1
|
Bianchini RM, Kurz EU. The analysis of protein recruitment to laser microirradiation-induced DNA damage in live cells: Best practices for data analysis. DNA Repair (Amst) 2023; 129:103545. [PMID: 37524003 DOI: 10.1016/j.dnarep.2023.103545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
Laser microirradiation coupled with live-cell fluorescence microscopy is a powerful technique that has been used widely in studying the recruitment and retention of proteins at sites of DNA damage. Results obtained from this technique can be found in published works by both seasoned and infrequent users of microscopy. However, like many other microscopy-based techniques, the presentation of data from laser microirradiation experiments is inconsistent; papers report a wide assortment of analytic techniques, not all of which result in accurate and/or appropriate representation of the data. In addition to the varied methods of analysis, experimental and analytical details are commonly under-reported. Consequently, publications reporting data from laser microirradiation coupled with fluorescence microscopy experiments need to be carefully and critically assessed by readers. Here, we undertake a systematic investigation of commonly reported corrections used in the analysis of laser microirradiation data. We validate the critical need to correct data for photobleaching and we identify key experimental parameters that must be accounted for when presenting data from laser microirradiation experiments. Furthermore, we propose a straightforward, four-step analytical protocol that can readily be applied across platforms and that aims to improve the quality of data reporting in the DNA damage field.
Collapse
Affiliation(s)
- Ryan M Bianchini
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Ebba U Kurz
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, and Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
2
|
CRL4Cdt2 Ubiquitin Ligase, A Genome Caretaker Controlled by Cdt2 Binding to PCNA and DNA. Genes (Basel) 2022; 13:genes13020266. [PMID: 35205311 PMCID: PMC8871960 DOI: 10.3390/genes13020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
The ubiquitin ligase CRL4Cdt2 plays a vital role in preserving genomic integrity by regulating essential proteins during S phase and after DNA damage. Deregulation of CRL4Cdt2 during the cell cycle can cause DNA re-replication, which correlates with malignant transformation and tumor growth. CRL4Cdt2 regulates a broad spectrum of cell cycle substrates for ubiquitination and proteolysis, including Cdc10-dependent transcript 1 or Chromatin licensing and DNA replication factor 1 (Cdt1), histone H4K20 mono-methyltransferase (Set8) and cyclin-dependent kinase inhibitor 1 (p21), which regulate DNA replication. However, the mechanism it operates via its substrate receptor, Cdc10-dependent transcript 2 (Cdt2), is not fully understood. This review describes the essential features of the N-terminal and C-terminal parts of Cdt2 that regulate CRL4 ubiquitination activity, including the substrate recognition domain, intrinsically disordered region (IDR), phosphorylation sites, the PCNA-interacting protein-box (PIP) box motif and the DNA binding domain. Drugs targeting these specific domains of Cdt2 could have potential for the treatment of cancer.
Collapse
|
3
|
Zhu Y, Wang Y, Tao B, Han J, Chen H, Zhu Q, Huang L, He Y, Hong J, Li Y, Chen J, Huang J, Lo LJ, Peng J. Nucleolar GTPase Bms1 displaces Ttf1 from RFB-sites to balance progression of rDNA transcription and replication. J Mol Cell Biol 2021; 13:902-917. [PMID: 34791311 PMCID: PMC8800533 DOI: 10.1093/jmcb/mjab074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/24/2022] Open
Abstract
18S, 5.8S, and 28S ribosomal RNAs (rRNAs) are cotranscribed as a pre-ribosomal RNA (pre-rRNA) from the rDNA by RNA polymerase I whose activity is vigorous during the S-phase, leading to a conflict with rDNA replication. This conflict is resolved partly by replication-fork-barrier (RFB)-sites sequences located downstream of the rDNA and RFB-binding proteins such as Ttf1. However, how Ttf1 is displaced from RFB-sites to allow replication fork progression remains elusive. Here, we reported that loss-of-function of Bms1l, a nucleolar GTPase, upregulates rDNA transcription, causes replication-fork stall, and arrests cell cycle at the S-to-G2 transition; however, the G1-to-S transition is constitutively active characterized by persisting DNA synthesis. Concomitantly, ubf, tif-IA, and taf1b marking rDNA transcription, Chk2, Rad51, and p53 marking DNA-damage response, and Rpa2, PCNA, Fen1, and Ttf1 marking replication fork stall are all highly elevated in bms1l mutants. We found that Bms1 interacts with Ttf1 in addition to Rc1l. Finally, we identified RFB-sites for zebrafish Ttf1 through chromatin immunoprecipitation sequencing and showed that Bms1 disassociates the Ttf1‒RFB complex with its GTPase activity. We propose that Bms1 functions to balance rDNA transcription and replication at the S-phase through interaction with Rcl1 and Ttf1, respectively. TTF1 and Bms1 together might impose an S-phase checkpoint at the rDNA loci.
Collapse
Affiliation(s)
- Yanqing Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yong Wang
- Taizhou Hospital, Zhejiang University, Taizhou, 317000 China
| | - Boxiang Tao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jinhua Han
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Hong Chen
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Qinfang Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Ling Huang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Yinan He
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jian Hong
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Yunqin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058 China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Li Jan Lo
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
4
|
Panagopoulos A, Taraviras S, Nishitani H, Lygerou Z. CRL4Cdt2: Coupling Genome Stability to Ubiquitination. Trends Cell Biol 2020; 30:290-302. [DOI: 10.1016/j.tcb.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 12/20/2022]
|
5
|
Garbrecht J, Hornegger H, Herbert S, Kaufmann T, Gotzmann J, Elsayad K, Slade D. Simultaneous dual-channel imaging to quantify interdependent protein recruitment to laser-induced DNA damage sites. Nucleus 2019; 9:474-491. [PMID: 30205747 PMCID: PMC6284507 DOI: 10.1080/19491034.2018.1516485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy in combination with the induction of localized DNA damage using focused light beams has played a major role in the study of protein recruitment kinetics to DNA damage sites in recent years. Currently published methods are dedicated to the study of single fluorophore/single protein kinetics. However, these methods may be limited when studying the relative recruitment dynamics between two or more proteins due to cell-to-cell variability in gene expression and recruitment kinetics, and are not suitable for comparative analysis of fast-recruiting proteins. To tackle these limitations, we have established a time-lapse fluorescence microscopy method based on simultaneous dual-channel acquisition following UV-A-induced local DNA damage coupled with a standardized image and recruitment analysis workflow. Simultaneous acquisition is achieved by spectrally splitting the emitted light into two light paths, which are simultaneously imaged on two halves of the same camera chip. To validate this method, we studied the recruitment of poly(ADP-ribose) polymerase 1 (PARP1), poly (ADP-ribose) glycohydrolase (PARG), proliferating cell nuclear antigen (PCNA) and the chromatin remodeler ALC1. In accordance with the published data based on single fluorophore imaging, simultaneous dual-channel imaging revealed that PARP1 regulates fast recruitment and dissociation of PARG and that in PARP1-depleted cells PARG and PCNA are recruited with comparable kinetics. This approach is particularly advantageous for analyzing the recruitment sequence of fast-recruiting proteins such as PARP1 and ALC1, and revealed that PARP1 is recruited faster than ALC1. Split-view imaging can be incorporated into any laser microirradiation-adapted microscopy setup together with a recruitment-dedicated image analysis package.
Collapse
Affiliation(s)
- Joachim Garbrecht
- a Department of Biochemistry, Max F. Perutz Laboratories , University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| | - Harald Hornegger
- a Department of Biochemistry, Max F. Perutz Laboratories , University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| | - Sebastien Herbert
- a Department of Biochemistry, Max F. Perutz Laboratories , University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| | - Tanja Kaufmann
- a Department of Biochemistry, Max F. Perutz Laboratories , University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| | - Josef Gotzmann
- b Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL) , Medical University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| | - Kareem Elsayad
- c VBCF-Advanced Microscopy , Vienna Biocenter (VBC) , Vienna , Austria
| | - Dea Slade
- a Department of Biochemistry, Max F. Perutz Laboratories , University of Vienna, Vienna Biocenter (VBC) , Vienna , Austria
| |
Collapse
|
6
|
Koulouras G, Panagopoulos A, Rapsomaniki MA, Giakoumakis NN, Taraviras S, Lygerou Z. EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data. Nucleic Acids Res 2019; 46:W467-W472. [PMID: 29901776 PMCID: PMC6030846 DOI: 10.1093/nar/gky508] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Understanding protein dynamics is crucial in order to elucidate protein function and interactions. Advances in modern microscopy facilitate the exploration of the mobility of fluorescently tagged proteins within living cells. Fluorescence recovery after photobleaching (FRAP) is an increasingly popular functional live-cell imaging technique which enables the study of the dynamic properties of proteins at a single-cell level. As an increasing number of labs generate FRAP datasets, there is a need for fast, interactive and user-friendly applications that analyze the resulting data. Here we present easyFRAP-web, a web application that simplifies the qualitative and quantitative analysis of FRAP datasets. EasyFRAP-web permits quick analysis of FRAP datasets through an intuitive web interface with interconnected analysis steps (experimental data assessment, different types of normalization and estimation of curve-derived quantitative parameters). In addition, easyFRAP-web provides dynamic and interactive data visualization and data and figure export for further analysis after every step. We test easyFRAP-web by analyzing FRAP datasets capturing the mobility of the cell cycle regulator Cdt2 in the presence and absence of DNA damage in cultured cells. We show that easyFRAP-web yields results consistent with previous studies and highlights cell-to-cell heterogeneity in the estimated kinetic parameters. EasyFRAP-web is platform-independent and is freely accessible at: https://easyfrap.vmnet.upatras.gr/.
Collapse
Affiliation(s)
- Grigorios Koulouras
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Andreas Panagopoulos
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Maria A Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
| |
Collapse
|
7
|
Hayashi A, Giakoumakis NN, Heidebrecht T, Ishii T, Panagopoulos A, Caillat C, Takahara M, Hibbert RG, Suenaga N, Stadnik-Spiewak M, Takahashi T, Shiomi Y, Taraviras S, von Castelmur E, Lygerou Z, Perrakis A, Nishitani H. Direct binding of Cdt2 to PCNA is important for targeting the CRL4 Cdt2 E3 ligase activity to Cdt1. Life Sci Alliance 2018; 1:e201800238. [PMID: 30623174 PMCID: PMC6312923 DOI: 10.26508/lsa.201800238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/18/2023] Open
Abstract
The C-terminal end of Cdt2 contains a PIP box for binding to PCNA to promote CRL4Cdt2 function, creating a new paradigm where the substrate receptor and substrates bind to a common multivalent docking platform for ubiquitination. The CRL4Cdt2 ubiquitin ligase complex is an essential regulator of cell-cycle progression and genome stability, ubiquitinating substrates such as p21, Set8, and Cdt1, via a display of substrate degrons on proliferating cell nuclear antigens (PCNAs). Here, we examine the hierarchy of the ligase and substrate recruitment kinetics onto PCNA at sites of DNA replication. We demonstrate that the C-terminal end of Cdt2 bears a PCNA interaction protein motif (PIP box, Cdt2PIP), which is necessary and sufficient for the binding of Cdt2 to PCNA. Cdt2PIP binds PCNA directly with high affinity, two orders of magnitude tighter than the PIP box of Cdt1. X-ray crystallographic structures of PCNA bound to Cdt2PIP and Cdt1PIP show that the peptides occupy all three binding sites of the trimeric PCNA ring. Mutating Cdt2PIP weakens the interaction with PCNA, rendering CRL4Cdt2 less effective in Cdt1 ubiquitination and leading to defects in Cdt1 degradation. The molecular mechanism we present suggests a new paradigm for bringing substrates to the CRL4-type ligase, where the substrate receptor and substrates bind to a common multivalent docking platform to enable subsequent ubiquitination.
Collapse
Affiliation(s)
- Akiyo Hayashi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Tatjana Heidebrecht
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Takashi Ishii
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | | | - Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Michiyo Takahara
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Richard G Hibbert
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Naohiro Suenaga
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Magda Stadnik-Spiewak
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | | | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, Patras, Greece
| | - Anastassis Perrakis
- Department of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, Japan
| |
Collapse
|
8
|
Galanos P, Pappas G, Polyzos A, Kotsinas A, Svolaki I, Giakoumakis NN, Glytsou C, Pateras IS, Swain U, Souliotis VL, Georgakilas AG, Geacintov N, Scorrano L, Lukas C, Lukas J, Livneh Z, Lygerou Z, Chowdhury D, Sørensen CS, Bartek J, Gorgoulis VG. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol 2018; 19:37. [PMID: 29548335 PMCID: PMC5857109 DOI: 10.1186/s13059-018-1401-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21WAF1/Cip1, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery. Results We now demonstrate that p21WAF1/Cip1 can further fuel genomic instability by suppressing the repair capacity of low- and high-fidelity pathways that deal with nucleotide abnormalities. Consequently, fewer single nucleotide substitutions (SNSs) occur, while formation of highly deleterious DNA double-strand breaks (DSBs) is enhanced, crafting a characteristic mutational signature landscape. Guided by the mutational signatures formed, we find that the DSBs are repaired by Rad52-dependent break-induced replication (BIR) and single-strand annealing (SSA) repair pathways. Conversely, the error-free synthesis-dependent strand annealing (SDSA) repair route is deficient. Surprisingly, Rad52 is activated transcriptionally in an E2F1-dependent manner, rather than post-translationally as is common for DNA repair factor activation. Conclusions Our results signify the importance of mutational signatures as guides to disclose the repair history leading to genomic instability. We unveil how chronic p21WAF1/Cip1 expression rewires the repair process and identifies Rad52 as a source of genomic instability and a candidate therapeutic target. Electronic supplementary material The online version of this article (10.1186/s13059-018-1401-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Panagiotis Galanos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str, GR-11527, Athens, Greece.,Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - George Pappas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str, GR-11527, Athens, Greece.,Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Alexander Polyzos
- Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str, GR-11527, Athens, Greece
| | - Athanassios Kotsinas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str, GR-11527, Athens, Greece
| | - Ioanna Svolaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str, GR-11527, Athens, Greece
| | | | | | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str, GR-11527, Athens, Greece
| | - Umakanta Swain
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Vassilis L Souliotis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave, GR-11635, Athens, Greece
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780, Zografou, Athens, Greece
| | | | - Luca Scorrano
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Claudia Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiri Lukas
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zvi Livneh
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505, Patras, Rio, Greece
| | - Dipanjan Chowdhury
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Claus Storgaard Sørensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, DK-2200, Copenhagen, Denmark
| | - Jiri Bartek
- Danish Cancer Society Research Centre, Strandboulevarden 49, DK-2100, Copenhagen, Denmark. .,Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77, Stockholm, Sweden.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 75 Mikras Asias Str, GR-11527, Athens, Greece. .,Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str, GR-11527, Athens, Greece. .,Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Wilmslow Road, Manchester, M20 4QL, UK.
| |
Collapse
|
9
|
Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat Commun 2017; 8:2039. [PMID: 29229926 PMCID: PMC5725494 DOI: 10.1038/s41467-017-02146-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 11/08/2017] [Indexed: 12/29/2022] Open
Abstract
Pathway choice within DNA double-strand break (DSB) repair is a tightly regulated process to maintain genome integrity. RECQL4, deficient in Rothmund-Thomson Syndrome, promotes the two major DSB repair pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). Here we report that RECQL4 promotes and coordinates NHEJ and HR in different cell cycle phases. RECQL4 interacts with Ku70 to promote NHEJ in G1 when overall cyclin-dependent kinase (CDK) activity is low. During S/G2 phases, CDK1 and CDK2 (CDK1/2) phosphorylate RECQL4 on serines 89 and 251, enhancing MRE11/RECQL4 interaction and RECQL4 recruitment to DSBs. After phosphorylation, RECQL4 is ubiquitinated by the DDB1-CUL4A E3 ubiquitin ligase, which facilitates its accumulation at DSBs. Phosphorylation of RECQL4 stimulates its helicase activity, promotes DNA end resection, increases HR and cell survival after ionizing radiation, and prevents cellular senescence. Collectively, we propose that RECQL4 modulates the pathway choice of NHEJ and HR in a cell cycle-dependent manner. DNA double-strand break (DSB) repair is a tightly regulated process that can occur via non-homologous end joining (NHEJ) or homologous recombination (HR). Here, the authors investigate how RECQL4 modulates DSB repair pathway choice by differentially regulating NHEJ and HR in a cell cycle-dependent manner.
Collapse
|
10
|
Sakaue-Sawano A, Yo M, Komatsu N, Hiratsuka T, Kogure T, Hoshida T, Goshima N, Matsuda M, Miyoshi H, Miyawaki A. Genetically Encoded Tools for Optical Dissection of the Mammalian Cell Cycle. Mol Cell 2017; 68:626-640.e5. [DOI: 10.1016/j.molcel.2017.10.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/16/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022]
|
11
|
Tanaka M, Takahara M, Nukina K, Hayashi A, Sakai W, Sugasawa K, Shiomi Y, Nishitani H. Mismatch repair proteins recruited to ultraviolet light-damaged sites lead to degradation of licensing factor Cdt1 in the G1 phase. Cell Cycle 2017; 16:673-684. [PMID: 28278049 DOI: 10.1080/15384101.2017.1295179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cdt1 is rapidly degraded by CRL4Cdt2 E3 ubiquitin ligase after UV (UV) irradiation. Previous reports revealed that the nucleotide excision repair (NER) pathway is responsible for the rapid Cdt1-proteolysis. Here, we show that mismatch repair (MMR) proteins are also involved in the degradation of Cdt1 after UV irradiation in the G1 phase. First, compared with the rapid (within ∼15 min) degradation of Cdt1 in normal fibroblasts, Cdt1 remained stable for ∼30 min in NER-deficient XP-A cells, but was degraded within ∼60 min. The delayed degradation was also dependent on PCNA and CRL4Cdt2. The MMR proteins Msh2 and Msh6 were recruited to the UV-damaged sites of XP-A cells in the G1 phase. Depletion of these factors with small interfering RNAs prevented Cdt1 degradation in XP-A cells. Similar to the findings in XP-A cells, depletion of XPA delayed Cdt1 degradation in normal fibroblasts and U2OS cells, and co-depletion of Msh6 further prevented Cdt1 degradation. Furthermore, depletion of Msh6 alone delayed Cdt1 degradation in both cell types. When Cdt1 degradation was attenuated by high Cdt1 expression, repair synthesis at the damaged sites was inhibited. Our findings demonstrate that UV irradiation induces multiple repair pathways that activate CRL4Cdt2 to degrade its target proteins in the G1 phase of the cell cycle, leading to efficient repair of DNA damage.
Collapse
Affiliation(s)
- Miyuki Tanaka
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Michiyo Takahara
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Kohei Nukina
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Akiyo Hayashi
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Wataru Sakai
- b Biosignal Research Center , Kobe University , Kobe , Hyogo , Japan
| | - Kaoru Sugasawa
- b Biosignal Research Center , Kobe University , Kobe , Hyogo , Japan
| | - Yasushi Shiomi
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| | - Hideo Nishitani
- a Graduate School of Life Science , University of Hyogo , Kamigori, Ako-gun , Hyogo , Japan
| |
Collapse
|
12
|
Giakoumakis NN, Rapsomaniki MA, Lygerou Z. Analysis of Protein Kinetics Using Fluorescence Recovery After Photobleaching (FRAP). Methods Mol Biol 2017; 1563:243-267. [PMID: 28324613 DOI: 10.1007/978-1-4939-6810-7_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescence recovery after photobleaching (FRAP) is a cutting-edge live-cell functional imaging technique that enables the exploration of protein dynamics in individual cells and thus permits the elucidation of protein mobility, function, and interactions at a single-cell level. During a typical FRAP experiment, fluorescent molecules in a defined region of interest within the cell are bleached by a short and powerful laser pulse, while the recovery of the fluorescence in the region is monitored over time by time-lapse microscopy. FRAP experimental setup and image acquisition involve a number of steps that need to be carefully executed to avoid technical artifacts. Equally important is the subsequent computational analysis of FRAP raw data, to derive quantitative information on protein diffusion and binding parameters. Here we present an integrated in vivo and in silico protocol for the analysis of protein kinetics using FRAP. We focus on the most commonly encountered challenges and technical or computational pitfalls and their troubleshooting so that valid and robust insight into protein dynamics within living cells is gained.
Collapse
Affiliation(s)
| | - Maria Anna Rapsomaniki
- Laboratory of Biology, School of Medicine, University of Patras, GR26500 Rio, Patras, Greece.,IBM Research Zurich, Säumerstrasse 4, CH-8803, Rüschlikon, Switzerland
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, GR26500 Rio, Patras, Greece.
| |
Collapse
|
13
|
Global gene regulation during activation of immunoglobulin class switching in human B cells. Sci Rep 2016; 6:37988. [PMID: 27897229 PMCID: PMC5126563 DOI: 10.1038/srep37988] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/03/2016] [Indexed: 02/06/2023] Open
Abstract
Immunoglobulin class switch recombination (CSR) to IgE is a tightly regulated process central to atopic disease. To profile the B-cell transcriptional responses underlying the activation of the germinal centre activities leading to the generation of IgE, naïve human B-cells were stimulated with IL-4 and anti-CD40. Gene expression and alternative splicing were profiled over 12 days using the Affymetrix Human Exon 1.0 ST Array. A total of 1,399 genes, forming 13 temporal profiles were differentially expressed. CCL22 and CCL17 were dramatically induced but followed a temporal trajectory distinct from classical mediators of isotype switching. AICDA, NFIL3, IRF4, XBP1 and BATF3 shared a profile with several genes involved in innate immunity, but with no recognised role in CSR. A transcription factor BHLHE40 was identified at the core of this profile. B-cell activation was also accompanied by variation in exon retention affecting >200 genes including CCL17. The data indicate a circadian component and central roles for the Th2 chemokines CCL22 and CCL17 in the activation of CSR.
Collapse
|
14
|
Han C, Wani G, Zhao R, Qian J, Sharma N, He J, Zhu Q, Wang QE, Wani AA. Cdt2-mediated XPG degradation promotes gap-filling DNA synthesis in nucleotide excision repair. Cell Cycle 2015; 14:1103-15. [PMID: 25483071 DOI: 10.4161/15384101.2014.973740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3' side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4(Cdt2). Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4(Cdt2) for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.
Collapse
Affiliation(s)
- Chunhua Han
- a Department of Radiology ; The Ohio State University Wexner Medical Center ; Columbus , OH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Morino M, Nukina K, Sakaguchi H, Maeda T, Takahara M, Shiomi Y, Nishitani H. Mitotic UV irradiation induces a DNA replication-licensing defect that potentiates G1 arrest response. PLoS One 2015; 10:e0120553. [PMID: 25798850 PMCID: PMC4370595 DOI: 10.1371/journal.pone.0120553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
Abstract
Cdt1 begins to accumulate in M phase and has a key role in establishing replication licensing at the end of mitosis or in early G1 phase. Treatments that damage the DNA of cells, such as UV irradiation, induce Cdt1 degradation through PCNA-dependent CRL4-Cdt2 ubiquitin ligase. How Cdt1 degradation is linked to cell cycle progression, however, remains unclear. In G1 phase, when licensing is established, UV irradiation leads to Cdt1 degradation, but has little effect on the licensing state. In M phase, however, UV irradiation does not induce Cdt1 degradation. When mitotic UV-irradiated cells were released into G1 phase, Cdt1 was degraded before licensing was established. Thus, these cells exhibited both defective licensing and G1 cell cycle arrest. The frequency of G1 arrest increased in cells expressing extra copies of Cdt2, and thus in cells in which Cdt1 degradation was enhanced, whereas the frequency of G1 arrest was reduced in cell expressing an extra copy of Cdt1. The G1 arrest response of cells irradiated in mitosis was important for cell survival by preventing the induction of apoptosis. Based on these observations, we propose that mammalian cells have a DNA replication-licensing checkpoint response to DNA damage induced during mitosis.
Collapse
Affiliation(s)
- Masayuki Morino
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
| | - Kohei Nukina
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
| | - Hiroki Sakaguchi
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
| | - Takeshi Maeda
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
| | - Michiyo Takahara
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
| | - Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
| | - Hideo Nishitani
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, Japan
- * E-mail:
| |
Collapse
|
16
|
Roukos V, Pegoraro G, Voss TC, Misteli T. Cell cycle staging of individual cells by fluorescence microscopy. Nat Protoc 2015; 10:334-48. [PMID: 25633629 PMCID: PMC6318798 DOI: 10.1038/nprot.2015.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Progression through the cell cycle is one of the most fundamental features of cells. Studies of the cell cycle have traditionally relied on the analysis of populations, and they often require specific markers or the use of genetically modified systems, making it difficult to determine the cell cycle stage of individual, unperturbed cells. We describe a protocol, suitable for use in high-resolution imaging approaches, for determining cell cycle staging of individual cells by measuring their DNA content by fluorescence microscopy. The approach is based on the accurate quantification by image analysis of the integrated nuclear intensity of cells stained with a DNA dye, and it can be used in combination with several histochemical methods. We describe and provide the algorithms for two automated image analysis pipelines and the derivation of cell cycle profiles with both commercial and open-source software. This 1-2-d protocol is applicable to adherent cells, and it is adaptable for use with several DNA dyes.
Collapse
Affiliation(s)
- Vassilis Roukos
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Gianluca Pegoraro
- 1] National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA. [2] High-Throughput Imaging Facility, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Ty C Voss
- 1] National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA. [2] PerkinElmer Health Sciences Inc., Waltham, Maryland, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
17
|
Guarino E, Cojoc G, García-Ulloa A, Tolić IM, Kearsey SE. Real-time imaging of DNA damage in yeast cells using ultra-short near-infrared pulsed laser irradiation. PLoS One 2014; 9:e113325. [PMID: 25409521 PMCID: PMC4237433 DOI: 10.1371/journal.pone.0113325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Analysis of accumulation of repair and checkpoint proteins at repair sites in yeast nuclei has conventionally used chemical agents, ionizing radiation or induction of endonucleases to inflict localized damage. In addition to these methods, similar studies in mammalian cells have used laser irradiation, which has the advantage that damage is inflicted at a specific nuclear region and at a precise time, and this allows accurate kinetic analysis of protein accumulation at DNA damage sites. We show here that it is feasible to use short pulses of near-infrared laser irradiation to inflict DNA damage in subnuclear regions of yeast nuclei by multiphoton absorption. In conjunction with use of fluorescently-tagged proteins, this allows quantitative analysis of protein accumulation at damage sites within seconds of damage induction. PCNA accumulated at damage sites rapidly, such that maximum accumulation was seen approximately 50 s after damage, then levels declined linearly over 200-1000 s after irradiation. RPA accumulated with slower kinetics such that hardly any accumulation was detected within 60 s of irradiation, and levels subsequently increased linearly over the next 900 s, after which levels were approximately constant (up to ca. 2700 s) at the damage site. This approach complements existing methodologies to allow analysis of key damage sensors and chromatin modification changes occurring within seconds of damage inception.
Collapse
Affiliation(s)
- Estrella Guarino
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Gheorghe Cojoc
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Iva M. Tolić
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Stephen E. Kearsey
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Rapsomaniki MA, Cinquemani E, Giakoumakis NN, Kotsantis P, Lygeros J, Lygerou Z. Inference of protein kinetics by stochastic modeling and simulation of fluorescence recovery after photobleaching experiments. ACTA ACUST UNITED AC 2014; 31:355-62. [PMID: 25273108 DOI: 10.1093/bioinformatics/btu619] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Fluorescence recovery after photobleaching (FRAP) is a functional live cell imaging technique that permits the exploration of protein dynamics in living cells. To extract kinetic parameters from FRAP data, a number of analytical models have been developed. Simplifications are inherent in these models, which may lead to inexhaustive or inaccurate exploitation of the experimental data. An appealing alternative is offered by the simulation of biological processes in realistic environments at a particle level. However, inference of kinetic parameters using simulation-based models is still limited. RESULTS We introduce and demonstrate a new method for the inference of kinetic parameter values from FRAP data. A small number of in silico FRAP experiments is used to construct a mapping from FRAP recovery curves to the parameters of the underlying protein kinetics. Parameter estimates from experimental data can then be computed by applying the mapping to the observed recovery curves. A bootstrap process is used to investigate identifiability of the physical parameters and determine confidence regions for their estimates. Our method circumvents the computational burden of seeking the best-fitting parameters via iterative simulation. After validation on synthetic data, the method is applied to the analysis of the nuclear proteins Cdt1, PCNA and GFPnls. Parameter estimation results from several experimental samples are in accordance with previous findings, but also allow us to discuss identifiability issues as well as cell-to-cell variability of the protein kinetics. IMPLEMENTATION All methods were implemented in MATLAB R2011b. Monte Carlo simulations were run on the HPC cluster Brutus of ETH Zurich. CONTACT lygeros@control.ee.ethz.ch or lygerou@med.upatras.gr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Eugenio Cinquemani
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Nickolaos Nikiforos Giakoumakis
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Panagiotis Kotsantis
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - John Lygeros
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26505, Rio, Patras, Greece, Institut für Automatik, ETH Zürich, 8092 Zürich, Switzerland and INRIA Grenoble-Rhône-Alpes, Montbonnot, 38334 Saint-Ismier Cedex, France
| |
Collapse
|
19
|
Generation of cell-based systems to visualize chromosome damage and translocations in living cells. Nat Protoc 2014; 9:2476-92. [PMID: 25255091 DOI: 10.1038/nprot.2014.167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traditional methods for the generation of DNA damage are not well suited for the observation of spatiotemporal aspects of damaged chromosomal loci. We describe a protocol for the derivation of a cellular system to induce and to visualize chromosome damage at specific sites of the mammalian genome in living cells. The system is based on the stable integration of endonuclease I-SceI recognition sites flanked by bacterial LacO/TetO operator arrays, coupled with retroviral-mediated integration of their fluorescent repressors (LacR/TetR) to visualize the LacO/TetO sites. Expression of the I-SceI endonuclease induces double-strand breaks (DSBs) specifically at the sites of integration, and it permits the dynamics of damaged chromatin to be followed by time-lapse microscopy. Sequential LacO-I-SceI/TetO-I-SceI integrations in multiple chromosomes permit the generation of a system to visualize the formation of chromosome translocations in living cells. This protocol requires intermediate cell culture and molecular biology skills, and it is adaptable to the efficient derivation of any integrated clonal reporter system of interest in ≈ 3-5 months.
Collapse
|
20
|
Yu Y, Zhang XH, Ebersole B, Ribnicky D, Wang ZQ. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci Rep 2013; 3:3142. [PMID: 24189525 PMCID: PMC3912441 DOI: 10.1038/srep03142] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/21/2013] [Indexed: 11/13/2022] Open
Abstract
We sought to evaluate the effects of Momordica charantia (bitter melon, BM) extract on insulin sensitivity, NAFLD, hepatic FGF21 and AMPK signaling in mice fed a high-fat diet. Male C57/B6 mice were randomly divided into HFD and HFD supplementation with BM for 12 week. Body weight, plasma glucose, FGF21 and insulin levels, hepatic FGF21 and AMPK signaling proteins were measured. The results showed that plasma FGF21 and insulin concentrations were significantly decreased and hepatic FGF21 content was significantly down-regulated, while FGF receptors 1, 3 and 4 (FGFR1, FGFR3 and FGFR4) were greatly up-regulated in BM group compared to the HFD group (P < 0.05 and P < 0.01). BM also significantly increased hepatic AMPK p, AMPK α1 AMPK α2 and Sirt1 content compared to the HFD mice. We, for the first time, demonstrated that BM extract attenuated hepatic steatosis in mice by enhancing hepatic FGF21 and AMPK/Sirt1 signaling.
Collapse
Affiliation(s)
- Yongmei Yu
- Nutrition and Diabetes Research Laboratory, Pennington Biomedical Research Center, LSU System. Baton Rouge, LA 70808
| | | | | | | | | |
Collapse
|
21
|
Caillat C, Pefani DE, Gillespie PJ, Taraviras S, Blow JJ, Lygerou Z, Perrakis A. The Geminin and Idas coiled coils preferentially form a heterodimer that inhibits Geminin function in DNA replication licensing. J Biol Chem 2013; 288:31624-34. [PMID: 24064211 PMCID: PMC3814758 DOI: 10.1074/jbc.m113.491928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/28/2013] [Indexed: 01/03/2023] Open
Abstract
Geminin is an important regulator of proliferation and differentiation in metazoans, which predominantly inhibits the DNA replication licensing factor Cdt1, preventing genome over-replication. We show that Geminin preferentially forms stable coiled-coil heterodimers with its homologue, Idas. In contrast to Idas-Geminin heterodimers, Idas homodimers are thermodynamically unstable and are unlikely to exist as a stable macromolecule under physiological conditions. The crystal structure of the homology regions of Idas in complex with Geminin showed a tight head-to-head heterodimeric coiled-coil. This Idas-Geminin heterodimer binds Cdt1 less strongly than Geminin-Geminin, still with high affinity (∼30 nm), but with notably different thermodynamic properties. Consistently, in Xenopus egg extracts, Idas-Geminin is less active in licensing inhibition compared with a Geminin-Geminin homodimer. In human cultured cells, ectopic expression of Idas leads to limited over-replication, which is counteracted by Geminin co-expression. The properties of the Idas-Geminin complex suggest it as the functional form of Idas and provide a possible mechanism to modulate Geminin activity.
Collapse
Affiliation(s)
- Christophe Caillat
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | - Peter J. Gillespie
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Stavros Taraviras
- Laboratory of Physiology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - J. Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom, and
| | - Zoi Lygerou
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece
| | - Anastassis Perrakis
- From the Division of Biochemistry, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
22
|
Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. Spatial dynamics of chromosome translocations in living cells. Science 2013; 341:660-4. [PMID: 23929981 DOI: 10.1126/science.1237150] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chromosome translocations are a hallmark of cancer cells. We have developed an experimental system to visualize the formation of translocations in living cells and apply it to characterize the spatial and dynamic properties of translocation formation. We demonstrate that translocations form within hours of the occurrence of double-strand breaks (DSBs) and that their formation is cell cycle-independent. Translocations form preferentially between prepositioned genome elements, and perturbation of key factors of the DNA repair machinery uncouples DSB pairing from translocation formation. These observations generate a spatiotemporal framework for the formation of translocations in living cells.
Collapse
|
23
|
Tomas M, Blumhardt P, Deutzmann A, Schwarz T, Kromm D, Leitenstorfer A, Ferrando-May E. Imaging of the DNA damage-induced dynamics of nuclear proteins via nonlinear photoperturbation. JOURNAL OF BIOPHOTONICS 2013; 6:645-655. [PMID: 23420601 DOI: 10.1002/jbio.201200170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/10/2012] [Accepted: 10/18/2012] [Indexed: 06/01/2023]
Abstract
Understanding the cellular response to DNA strand breaks is crucial to decipher the mechanisms maintaining the integrity of our genome. We present a novel method to visualize how the mobility of nuclear proteins changes in response to localized DNA damage. DNA strand breaks are induced via nonlinear excitation with femtosecond laser pulses at λ = 1050 nm in a 3D-confined subnuclear volume. After a time delay of choice, protein mobility within this volume is analysed by two-photon photoactivation of PA-GFP fusion proteins at λ = 775 nm. By changing the position of the photoactivation spot with respect to the zone of lesion the influence of chromatin structure and of the distance from damage are investigated. As first applications we demonstrate a locally confined, time-dependent mobility increase of histone H1.2, and a progressive retardation of the DNA repair factor XRCC1 at damaged sites. This assay can be used to map the response of nuclear proteins to DNA damage in time and space.
Collapse
Affiliation(s)
- Martin Tomas
- Department of Physics, Modern Optics and Quantum Electronics and Center for Applied Photonics, University of Konstanz, Konstanz, 78457, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Ferrando-May E, Tomas M, Blumhardt P, Stöckl M, Fuchs M, Leitenstorfer A. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling. Front Genet 2013; 4:135. [PMID: 23882280 PMCID: PMC3712194 DOI: 10.3389/fgene.2013.00135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/25/2013] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments.
Collapse
Affiliation(s)
- Elisa Ferrando-May
- Department of Biology, Bioimaging Center and Center for Applied Photonics, University of Konstanz Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Wang ZQ, Yu Y, Zhang XH, Qin J, Floyd E. Gene expression profile in human skeletal muscle cells infected with human adenovirus type 36. J Med Virol 2012; 84:1254-66. [PMID: 22711354 DOI: 10.1002/jmv.23332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human adenovirus type-36 (HAdV-36) is a specific pathogen that may lead to increased adiposity and obesity. In order to evaluate the effects of HAdV-36 on gene transcription, a microarray analysis of muscle cells infected with HAdV-36 was performed. Gene expression profile was determined by microarray analysis in cultured human skeletal muscle cells with or without HAdV-36 infection. Quantitative real-time PCR (qPCR) assay was performed in selected 35 genes to verify the results of the microarray analysis. A total of 13,060 unique genes were detected in the HAdV-36 infected muscle cells infected with HAdV-36. Among them, 1,004 genes were significantly altered by using a cut-off point at fold change ≥1.5 and P value <0.05. Most of the principal 100 altered genes were involved in development, immune response, signal transduction, transcriptional regulation as well as carbohydrate, lipid and protein metabolism. Thirty-two genes (91.4%) from the 35 selected genes were confirmed by qPCR assay. In addition, HAdV-36 altered 252 genes that are associated with cancer. The study showed HAdV-36 infection upregulated host cell antiviral defense. HAdV-36 also induces changes in gene expression related to cellular signaling pathways of signal transduction, transcriptional regulation as well as carbohydrate, lipid and protein metabolism. However, it remains to be investigated if HAdV-36 infection could lead to oncogenesis.
Collapse
Affiliation(s)
- Zhong Q Wang
- Nutrition and Diabetes Research Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | | | | | | | | |
Collapse
|
26
|
Hao JJ, Gong T, Zhang Y, Shi ZZ, Xu X, Dong JT, Zhan QM, Fu SB, Wang MR. Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells. Gene 2012; 513:196-201. [PMID: 23026210 DOI: 10.1016/j.gene.2012.09.091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/10/2012] [Accepted: 09/12/2012] [Indexed: 01/14/2023]
Abstract
Chromosomal rearrangements and involved genes have been reported to play important roles in the development and progression of human malignancies. But the gene rearrangements in esophageal squamous cell carcinoma (ESCC) remain to be identified. In the present study, array-based comparative genomic hybridization (array-CGH) was performed on the ESCC cell line KYSE150. Eight disrupted genes were detected according to the obviously distinct unbalanced breakpoints. The splitting of these genes was validated by dual-color fluorescence in-situ hybridization (FISH). By using rapid amplification of cDNA ends (RACE), genome walking and sequencing analysis, we further identified gene disruptions and rearrangements. A fusion transcript DTL-1q42.2 was derived from an intrachromosomal rearrangement of chromosome 1. Highly amplified segments of DTL and PTPRD were self-rearranged. The sequences on either side of the junctions possess micro-homology with each other. FISH results indicated that the split DTL and PTPRD were also involved in comprising parts of the derivative chromosomes resulted from t(1q;9p;12p) and t(9;1;9). Further, we found that regions harboring DTL (1q32.3) and PTPRD (9p23) were also splitting in ESCC tumors. The data supplement significant information on the existing genetic background of KYSE150, which may be used as a model for studying these gene rearrangements.
Collapse
Affiliation(s)
- Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Symeonidou IE, Taraviras S, Lygerou Z. Control over DNA replication in time and space. FEBS Lett 2012; 586:2803-12. [PMID: 22841721 DOI: 10.1016/j.febslet.2012.07.042] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 12/23/2022]
Abstract
DNA replication is precisely regulated in time and space, thereby safeguarding genomic integrity. In eukaryotes, replication initiates from multiple sites along the genome, termed origins of replication, and propagates bidirectionally. Dynamic origin bound complexes dictate where and when replication should initiate. During late mitosis and G1 phase, putative origins are recognized and become "licensed" through the assembly of pre-replicative complexes (pre-RCs) that include the MCM2-7 helicases. Subsequently, at the G1/S phase transition, a fraction of pre-RCs are activated giving rise to the establishment of replication forks. Origin location is influenced by chromatin and nuclear organization and origin selection exhibits stochastic features. The regulatory mechanisms that govern these cell cycle events rely on the periodic fluctuation of cyclin dependent kinase (CDK) activity through the cell cycle.
Collapse
|
28
|
Rapsomaniki MA, Kotsantis P, Symeonidou IE, Giakoumakis NN, Taraviras S, Lygerou Z. easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. ACTA ACUST UNITED AC 2012; 28:1800-1. [PMID: 22543368 DOI: 10.1093/bioinformatics/bts241] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
SUMMARY We present easyFRAP, a versatile tool that assists quantitative and qualitative analysis of fluorescence recovery after photobleaching (FRAP) data. The user can handle simultaneously large data sets of raw data, visualize fluorescence recovery curves, exclude low quality data, perform data normalization, extract quantitative parameters, perform batch analysis and save the resulting data and figures for further use. Our tool is implemented as a single-screen Graphical User Interface (GUI) and is highly interactive, as it permits parameterization and visual data quality assessment at various points during the analysis. AVAILABILITY easyFRAP is free software, available under the General Public License (GPL). Executable and source files, supplementary material and sample data sets can be downloaded at: ccl.med.upatras.gr/easyfrap.html.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Laboratory of Biology, School of Medicine, University of Patras, 26505 Rio, Patras, Greece.
| | | | | | | | | | | |
Collapse
|
29
|
Two different replication factor C proteins, Ctf18 and RFC1, separately control PCNA-CRL4Cdt2-mediated Cdt1 proteolysis during S phase and following UV irradiation. Mol Cell Biol 2012; 32:2279-88. [PMID: 22493068 DOI: 10.1128/mcb.06506-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent work identified the E3 ubiquitin ligase CRL4(Cdt2) as mediating the timely degradation of Cdt1 during DNA replication and following DNA damage. In both cases, proliferating cell nuclear antigen (PCNA) loaded on chromatin mediates the CRL4(Cdt2)-dependent proteolysis of Cdt1. Here, we demonstrate that while replication factor C subunit 1 (RFC1)-RFC is required for Cdt1 degradation after UV irradiation during the nucleotide excision repair process, another RFC complex, Ctf18-RFC, which is known to be involved in the establishment of cohesion, has a key role in Cdt1 degradation in S phase. Cdt1 segments having only the degron, a specific sequence element in target protein for ubiquitination, for CRL4(Cdt2) were stabilized during S phase in Ctf18-depleted cells. Additionally, endogenous Cdt1 was stabilized when both Skp2 and Ctf18 were depleted. Since a substantial amount of PCNA was detected on chromatin in Ctf18-depleted cells, Ctf18 is required in addition to loaded PCNA for Cdt1 degradation in S phase. Our data suggest that Ctf18 is involved in recruiting CRL4(Cdt2) to PCNA foci during S phase. Ctf18-mediated Cdt1 proteolysis occurs independent of cohesion establishment, and depletion of Ctf18 potentiates rereplication. Our findings indicate that individual RFC complexes differentially control CRL4(Cdt2)-dependent proteolysis of Cdt1 during DNA replication and repair.
Collapse
|
30
|
Abstract
One of the mechanisms controlling the initiation of DNA replication is the dynamic interaction between Cdt1, which promotes assembly of the pre-replication license complex, and Geminin, which inhibits it. Specifically, Cdt1 cooperates with the cell cycle protein Cdc6 to promote loading of the minichromosome maintenance helicases (MCM) onto the chromatin-bound origin recognition complex (ORC), by directly interacting with the MCM complex, and by modulating histone acetylation and inducing chromatin unfolding. Geminin, on the other hand, prevents the loading of the MCM onto the ORC both by directly binding to Cdt1, and by modulating Cdt1 stability and activity. Protein levels of Geminin and Cdt1 are tightly regulated through the cell cycle, and the Cdt1-Geminin complex likely acts as a molecular switch that can enable or disable the firing of each origin of replication. In this review we summarize structural studies of Cdt1 and Geminin and subsequent insights into how this molecular switch may function to ensure DNA is faithfully replicated only once during S phase of each cell cycle.
Collapse
Affiliation(s)
- Christophe Caillat
- Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands
| | | |
Collapse
|
31
|
Abstract
Eukaryotic cell cycle transitions are driven by E3 ubiquitin ligases that catalyze the ubiquitylation and destruction of specific protein targets. For example, the anaphase-promoting complex/cyclosome (APC/C) promotes the exit from mitosis via destruction of securin and mitotic cyclins, whereas CRL1(Skp2) allows entry into S phase by targeting the destruction of the cyclin-dependent kinase (CDK) inhibitor p27. Recently, an E3 ubiquitin ligase called CRL4(Cdt2) has been characterized, which couples proteolysis to DNA synthesis via an unusual mechanism that involves display of substrate degrons on the DNA polymerase processivity factor PCNA. Through its destruction of Cdt1, p21, and Set8, CRL4(Cdt2) has emerged as a master regulator that prevents rereplication in S phase. In addition, it also targets other factors such as E2F and DNA polymerase η. In this review, we discuss our current understanding of the molecular mechanism of substrate recognition by CRL4(Cdt2) and how this E3 ligase helps to maintain genome integrity.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|