerner P, Kugler JE, Deng W, Jiang D, Di Gregorio A. The identification of transcription factors expressed in the notochord of Ciona intestinalis adds new potential players to the brachyury gene regulatory network. Dev Dyn 2011; 240:1793-805. [PMID: 21594950 PMCID: PMC3685856 DOI: 10.1002/dvdy.22656] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2011] [Indexed: 11/07/2022] Open
Abstract
The notochord is the distinctive characteristic of chordates; however, the knowledge of the complement of transcription factors governing the development of this structure is still incomplete. Here we present the expression patterns of seven transcription factor genes detected in the notochord of the ascidian Ciona intestinalis at various stages of embryonic development. Four of these transcription factors, Fos-a, NFAT5, AFF and Klf15, have not been directly associated with the notochord in previous studies, while the others, including Spalt-like-a, Lmx-like, and STAT5/6-b, display evolutionarily conserved expression in this structure as well as in other domains. We examined the hierarchical relationships between these genes and the transcription factor Brachyury, which is necessary for notochord development in all chordates. We found that Ciona Brachyury regulates the expression of most, although not all, of these genes. These results shed light on the genetic regulatory program underlying notochord formation in Ciona and possibly other chordates.
Collapse
Affiliation(s)
- Diana S. José-Edwards
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Pierre Kerner
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Jamie E. Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| | - Wei Deng
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Di Jiang
- Sars International Centre for Marine Molecular Biology, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | - Anna Di Gregorio
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, 1300 York Avenue, Box 60, New York, NY 10065, U.S.A
| |
Collapse
|
27
|
Kugler JE, Kerner P, Bouquet JM, Jiang D, Di Gregorio A. Evolutionary changes in the notochord genetic toolkit: a comparative analysis of notochord genes in the ascidian Ciona and the larvacean Oikopleura. BMC Evol Biol 2011; 11:21. [PMID: 21251251 PMCID: PMC3034685 DOI: 10.1186/1471-2148-11-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/20/2011] [Indexed: 11/12/2022] Open
Abstract
Background The notochord is a defining feature of the chordate clade, and invertebrate chordates, such as tunicates, are uniquely suited for studies of this structure. Here we used a well-characterized set of 50 notochord genes known to be targets of the notochord-specific Brachyury transcription factor in one tunicate, Ciona intestinalis (Class Ascidiacea), to begin determining whether the same genetic toolkit is employed to build the notochord in another tunicate, Oikopleura dioica (Class Larvacea). We identified Oikopleura orthologs of the Ciona notochord genes, as well as lineage-specific duplicates for which we determined the phylogenetic relationships with related genes from other chordates, and we analyzed their expression patterns in Oikopleura embryos. Results Of the 50 Ciona notochord genes that were used as a reference, only 26 had clearly identifiable orthologs in Oikopleura. Two of these conserved genes appeared to have undergone Oikopleura- and/or tunicate-specific duplications, and one was present in three copies in Oikopleura, thus bringing the number of genes to test to 30. We were able to clone and test 28 of these genes. Thirteen of the 28 Oikopleura orthologs of Ciona notochord genes showed clear expression in all or in part of the Oikopleura notochord, seven were diffusely expressed throughout the tail, six were expressed in tissues other than the notochord, while two probes did not provide a detectable signal at any of the stages analyzed. One of the notochord genes identified, Oikopleura netrin, was found to be unevenly expressed in notochord cells, in a pattern reminiscent of that previously observed for one of the Oikopleura Hox genes. Conclusions A surprisingly high number of Ciona notochord genes do not have apparent counterparts in Oikopleura, and only a fraction of the evolutionarily conserved genes show clear notochord expression. This suggests that Ciona and Oikopleura, despite the morphological similarities of their notochords, have developed rather divergent sets of notochord genes after their split from a common tunicate ancestor. This study demonstrates that comparisons between divergent tunicates can lead to insights into the basic complement of genes sufficient for notochord development, and elucidate the constraints that control its composition.
Collapse
Affiliation(s)
- Jamie E Kugler
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
28
|
Kugler JE, Gazdoiu S, Oda-Ishii I, Passamaneck YJ, Erives AJ, Di Gregorio A. Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. Development 2010. [DOI: 10.1242/dev.055954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|