1
|
Sampathkumar A, Zhong C, Tang Y, Fujita Y, Ito M, Shinohara A. Replication protein-A, RPA, plays a pivotal role in the maintenance of recombination checkpoint in yeast meiosis. Sci Rep 2024; 14:9550. [PMID: 38664461 PMCID: PMC11045724 DOI: 10.1038/s41598-024-60082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.
Collapse
Affiliation(s)
- Arivarasan Sampathkumar
- Institute for Protein Research, University of Osaka, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Chen Zhong
- Institute for Protein Research, University of Osaka, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuting Tang
- Institute for Protein Research, University of Osaka, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yurika Fujita
- Institute for Protein Research, University of Osaka, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaru Ito
- Institute for Protein Research, University of Osaka, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akira Shinohara
- Institute for Protein Research, University of Osaka, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
2
|
Herruzo E, Sánchez-Díaz E, González-Arranz S, Santos B, Carballo JA, San-Segundo PA. Exportin-mediated nucleocytoplasmic transport maintains Pch2 homeostasis during meiosis. PLoS Genet 2023; 19:e1011026. [PMID: 37948444 PMCID: PMC10688877 DOI: 10.1371/journal.pgen.1011026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
The meiotic recombination checkpoint reinforces the order of events during meiotic prophase I, ensuring the accurate distribution of chromosomes to the gametes. The AAA+ ATPase Pch2 remodels the Hop1 axial protein enabling adequate levels of Hop1-T318 phosphorylation to support the ensuing checkpoint response. While these events are localized at chromosome axes, the checkpoint activating function of Pch2 relies on its cytoplasmic population. In contrast, forced nuclear accumulation of Pch2 leads to checkpoint inactivation. Here, we reveal the mechanism by which Pch2 travels from the cell nucleus to the cytoplasm to maintain Pch2 cellular homeostasis. Leptomycin B treatment provokes the nuclear accumulation of Pch2, indicating that its nucleocytoplasmic transport is mediated by the Crm1 exportin recognizing proteins containing Nuclear Export Signals (NESs). Consistently, leptomycin B leads to checkpoint inactivation and impaired Hop1 axial localization. Pch2 nucleocytoplasmic traffic is independent of its association with Zip1 and Orc1. We also identify a functional NES in the non-catalytic N-terminal domain of Pch2 that is required for its nucleocytoplasmic trafficking and proper checkpoint activity. In sum, we unveil another layer of control of Pch2 function during meiosis involving nuclear export via the exportin pathway that is crucial to maintain the critical balance of Pch2 distribution among different cellular compartments.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | | | | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
- Departamento de Microbiología y Genética. University of Salamanca. Salamanca, Spain
| | - Jesús A. Carballo
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-USAL, Salamanca, Spain
| | | |
Collapse
|
3
|
Börner GV, Hochwagen A, MacQueen AJ. Meiosis in budding yeast. Genetics 2023; 225:iyad125. [PMID: 37616582 PMCID: PMC10550323 DOI: 10.1093/genetics/iyad125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/13/2023] [Indexed: 08/26/2023] Open
Abstract
Meiosis is a specialized cell division program that is essential for sexual reproduction. The two meiotic divisions reduce chromosome number by half, typically generating haploid genomes that are packaged into gametes. To achieve this ploidy reduction, meiosis relies on highly unusual chromosomal processes including the pairing of homologous chromosomes, assembly of the synaptonemal complex, programmed formation of DNA breaks followed by their processing into crossovers, and the segregation of homologous chromosomes during the first meiotic division. These processes are embedded in a carefully orchestrated cell differentiation program with multiple interdependencies between DNA metabolism, chromosome morphogenesis, and waves of gene expression that together ensure the correct number of chromosomes is delivered to the next generation. Studies in the budding yeast Saccharomyces cerevisiae have established essentially all fundamental paradigms of meiosis-specific chromosome metabolism and have uncovered components and molecular mechanisms that underlie these conserved processes. Here, we provide an overview of all stages of meiosis in this key model system and highlight how basic mechanisms of genome stability, chromosome architecture, and cell cycle control have been adapted to achieve the unique outcome of meiosis.
Collapse
Affiliation(s)
- G Valentin Börner
- Center for Gene Regulation in Health and Disease (GRHD), Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | | | - Amy J MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| |
Collapse
|
4
|
Hernández‐Carralero E, Cabrera E, Rodríguez-Torres G, Hernández-Reyes Y, Singh A, Santa-María C, Fernández-Justel J, Janssens R, Marteijn J, Evert B, Mailand N, Gómez M, Ramadan K, Smits VJ, Freire R. ATXN3 controls DNA replication and transcription by regulating chromatin structure. Nucleic Acids Res 2023; 51:5396-5413. [PMID: 36971114 PMCID: PMC10287915 DOI: 10.1093/nar/gkad212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 11/18/2023] Open
Abstract
The deubiquitinating enzyme Ataxin-3 (ATXN3) contains a polyglutamine (PolyQ) region, the expansion of which causes spinocerebellar ataxia type-3 (SCA3). ATXN3 has multiple functions, such as regulating transcription or controlling genomic stability after DNA damage. Here we report the role of ATXN3 in chromatin organization during unperturbed conditions, in a catalytic-independent manner. The lack of ATXN3 leads to abnormalities in nuclear and nucleolar morphology, alters DNA replication timing and increases transcription. Additionally, indicators of more open chromatin, such as increased mobility of histone H1, changes in epigenetic marks and higher sensitivity to micrococcal nuclease digestion were detected in the absence of ATXN3. Interestingly, the effects observed in cells lacking ATXN3 are epistatic to the inhibition or lack of the histone deacetylase 3 (HDAC3), an interaction partner of ATXN3. The absence of ATXN3 decreases the recruitment of endogenous HDAC3 to the chromatin, as well as the HDAC3 nuclear/cytoplasm ratio after HDAC3 overexpression, suggesting that ATXN3 controls the subcellular localization of HDAC3. Importantly, the overexpression of a PolyQ-expanded version of ATXN3 behaves as a null mutant, altering DNA replication parameters, epigenetic marks and the subcellular distribution of HDAC3, giving new insights into the molecular basis of the disease.
Collapse
Affiliation(s)
- Esperanza Hernández‐Carralero
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
| | - Gara Rodríguez-Torres
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Abhay N Singh
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Cristina Santa-María
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - José Miguel Fernández-Justel
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - María Gómez
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas/Universidad Autónoma de Madrid (CSIC/UAM), Madrid, Spain
| | - Kristijan Ramadan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Veronique A J Smits
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Facultad de Medicina, Campus Ciencias de la Salud, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Hernández-Reyes Y, Paz-Cabrera MC, Freire R, Smits VAJ. USP29 Deubiquitinates SETD8 and Regulates DNA Damage-Induced H4K20 Monomethylation and 53BP1 Focus Formation. Cells 2022; 11:cells11162492. [PMID: 36010569 PMCID: PMC9406528 DOI: 10.3390/cells11162492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
SETD8 is a histone methyltransferase that plays pivotal roles in several cellular functions, including transcriptional regulation, cell cycle progression, and genome maintenance. SETD8 regulates the recruitment of 53BP1 to sites of DNA damage by controlling histone H4K20 methylation. Moreover, SETD8 levels are tightly regulated in a cell cycle-dependent manner by ubiquitin-dependent proteasomal degradation. Here, we identified ubiquitin-specific peptidase 29, USP29, as a novel regulator of SETD8. Depletion of USP29 leads to decreased SETD8 protein levels, an effect that is independent of the cell cycle. We demonstrate that SETD8 binds to USP29 in vivo, and this interaction is dependent on the catalytic activity of USP29. Wildtype USP29 can deubiquitinate SETD8 in vivo, indicating that USP29 directly regulates SETD8 protein levels. Importantly, USP29 knockdown inhibits the irradiation-induced increase in H4K20 monomethylation, thereby preventing focus formation of 53BP1 in response to DNA damage. Lastly, depletion of USP29 increases the cellular sensitivity to irradiation. These results demonstrate that USP29 is critical for the DNA damage response and cell survival, likely by controlling protein levels of SETD8.
Collapse
Affiliation(s)
- Yeray Hernández-Reyes
- Unidad de Investigación, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Escuela de Doctorado y Estudio de Postgrado, Universidad de la Laguna, 38200 Santa Cruz de Tenerife, Spain
| | | | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| | - Veronique A. J. Smits
- Unidad de Investigación, Hospital Universitario de Canarias, 38320 Santa Cruz de Tenerife, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38200 Santa Cruz de Tenerife, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
- Correspondence: ; Tel.: +34-922-678107
| |
Collapse
|
7
|
Raina VB, Schoot Uiterkamp M, Vader G. Checkpoint control in meiotic prophase: Idiosyncratic demands require unique characteristics. Curr Top Dev Biol 2022; 151:281-315. [PMID: 36681474 DOI: 10.1016/bs.ctdb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chromosomal transactions such as replication, recombination and segregation are monitored by cell cycle checkpoint cascades. These checkpoints ensure the proper execution of processes that are needed for faithful genome inheritance from one cell to the next, and across generations. In meiotic prophase, a specialized checkpoint monitors defining events of meiosis: programmed DNA break formation, followed by dedicated repair through recombination based on interhomolog (IH) crossovers. This checkpoint shares molecular characteristics with canonical DNA damage checkpoints active during somatic cell cycles. However, idiosyncratic requirements of meiotic prophase have introduced unique features in this signaling cascade. In this review, we discuss the unique features of the meiotic prophase checkpoint. While being related to canonical DNA damage checkpoint cascades, the meiotic prophase checkpoint also shows similarities with the spindle assembly checkpoint (SAC) that guards chromosome segregation. We highlight these emerging similarities in the signaling logic of the checkpoints that govern meiotic prophase and chromosome segregation, and how thinking of these similarities can help us better understand meiotic prophase control. We also discuss work showing that, when aberrantly expressed, components of the meiotic prophase checkpoint might alter DNA repair fidelity and chromosome segregation in cancer cells. Considering checkpoint function in light of demands imposed by the special characteristics of meiotic prophase helps us understand checkpoint integration into the meiotic cell cycle machinery.
Collapse
Affiliation(s)
- Vivek B Raina
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York City, NY, United States
| | - Maud Schoot Uiterkamp
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerben Vader
- Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands; Section of Oncogenetics, Department of Human Genetics, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Wellard SR, Skinner MW, Zhao X, Shults C, Jordan PW. PLK1 depletion alters homologous recombination and synaptonemal complex disassembly events during mammalian spermatogenesis. Mol Biol Cell 2022; 33:ar37. [PMID: 35274968 PMCID: PMC9282006 DOI: 10.1091/mbc.e21-03-0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/11/2022] Open
Abstract
Homologous recombination (HR) is an essential meiotic process that contributes to the genetic variation of offspring and ensures accurate chromosome segregation. Recombination is facilitated by the formation and repair of programmed DNA double-strand breaks. These DNA breaks are repaired via recombination between maternal and paternal homologous chromosomes and a subset result in the formation of crossovers. HR and crossover formation is facilitated by synapsis of homologous chromosomes by a proteinaceous scaffold structure known as the synaptonemal complex (SC). Recent studies in yeast and worms have indicated that polo-like kinases (PLKs) regulate several events during meiosis, including DNA recombination and SC dynamics. Mammals express four active PLKs (PLK1-4), and our previous work assessing localization and kinase function in mouse spermatocytes suggested that PLK1 coordinates nuclear events during meiotic prophase. Therefore, we conditionally mutated Plk1 in early prophase spermatocytes and assessed stages of HR, crossover formation, and SC processes. Plk1 mutation resulted in increased RPA foci and reduced RAD51/DMC1 foci during zygonema, and an increase of both class I and class II crossover events. Furthermore, the disassembly of SC lateral elements was aberrant. Our results highlight the importance of PLK1 in regulating HR and SC disassembly during spermatogenesis.
Collapse
Affiliation(s)
- Stephen R. Wellard
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Marnie W. Skinner
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Xueqi Zhao
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Chris Shults
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Philip W. Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
9
|
Alavattam KG, Maezawa S, Andreassen PR, Namekawa SH. Meiotic sex chromosome inactivation and the XY body: a phase separation hypothesis. Cell Mol Life Sci 2021; 79:18. [PMID: 34971404 PMCID: PMC9188433 DOI: 10.1007/s00018-021-04075-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/08/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
In mammalian male meiosis, the heterologous X and Y chromosomes remain unsynapsed and, as a result, are subject to meiotic sex chromosome inactivation (MSCI). MSCI is required for the successful completion of spermatogenesis. Following the initiation of MSCI, the X and Y chromosomes undergo various epigenetic modifications and are transformed into a nuclear body termed the XY body. Here, we review the mechanisms underlying the initiation of two essential, sequential processes in meiotic prophase I: MSCI and XY-body formation. The initiation of MSCI is directed by the action of DNA damage response (DDR) pathways; downstream of the DDR, unique epigenetic states are established, leading to the formation of the XY body. Accumulating evidence suggests that MSCI and subsequent XY-body formation may be driven by phase separation, a physical process that governs the formation of membraneless organelles and other biomolecular condensates. Thus, here we gather literature-based evidence to explore a phase separation hypothesis for the initiation of MSCI and the formation of the XY body.
Collapse
Affiliation(s)
- Kris G Alavattam
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba, 278-8510, Japan
| | - Paul R Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
González-Arranz S, Acosta I, Carballo JA, Santos B, San-Segundo PA. The N-Terminal Region of the Polo Kinase Cdc5 Is Required for Downregulation of the Meiotic Recombination Checkpoint. Cells 2021; 10:2561. [PMID: 34685541 PMCID: PMC8533733 DOI: 10.3390/cells10102561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/04/2022] Open
Abstract
During meiosis, the budding yeast polo-like kinase Cdc5 is a crucial driver of the prophase I to meiosis I (G2/M) transition. The meiotic recombination checkpoint restrains cell cycle progression in response to defective recombination to ensure proper distribution of intact chromosomes to the gametes. This checkpoint detects unrepaired DSBs and initiates a signaling cascade that ultimately inhibits Ndt80, a transcription factor required for CDC5 gene expression. Previous work revealed that overexpression of CDC5 partially alleviates the checkpoint-imposed meiotic delay in the synaptonemal complex-defective zip1Δ mutant. Here, we show that overproduction of a Cdc5 version (Cdc5-ΔN70), lacking the N-terminal region required for targeted degradation of the protein by the APC/C complex, fails to relieve the zip1Δ-induced meiotic delay, despite being more stable and reaching increased protein levels. However, precise mutation of the consensus motifs for APC/C recognition (D-boxes and KEN) has no effect on Cdc5 stability or function during meiosis. Compared to the zip1Δ single mutant, the zip1Δ cdc5-ΔN70 double mutant exhibits an exacerbated meiotic block and reduced levels of Ndt80 consistent with persistent checkpoint activity. Finally, using a CDC5-inducible system, we demonstrate that the N-terminal region of Cdc5 is essential for its checkpoint erasing function. Thus, our results unveil an additional layer of regulation of polo-like kinase function in meiotic cell cycle control.
Collapse
Affiliation(s)
- Sara González-Arranz
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
| | - Isabel Acosta
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
| | - Jesús A. Carballo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
- Departamento de Microbiología y Genética, University of Salamanca, 37007 Salamanca, Spain
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, 37007 Salamanca, Spain; (S.G.-A.); (I.A.); (B.S.)
| |
Collapse
|
11
|
Herruzo E, Lago-Maciel A, Baztán S, Santos B, Carballo JA, San-Segundo PA. Pch2 orchestrates the meiotic recombination checkpoint from the cytoplasm. PLoS Genet 2021; 17:e1009560. [PMID: 34260586 PMCID: PMC8312941 DOI: 10.1371/journal.pgen.1009560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 06/25/2021] [Indexed: 12/02/2022] Open
Abstract
During meiosis, defects in critical events trigger checkpoint activation and restrict cell cycle progression. The budding yeast Pch2 AAA+ ATPase orchestrates the checkpoint response launched by synapsis deficiency; deletion of PCH2 or mutation of the ATPase catalytic sites suppress the meiotic block of the zip1Δ mutant lacking the central region of the synaptonemal complex. Pch2 action enables adequate levels of phosphorylation of the Hop1 axial component at threonine 318, which in turn promotes activation of the Mek1 effector kinase and the ensuing checkpoint response. In zip1Δ chromosomes, Pch2 is exclusively associated to the rDNA region, but this nucleolar fraction is not required for checkpoint activation, implying that another yet uncharacterized Pch2 population must be responsible for this function. Here, we have artificially redirected Pch2 to different subcellular compartments by adding ectopic Nuclear Export (NES) or Nuclear Localization (NLS) sequences, or by trapping Pch2 in an immobile extranuclear domain, and we have evaluated the effect on Hop1 chromosomal distribution and checkpoint activity. We have also deciphered the spatial and functional impact of Pch2 regulators including Orc1, Dot1 and Nup2. We conclude that the cytoplasmic pool of Pch2 is sufficient to support the meiotic recombination checkpoint involving the subsequent Hop1-Mek1 activation on chromosomes, whereas the nuclear accumulation of Pch2 has pathological consequences. We propose that cytoplasmic Pch2 provokes a conformational change in Hop1 that poises it for its chromosomal incorporation and phosphorylation. Our discoveries shed light into the intricate regulatory network controlling the accurate balance of Pch2 distribution among different cellular compartments, which is essential for proper meiotic outcomes. During gametogenesis, the number of chromosomes is reduced by half and it returns to the normal ploidy when the two gametes fuse during fertilization. Meiosis lies at the heart of gametogenesis because it is the specialized cell division making possible the reduction in ploidy. The fidelity in this process is essential to maintain the chromosome complement characteristic of the species and to avoid aneuploidies. Meiotic cells possess an intricate surveillance network that monitors crucial meiotic events. In response to defects in synapsis and recombination, the meiotic recombination checkpoint blocks meiotic cell cycle progression, thus avoiding aberrant chromosome segregation and formation of defective gametes. The AAA+ ATPase Pch2 is an essential component of the checkpoint response triggered by the recombination defects occurring in the zip1Δ mutant lacking the central region of the synaptonemal complex. Pch2 supports proper chromosomal localization and phosphorylation of the Hop1 axial component required for the ensuing checkpoint response. We reveal here the biological relevance of a cytoplasmic population of Pch2 that is necessary for meiotic events occurring on chromosomes. Using a variety of strategies, we demonstrate that the checkpoint activating function of Pch2 takes place outside the nucleus, whereas the nuclear accumulation of Pch2 has deleterious consequences. Our work highlights the importance of nucleocytoplasmic communication for a balanced distribution of Pch2 among different subcellular compartments and how it impinges on Hop1 dynamics, which is crucial for proper completion of the meiotic program.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Ana Lago-Maciel
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Sara Baztán
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
- Departamento de Microbiología y Genética, University of Salamanca, Salamanca, Spain
| | - Jesús A. Carballo
- Department of Cellular and Molecular Biology. Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
12
|
Usui T, Shinohara A. Rad9, a 53BP1 Ortholog of Budding Yeast, Is Insensitive to Spo11-Induced Double-Strand Breaks During Meiosis. Front Cell Dev Biol 2021; 9:635383. [PMID: 33842461 PMCID: PMC8027355 DOI: 10.3389/fcell.2021.635383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/04/2022] Open
Abstract
Exogenous double-strand breaks (DSBs) induce a DNA damage response during mitosis as well as meiosis. The DNA damage response is mediated by a cascade involving Mec1/Tel1 (ATR/ATM) and Rad53 (Chk2) kinases. Meiotic cells are programmed to form DSBs for the initiation of meiotic recombination. In budding yeast, Spo11-mediated meiotic DSBs activate Mec1/Tel1, but not Rad53; however, the mechanism underlying the insensitivity of Rad53 to meiotic DSBs remains largely unknown. In this study, we found that meiotic cells activate Rad53 in response to exogenous DSBs and that this activation is dependent on an epigenetic marker, Dot1-dependent histone H3K79 methylation, which becomes a scaffold of an Rad53 mediator, Rad9, an ortholog of 53BP1. In contrast, Rad9 is insensitive to meiotic programmed DSBs. This insensitiveness of Rad9 derives from its inability to bind to the DSBs. Indeed, artificial tethering of Rad9 to the meiotic DSBs activated Rad53. The artificial activation of Rad53 kinase in meiosis decreases the repair of meiotic DSBs. These results suggest that the suppression of Rad53 activation is a key event in initiating a meiotic program that repairs programmed DSBs.
Collapse
Affiliation(s)
- Takehiko Usui
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| |
Collapse
|
13
|
The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem Biophys Res Commun 2021; 543:45-49. [PMID: 33515911 PMCID: PMC7825866 DOI: 10.1016/j.bbrc.2021.01.073] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/23/2022]
Abstract
In order to control the COVID-19 pandemic caused by SARS-CoV-2 infection, serious progress has been made to identify infected patients and to detect patients with a positive immune response against the virus. Currently, attempts to generate a vaccine against the coronavirus are ongoing. To understand SARS-CoV-2 immunoreactivity, we compared the IgG antibody response against SARS-CoV-2 in infected versus control patients by dot blot using recombinant viral particle proteins: N (Nucleocapsid), M (Membrane) and S (Spike). In addition, we used different protein fragments of the N and S protein to map immune epitopes. Most of the COVID-19 patients presented a specific immune response against the full length and fragments of the N protein and, to lesser extent, against a fragment containing amino acids 300-685 of the S protein. In contrast, immunoreactivity against other S protein fragments or the M protein was low. This response is specific for COVID-19 patients as very few of the control patients displayed immunoreactivity, likely reflecting an immune response against other coronaviruses. Altogether, our results may help develop method(s) for measuring COVID-19 antibody response, selectivity of methods detecting such SARS-CoV-2 antibodies and vaccine development.
Collapse
|
14
|
Pereira C, Smolka MB, Weiss RS, Brieño-Enríquez MA. ATR signaling in mammalian meiosis: From upstream scaffolds to downstream signaling. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:752-766. [PMID: 32725817 PMCID: PMC7747128 DOI: 10.1002/em.22401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 05/03/2023]
Abstract
In germ cells undergoing meiosis, the induction of double strand breaks (DSBs) is required for the generation of haploid gametes. Defects in the formation, detection, or recombinational repair of DSBs often result in defective chromosome segregation and aneuploidies. Central to the ability of meiotic cells to properly respond to DSBs are DNA damage response (DDR) pathways mediated by DNA damage sensor kinases. DDR signaling coordinates an extensive network of DDR effectors to induce cell cycle arrest and DNA repair, or trigger apoptosis if the damage is extensive. Despite their importance, the functions of DDR kinases and effector proteins during meiosis remain poorly understood and can often be distinct from their known mitotic roles. A key DDR kinase during meiosis is ataxia telangiectasia and Rad3-related (ATR). ATR mediates key signaling events that control DSB repair, cell cycle progression, and meiotic silencing. These meiotic functions of ATR depend on upstream scaffolds and regulators, including the 9-1-1 complex and TOPBP1, and converge on many downstream effectors such as the checkpoint kinase CHK1. Here, we review the meiotic functions of the 9-1-1/TOPBP1/ATR/CHK1 signaling pathway during mammalian meiosis.
Collapse
Affiliation(s)
- Catalina Pereira
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Marcus B. Smolka
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Robert S. Weiss
- Department of Biomedical Sciences, Cornell University, Ithaca, NY
| | - Miguel A. Brieño-Enríquez
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA
- Corresponding author: ; Phone: 412-641-7531
| |
Collapse
|
15
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
16
|
The Initiation of Meiotic Sex Chromosome Inactivation Sequesters DNA Damage Signaling from Autosomes in Mouse Spermatogenesis. Curr Biol 2020; 30:408-420.e5. [PMID: 31902729 PMCID: PMC7076562 DOI: 10.1016/j.cub.2019.11.064] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/04/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
Abstract
Meiotic sex chromosome inactivation (MSCI) is an essential event in the mammalian male germline. MSCI is directed by a DNA damage response (DDR) pathway centered on the phosphorylation of histone variant H2AX at serine 139 (termed γH2AX). The failure to initiate MSCI is linked to complete meiotic arrest and elimination of germ cells; however, the mechanisms underlying this arrest and elimination remain unknown. To address this question, we established a new separation-of-function mouse model for H2ax that shows specific and complete defects in MSCI. The genetic change is a point mutation in which another H2AX amino acid residue important in the DDR, tyrosine 142 (Y142), is converted to alanine (H2ax-Y142A). In H2ax-Y142A meiosis, the establishment of DDR signals on the chromosome-wide domain of the sex chromosomes is impaired. The initiation of MSCI is required for stage progression, which enables crossover formation, suggesting that the establishment of MSCI permits the timely progression of male meiosis. Our results suggest that normal meiotic progression requires the removal of ATR-mediated DDR signaling from autosomes. We propose a novel biological function for MSCI: the initiation of MSCI sequesters DDR factors from autosomes to the sex chromosomes at the onset of the pachytene stage, and the subsequent formation of an isolated XY nuclear compartment-the XY body-sequesters DDR factors to permit meiotic progression from the mid-pachytene stage onward. VIDEO ABSTRACT.
Collapse
|
17
|
Characterization of Pch2 localization determinants reveals a nucleolar-independent role in the meiotic recombination checkpoint. Chromosoma 2019; 128:297-316. [PMID: 30859296 DOI: 10.1007/s00412-019-00696-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Abstract
The meiotic recombination checkpoint blocks meiotic cell cycle progression in response to synapsis and/or recombination defects to prevent aberrant chromosome segregation. The evolutionarily conserved budding yeast Pch2TRIP13 AAA+ ATPase participates in this pathway by supporting phosphorylation of the Hop1HORMAD adaptor at T318. In the wild type, Pch2 localizes to synapsed chromosomes and to the unsynapsed rDNA region (nucleolus), excluding Hop1. In contrast, in synaptonemal complex (SC)-defective zip1Δ mutants, which undergo checkpoint activation, Pch2 is detected only on the nucleolus. Alterations in some epigenetic marks that lead to Pch2 dispersion from the nucleolus suppress zip1Δ-induced checkpoint arrest. These observations have led to the notion that Pch2 nucleolar localization could be important for the meiotic recombination checkpoint. Here we investigate how Pch2 chromosomal distribution impacts checkpoint function. We have generated and characterized several mutations that alter Pch2 localization pattern resulting in aberrant Hop1 distribution and compromised meiotic checkpoint response. Besides the AAA+ signature, we have identified a basic motif in the extended N-terminal domain critical for Pch2's checkpoint function and localization. We have also examined the functional relevance of the described Orc1-Pch2 interaction. Both proteins colocalize in the rDNA, and Orc1 depletion during meiotic prophase prevents Pch2 targeting to the rDNA allowing unwanted Hop1 accumulation on this region. However, Pch2 association with SC components remains intact in the absence of Orc1. We finally show that checkpoint activation is not affected by the lack of Orc1 demonstrating that, in contrast to previous hypotheses, nucleolar localization of Pch2 is actually dispensable for the meiotic checkpoint.
Collapse
|
18
|
Abstract
The evolution of heteromorphic sex chromosomes has occurred independently many times in different lineages. The differentiation of sex chromosomes leads to dramatic changes in sequence composition and function and guides the evolutionary trajectory and utilization of genes in pivotal sex determination and reproduction roles. In addition, meiotic recombination and pairing mechanisms are key in orchestrating the resultant impact, retention and maintenance of heteromorphic sex chromosomes, as the resulting exposure of unpaired DNA at meiosis triggers ancient repair and checkpoint pathways. In this review, we summarize the different ways in which sex chromosome systems are organized at meiosis, how pairing is affected, and differences in unpaired DNA responses. We hypothesize that lineage specific differences in meiotic organization is not only a consequence of sex chromosome evolution, but that the establishment of epigenetic changes on sex chromosomes contributes toward their evolutionary conservation.
Collapse
Affiliation(s)
- Tasman Daish
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Frank Grützner
- Comparative Genome Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
19
|
Functional Impact of the H2A.Z Histone Variant During Meiosis in Saccharomyces cerevisiae. Genetics 2018; 209:997-1015. [PMID: 29853474 DOI: 10.1534/genetics.118.301110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022] Open
Abstract
Among the collection of chromatin modifications that influence its function and structure, the substitution of canonical histones by the so-called histone variants is one of the most prominent actions. Since crucial meiotic transactions are modulated by chromatin, here we investigate the functional contribution of the H2A.Z histone variant during both unperturbed meiosis and upon challenging conditions where the meiotic recombination checkpoint is triggered in budding yeast by the absence of the synaptonemal complex component Zip1 We have found that H2A.Z localizes to meiotic chromosomes in an SWR1-dependent manner. Although meiotic recombination is not substantially altered, the htz1 mutant (lacking H2A.Z) shows inefficient meiotic progression, impaired sporulation, and reduced spore viability. These phenotypes are likely accounted for by the misregulation of meiotic gene expression landscape observed in htz1 In the zip1 mutant, the absence of H2A.Z results in a tighter meiotic arrest imposed by the meiotic recombination checkpoint. We have found that Mec1-dependent Hop1-T318 phosphorylation and the ensuing Mek1 activation are not significantly altered in zip1 htz1; however, downstream checkpoint targets, such as the meiosis I-promoting factors Ndt80, Cdc5, and Clb1, are drastically downregulated. The study of the checkpoint response in zip1 htz1 has also allowed us to reveal the existence of an additional function of the Swe1 kinase, independent of CDK inhibitory phosphorylation, which is relevant to restrain meiotic cell cycle progression. In summary, our study shows that the H2A.Z histone variant impacts various aspects of meiotic development adding further insight into the relevance of chromatin dynamics for accurate gametogenesis.
Collapse
|
20
|
Jiménez-Canino R, Lorenzo-Díaz F, Odermatt A, Bailey MA, Livingstone DEW, Jaisser F, Farman N, Alvarez de la Rosa D. 11β-HSD2 SUMOylation Modulates Cortisol-Induced Mineralocorticoid Receptor Nuclear Translocation Independently of Effects on Transactivation. Endocrinology 2017; 158:4047-4063. [PMID: 28938454 DOI: 10.1210/en.2017-00440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/12/2017] [Indexed: 12/26/2022]
Abstract
The enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) has an essential role in aldosterone target tissues, conferring aldosterone selectivity for the mineralocorticoid receptor (MR) by converting 11β-hydroxyglucocorticoids to inactive 11-ketosteroids. Congenital deficiency of 11β-HSD2 causes a form of salt-sensitive hypertension known as the syndrome of apparent mineralocorticoid excess. The disease phenotype, which ranges from mild to severe, correlates well with reduction in enzyme activity. Furthermore, polymorphisms in the 11β-HSD2 coding gene (HSD11B2) have been linked to high blood pressure and salt sensitivity, major cardiovascular risk factors. 11β-HSD2 expression is controlled by different factors such as cytokines, sex steroids, or vasopressin, but posttranslational modulation of its activity has not been explored. Analysis of 11β-HSD2 sequence revealed a consensus site for conjugation of small ubiquitin-related modifier (SUMO) peptide, a major posttranslational regulatory event in several cellular processes. Our results demonstrate that 11β-HSD2 is SUMOylated at lysine 266. Non-SUMOylatable mutant K266R showed slightly higher substrate affinity and decreased Vmax, but no effects on protein stability or subcellular localization. Despite mild changes in enzyme activity, mutant K266R was unable to prevent cortisol-dependent MR nuclear translocation. The same effect was achieved by coexpression of wild-type 11β-HSD2 with sentrin-specific protease 1, a protease that catalyzes SUMO deconjugation. In the presence of 11β-HSD2-K266R, increased nuclear MR localization did not correlate with increased response to cortisol or increased recruitment of transcriptional coregulators. Taken together, our data suggests that SUMOylation of 11β-HSD2 at residue K266 modulates cortisol-mediated MR nuclear translocation independently of effects on transactivation.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Fabián Lorenzo-Díaz
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland
| | - Matthew A Bailey
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Dawn E W Livingstone
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Frederic Jaisser
- INSERM UMRS 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 75006 Paris, France
| | - Nicolette Farman
- INSERM UMRS 1138, Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, 75006 Paris, France
| | - Diego Alvarez de la Rosa
- Department of Basic Medical Sciences, Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, 38200 Tenerife, Spain
| |
Collapse
|
21
|
Hernández-Pérez S, Cabrera E, Salido E, Lim M, Reid L, Lakhani SR, Khanna KK, Saunus JM, Freire R. DUB3 and USP7 de-ubiquitinating enzymes control replication inhibitor Geminin: molecular characterization and associations with breast cancer. Oncogene 2017; 36:4802-4809. [PMID: 28288134 DOI: 10.1038/onc.2017.21] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/15/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Correct control of DNA replication is crucial to maintain genomic stability in dividing cells. Inappropriate re-licensing of replicated origins is associated with chromosomal instability (CIN), a hallmark of cancer progression that at the same time provides potential opportunities for therapeutic intervention. Geminin is a critical inhibitor of the DNA replication licensing factor Cdt1. To properly achieve its functions, Geminin levels are tightly regulated through the cell cycle by ubiquitin-dependent proteasomal degradation, but the de-ubiquitinating enzymes (DUBs) involved had not been identified. Here we report that DUB3 and USP7 control human Geminin. Overexpression of either DUB3 or USP7 increases Geminin levels through reduced ubiquitination. Conversely, depletion of DUB3 or USP7 reduces Geminin levels, and DUB3 knockdown increases re-replication events, analogous to the effect of Geminin depletion. In exploring potential clinical implications, we found that USP7 and Geminin are strongly correlated in a cohort of invasive breast cancers (P<1.01E-08). As expected, Geminin expression is highly prognostic. Interestingly, we found a non-monotonic relationship between USP7 and breast cancer-specific survival, with both very low or high levels of USP7 associated with poor outcome, independent of estrogen receptor status. Altogether, our data identify DUB3 and USP7 as factors that regulate DNA replication by controlling Geminin protein stability, and suggest that USP7 may be involved in Geminin dysregulation during breast cancer progression.
Collapse
Affiliation(s)
- S Hernández-Pérez
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Cabrera
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - E Salido
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| | - M Lim
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - L Reid
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - S R Lakhani
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,Pathology Queensland, The Royal Brisbane and Women's Hospital, Herston, QLD, Australia.,The University of Queensland, School of Medicine, Herston, QLD, Australia
| | - K K Khanna
- Signal Transduction Laboratory, QIMR Berghofer Institute of Medical Research, Brisbane, QLD, Australia
| | - J M Saunus
- The University of Queensland, UQ Centre for Clinical Research, Herston, QLD, Australia.,QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - R Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, La Laguna, Spain
| |
Collapse
|
22
|
Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response. G3-GENES GENOMES GENETICS 2016; 6:3869-3881. [PMID: 27678521 PMCID: PMC5144958 DOI: 10.1534/g3.116.033910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.
Collapse
|
23
|
Cavero S, Herruzo E, Ontoso D, San-Segundo PA. Impact of histone H4K16 acetylation on the meiotic recombination checkpoint in Saccharomyces cerevisiae. MICROBIAL CELL 2016; 3:606-620. [PMID: 28357333 PMCID: PMC5348980 DOI: 10.15698/mic2016.12.548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In meiotic cells, the pachytene checkpoint or meiotic recombination checkpoint is
a surveillance mechanism that monitors critical processes, such as recombination
and chromosome synapsis, which are essential for proper distribution of
chromosomes to the meiotic progeny. Failures in these processes lead to the
formation of aneuploid gametes. Meiotic recombination occurs in the context of
chromatin; in fact, the histone methyltransferase Dot1 and the histone
deacetylase Sir2 are known regulators of the pachytene checkpoint in
Saccharomyces cerevisiae. We report here that Sas2-mediated
acetylation of histone H4 at lysine 16 (H4K16ac), one of the Sir2 targets,
modulates meiotic checkpoint activity in response to synaptonemal complex
defects. We show that, like sir2, the H4-K16Q
mutation, mimicking constitutive acetylation of H4K16, eliminates the delay in
meiotic cell cycle progression imposed by the checkpoint in the
synapsis-defective zip1 mutant. We also demonstrate that, like
in dot1, zip1-induced phosphorylation of the
Hop1 checkpoint adaptor at threonine 318 and the ensuing Mek1 activation are
impaired in H4-K16 mutants. However, in contrast to
sir2 and dot1, the
H4-K16R and H4-K16Q mutations have only a
minor effect in checkpoint activation and localization of the nucleolar Pch2
checkpoint factor in ndt80-prophase-arrested cells. We also
provide evidence for a cross-talk between Dot1-dependent H3K79 methylation and
H4K16ac and show that Sir2 excludes H4K16ac from the rDNA region on meiotic
chromosomes. Our results reveal that proper levels of H4K16ac orchestrate this
meiotic quality control mechanism and that Sir2 impinges on additional targets
to fully activate the checkpoint.
Collapse
Affiliation(s)
- Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Department of Experimental and Health Sciences, Pompeu Fabra University, 08003-Barcelona, Spain
| | - Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain. ; Present address: Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
24
|
Jiménez-Canino R, Fernandes MX, Alvarez de la Rosa D. Phosphorylation of Mineralocorticoid Receptor Ligand Binding Domain Impairs Receptor Activation and Has a Dominant Negative Effect over Non-phosphorylated Receptors. J Biol Chem 2016; 291:19068-78. [PMID: 27422824 DOI: 10.1074/jbc.m116.718395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of steroid receptors allows fine-tuning different properties of this family of proteins, including stability, activation, or interaction with co-regulators. Recently, a novel effect of phosphorylation on steroid receptor biology was described. Phosphorylation of human mineralocorticoid receptor (MR) on Ser-843, a residue placed on the ligand binding domain, lowers affinity for agonists, producing inhibition of gene transactivation. We now show that MR inhibition by phosphorylation occurs even at high agonist concentration, suggesting that phosphorylation may also impair coupling between ligand binding and receptor activation. Our results demonstrate that agonists are able to induce partial nuclear translocation of MR but fail to produce transactivation due at least in part to impaired co-activator recruitment. The inhibitory effect of phosphorylation on MR acts in a dominant-negative manner, effectively amplifying its functional effect on gene transactivation.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | - Miguel X Fernandes
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| | - Diego Alvarez de la Rosa
- From the Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas y Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38071 La Laguna, Tenerife, Spain
| |
Collapse
|
25
|
Herruzo E, Ontoso D, González-Arranz S, Cavero S, Lechuga A, San-Segundo PA. The Pch2 AAA+ ATPase promotes phosphorylation of the Hop1 meiotic checkpoint adaptor in response to synaptonemal complex defects. Nucleic Acids Res 2016; 44:7722-41. [PMID: 27257060 PMCID: PMC5027488 DOI: 10.1093/nar/gkw506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Meiotic cells possess surveillance mechanisms that monitor critical events such as recombination and chromosome synapsis. Meiotic defects resulting from the absence of the synaptonemal complex component Zip1 activate a meiosis-specific checkpoint network resulting in delayed or arrested meiotic progression. Pch2 is an evolutionarily conserved AAA+ ATPase required for the checkpoint-induced meiotic block in the zip1 mutant, where Pch2 is only detectable at the ribosomal DNA array (nucleolus). We describe here that high levels of the Hop1 protein, a checkpoint adaptor that localizes to chromosome axes, suppress the checkpoint defect of a zip1 pch2 mutant restoring Mek1 activity and meiotic cell cycle delay. We demonstrate that the critical role of Pch2 in this synapsis checkpoint is to sustain Mec1-dependent phosphorylation of Hop1 at threonine 318. We also show that the ATPase activity of Pch2 is essential for its checkpoint function and that ATP binding to Pch2 is required for its localization. Previous work has shown that Pch2 negatively regulates Hop1 chromosome abundance during unchallenged meiosis. Based on our results, we propose that, under checkpoint-inducing conditions, Pch2 also possesses a positive action on Hop1 promoting its phosphorylation and its proper distribution on unsynapsed chromosome axes.
Collapse
Affiliation(s)
- Esther Herruzo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - David Ontoso
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Sara González-Arranz
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Santiago Cavero
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Ana Lechuga
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Pedro A San-Segundo
- Instituto de Biología Funcional y Genómica. Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
26
|
Jiménez-Canino R, Lorenzo-Díaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone Deacetylase 6-Controlled Hsp90 Acetylation Significantly Alters Mineralocorticoid Receptor Subcellular Dynamics But Not its Transcriptional Activity. Endocrinology 2016; 157:2515-32. [PMID: 27100623 DOI: 10.1210/en.2015-2055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily that transduces the biological effects of corticosteroids. Its best-characterized role is to enhance transepithelial sodium reabsorption in response to increased aldosterone levels. In addition, MR participates in other aldosterone- or glucocorticoid-controlled processes such as cardiovascular homeostasis, adipocyte differentiation or neurogenesis, and regulation of neuronal activity in the hippocampus. Like other steroid receptors, MR forms cytosolic heterocomplexes with heat shock protein (Hsp) 90), Hsp70, and other proteins such as immunophilins. Interaction with Hsp90 is thought to maintain MR in a ligand-binding competent conformation and to regulate ligand-dependent and -independent nucleocytoplasmatic shuttling. It has previously been shown that acetylation of residue K295 in Hsp90 regulates its interaction with the androgen receptor and glucocorticoid receptor (GR). In this work we hypothesized that Hsp90 acetylation provides a regulatory step to modulate MR cellular dynamics and activity. We used Hsp90 acetylation mimic mutant K295Q or nonacetylatable mutant K295R to examine whether MR nucleocytoplasmatic shuttling and gene transactivation are affected. Furthermore, we manipulated endogenous Hsp90 acetylation levels by controlling expression or activity of histone deacetylase 6 (HDAC6), the enzyme responsible for deacetylation of Hsp90-K295. Our data demonstrates that HDAC6-mediated Hsp90 acetylation regulates MR cellular dynamics but it does not alter its function. This stands in contrast with the down-regulation of GR by HDAC6, suggesting that Hsp90 acetylation may play a role in balancing relative MR and GR activity when both factors are co-expressed in the same cell.
Collapse
Affiliation(s)
- Rubén Jiménez-Canino
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Fabián Lorenzo-Díaz
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Frederic Jaisser
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Nicolette Farman
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Teresa Giraldez
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| | - Diego Alvarez de la Rosa
- Department of Physiology (R.J.-C., F.L.-D., T.G., D.A.d.l.R.), Institute of Biomedical Technologies and Center for Biomedical Research of the Canary Islands, University of La Laguna, Tenerife 38071, Spain; and INSERM UMRS 1138 (N.J., N.F.), Team 1, Centre de Recherche des Cordeliers, Université Pierre et Marie Curie, Paris 75006, France
| |
Collapse
|
27
|
Subramanian VV, MacQueen AJ, Vader G, Shinohara M, Sanchez A, Borde V, Shinohara A, Hochwagen A. Chromosome Synapsis Alleviates Mek1-Dependent Suppression of Meiotic DNA Repair. PLoS Biol 2016; 14:e1002369. [PMID: 26870961 PMCID: PMC4752329 DOI: 10.1371/journal.pbio.1002369] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Faithful meiotic chromosome segregation and fertility require meiotic recombination between homologous chromosomes rather than the equally available sister chromatid, a bias that in Saccharomyces cerevisiae depends on the meiotic kinase, Mek1. Mek1 is thought to mediate repair template bias by specifically suppressing sister-directed repair. Instead, we found that when Mek1 persists on closely paired (synapsed) homologues, DNA repair is severely delayed, suggesting that Mek1 suppresses any proximal repair template. Accordingly, Mek1 is excluded from synapsed homologues in wild-type cells. Exclusion requires the AAA+-ATPase Pch2 and is directly coupled to synaptonemal complex assembly. Stage-specific depletion experiments further demonstrate that DNA repair in the context of synapsed homologues requires Rad54, a repair factor inhibited by Mek1. These data indicate that the sister template is distinguished from the homologue primarily by its closer proximity to inhibitory Mek1 activity. We propose that once pairing or synapsis juxtaposes homologues, exclusion of Mek1 is necessary to avoid suppression of all templates and accelerate repair progression. Experiments in yeast indicate that one function of the synaptonemal complex is to disable chromosome-bound Mek1 kinase, thereby promoting DNA repair on fully paired meiotic chromosomes and helping to favor recombination between homologues over sister chromatids. Chromosome segregation errors during meiosis may cause infertility, fetal loss, or birth defects. To avoid meiotic chromosome segregation errors, recombination-mediated linkages are established between previously unattached homologous chromosomes. Such recombination events initiate with breaks in the DNA, but how these breaks are preferentially repaired using the distal homologous chromosome, rather than the physically more proximal sister chromatid of similar sequence, is not well understood. Meiotic repair-template bias in the budding yeast depends on the function of Mek1, a meiosis-specific protein kinase. Previous models suggested that Mek1 activity creates repair-template bias by suppressing repair with the sister chromatid. We found that Mek1 localizes on meiotic chromosomes until the homologues pair and closely align. Removal of Mek1 requires the assembly of a conserved zipper-like structure between meiotic chromosomes, known as the synaptonemal complex. DNA break repair is delayed in mutants in which Mek1 persists on closely aligned homologues. These findings suggest that persistent Mek1 activity can suppress repair from all templates, and that one function of the synaptonemal complex is to remove this activity from chromosomes. Our findings build on previous models to propose that Mek1 activity creates a local zone of repair suppression that is normally avoided by the spatially distant homologous chromosome to promote repair-template bias.
Collapse
Affiliation(s)
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Gerben Vader
- Department of Biology, New York University, New York, New York, United States of America
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Aurore Sanchez
- Institut Curie/Centre de Recherche, CNRS, UMR3664, Paris, France
| | - Valérie Borde
- Institut Curie/Centre de Recherche, CNRS, UMR3664, Paris, France
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Chen YJ, Chuang YC, Chuang CN, Cheng YH, Chang CR, Leng CH, Wang TF. S. cerevisiae Mre11 recruits conjugated SUMO moieties to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex. Nucleic Acids Res 2016; 44:2199-213. [PMID: 26743002 PMCID: PMC4797280 DOI: 10.1093/nar/gkv1523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 12/19/2015] [Indexed: 01/04/2023] Open
Abstract
Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses-checkpoint phosphorylation and global SUMOylation-to boost a cell's ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily-conserved SUMO-interacting motifs, Mre11(SIM1) and Mre11(SIM2), which reside on the outermost surface of Mre11. Mre11(SIM1) is indispensable for MRX assembly. Mre11(SIM2) non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11(SIM2) acts independently of checkpoint phosphorylation. During meiosis, the mre11(SIM2) mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties non-covalently facilitate the assembly and functions of multi-subunit protein complexes.
Collapse
Affiliation(s)
- Yu-Jie Chen
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Miaoli 350, Taiwan Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yun-Hsin Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chuang-Rung Chang
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chih-Hsiang Leng
- Graduate Program of Biotechnology in Medicine, National Tsing Hua University and National Health Research Institutes, Taiwan National Institute of Infectious Diseases and Vaccinology, National Health Research Institute, Miaoli 350, Taiwan
| | - Ting-Fang Wang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
29
|
Senataxin controls meiotic silencing through ATR activation and chromatin remodeling. Cell Discov 2015; 1:15025. [PMID: 27462424 PMCID: PMC4860845 DOI: 10.1038/celldisc.2015.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/17/2015] [Indexed: 12/13/2022] Open
Abstract
Senataxin, defective in ataxia oculomotor apraxia type 2, protects the genome by facilitating the resolution of RNA–DNA hybrids (R-loops) and other aspects of RNA processing. Disruption of this gene in mice causes failure of meiotic recombination and defective meiotic sex chromosome inactivation, leading to male infertility. Here we provide evidence that the disruption of Setx leads to reduced SUMOylation and disruption of protein localization across the XY body during meiosis. We demonstrate that senataxin and other DNA damage repair proteins, including ataxia telangiectasia and Rad3-related protein-interacting partner, are SUMOylated, and a marked downregulation of both ataxia telangiectasia and Rad3-related protein-interacting partner and TopBP1 leading to defective activation and signaling through ataxia telangiectasia and Rad3-related protein occurs in the absence of senataxin. Furthermore, chromodomain helicase DNA-binding protein 4, a component of the nucleosome remodeling and deacetylase chromatin remodeler that interacts with both ataxia telangiectasia and Rad3-related protein and senataxin was not recruited efficiently to the XY body, triggering altered histone acetylation and chromatin conformation in Setx−/− pachytene-staged spermatocytes. These results demonstrate that senataxin has a critical role in ataxia telangiectasia and Rad3-related protein- and chromodomain helicase DNA-binding protein 4-mediated transcriptional silencing and chromatin remodeling during meiosis providing greater insight into its critical role in gene regulation to protect against neurodegeneration.
Collapse
|
30
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
31
|
Cooper TJ, Wardell K, Garcia V, Neale MJ. Homeostatic regulation of meiotic DSB formation by ATM/ATR. Exp Cell Res 2014; 329:124-31. [PMID: 25116420 DOI: 10.1016/j.yexcr.2014.07.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/14/2014] [Indexed: 12/30/2022]
Abstract
Ataxia-telangiectasia mutated (ATM) and RAD3-related (ATR) are widely known as being central players in the mitotic DNA damage response (DDR), mounting responses to DNA double-strand breaks (DSBs) and single-stranded DNA (ssDNA) respectively. The DDR signalling cascade couples cell cycle control to damage-sensing and repair processes in order to prevent untimely cell cycle progression while damage still persists [1]. Both ATM/ATR are, however, also emerging as essential factors in the process of meiosis; a specialised cell cycle programme responsible for the formation of haploid gametes via two sequential nuclear divisions. Central to achieving accurate meiotic chromosome segregation is the introduction of numerous DSBs spread across the genome by the evolutionarily conserved enzyme, Spo11. This review seeks to explore and address how cells utilise ATM/ATR pathways to regulate Spo11-DSB formation, establish DSB homeostasis and ensure meiosis is completed unperturbed.
Collapse
Affiliation(s)
- Tim J Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Kayleigh Wardell
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Valerie Garcia
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK.
| |
Collapse
|
32
|
Hopkins J, Hwang G, Jacob J, Sapp N, Bedigian R, Oka K, Overbeek P, Murray S, Jordan PW. Meiosis-specific cohesin component, Stag3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes. PLoS Genet 2014; 10:e1004413. [PMID: 24992337 PMCID: PMC4081007 DOI: 10.1371/journal.pgen.1004413] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/19/2014] [Indexed: 11/18/2022] Open
Abstract
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.
Collapse
Affiliation(s)
- Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Grace Hwang
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Justin Jacob
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nicklas Sapp
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Rick Bedigian
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Kazuhiro Oka
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul Overbeek
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Steve Murray
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
33
|
USP29 controls the stability of checkpoint adaptor Claspin by deubiquitination. Oncogene 2014; 34:1058-63. [PMID: 24632611 DOI: 10.1038/onc.2014.38] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/18/2014] [Accepted: 02/07/2014] [Indexed: 01/02/2023]
Abstract
The DNA damage checkpoint is essential for the maintenance of genome integrity after genotoxic stress, and also for cell survival in eukaryotes. Claspin has a key role in the ATR (ATM and Rad3-related)-Chk1 branch of the DNA damage checkpoint and is also required for correct DNA replication. To achieve properly these functions, Claspin is tightly regulated by ubiquitinin-dependent proteasomal degradation, which controls Claspin levels in a DNA-damage- and cell-cycle-dependent manner. Here, we identified a new regulator of Claspin, the ubiquitin-specific peptidase 29, USP29. Downregulation of USP29 destabilizes Claspin, whereas its overexpression promotes an increase in Claspin levels. USP29 interacts with Claspin and is able to deubiquitinate it both in vivo and in vitro. Most importantly, USP29 knockdown results in an impaired phosphorylation of Chk1 after DNA damage and USP29-depleted cells show a major defect in the S-phase progression. With these results, we identified USP29 as a new player in the ATR-Chk1 pathway and the control of DNA replication.
Collapse
|
34
|
Royo H, Prosser H, Ruzankina Y, Mahadevaiah SK, Cloutier JM, Baumann M, Fukuda T, Höög C, Tóth A, de Rooij DG, Bradley A, Brown EJ, Turner JMA. ATR acts stage specifically to regulate multiple aspects of mammalian meiotic silencing. Genes Dev 2013; 27:1484-94. [PMID: 23824539 PMCID: PMC3713429 DOI: 10.1101/gad.219477.113] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In mammals, homologs that fail to synapse during meiosis are transcriptionally inactivated. This process, meiotic silencing, drives inactivation of the heterologous XY bivalent in male germ cells (meiotic sex chromosome inactivation [MSCI]) and is thought to act as a meiotic surveillance mechanism. The checkpoint protein ATM and Rad3-related (ATR) localizes to unsynapsed chromosomes, but its role in the initiation and maintenance of meiotic silencing is unknown. Here we show that ATR has multiple roles in silencing. ATR first regulates HORMA (Hop1, Rev7, and Mad2) domain protein HORMAD1/2 phosphorylation and localization of breast cancer I (BRCA1) and ATR cofactors ATR-interacting peptide (ATRIP)/topoisomerase 2-binding protein 1 (TOPBP1) at unsynapsed axes. Later, it acts as an adaptor, transducing signaling at unsynapsed axes into surrounding chromatin in a manner that requires interdependence with mediator of DNA damage checkpoint 1 (MDC1) and H2AFX. Finally, ATR catalyzes histone H2AFX phosphorylation, the epigenetic event leading to gene inactivation. Using a novel genetic strategy in which MSCI is used to silence a chosen gene in pachytene, we show that ATR depletion does not disrupt the maintenance of silencing and that silencing comprises two phases: The first is dynamic and reversible, and the second is stable and irreversible. Our work identifies a role for ATR in the epigenetic regulation of gene expression and presents a new technique for ablating gene function in the germline.
Collapse
Affiliation(s)
- Hélène Royo
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council, National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gray S, Allison RM, Garcia V, Goldman ASH, Neale MJ. Positive regulation of meiotic DNA double-strand break formation by activation of the DNA damage checkpoint kinase Mec1(ATR). Open Biol 2013; 3:130019. [PMID: 23902647 PMCID: PMC3728922 DOI: 10.1098/rsob.130019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During meiosis, formation and repair of programmed DNA double-strand breaks (DSBs) create genetic exchange between homologous chromosomes-a process that is critical for reductional meiotic chromosome segregation and the production of genetically diverse sexually reproducing populations. Meiotic DSB formation is a complex process, requiring numerous proteins, of which Spo11 is the evolutionarily conserved catalytic subunit. Precisely how Spo11 and its accessory proteins function or are regulated is unclear. Here, we use Saccharomyces cerevisiae to reveal that meiotic DSB formation is modulated by the Mec1(ATR) branch of the DNA damage signalling cascade, promoting DSB formation when Spo11-mediated catalysis is compromised. Activation of the positive feedback pathway correlates with the formation of single-stranded DNA (ssDNA) recombination intermediates and activation of the downstream kinase, Mek1. We show that the requirement for checkpoint activation can be rescued by prolonging meiotic prophase by deleting the NDT80 transcription factor, and that even transient prophase arrest caused by Ndt80 depletion is sufficient to restore meiotic spore viability in checkpoint mutants. Our observations are unexpected given recent reports that the complementary kinase pathway Tel1(ATM) acts to inhibit DSB formation. We propose that such antagonistic regulation of DSB formation by Mec1 and Tel1 creates a regulatory mechanism, where the absolute frequency of DSBs is maintained at a level optimal for genetic exchange and efficient chromosome segregation.
Collapse
Affiliation(s)
- Stephen Gray
- MRC Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | |
Collapse
|
36
|
Three distinct modes of Mec1/ATR and Tel1/ATM activation illustrate differential checkpoint targeting during budding yeast early meiosis. Mol Cell Biol 2013; 33:3365-76. [PMID: 23775120 DOI: 10.1128/mcb.00438-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recombination and synapsis of homologous chromosomes are hallmarks of meiosis in many organisms. Meiotic recombination is initiated by Spo11-induced DNA double-strand breaks (DSBs), whereas chromosome synapsis is mediated by a tripartite structure named the synaptonemal complex (SC). Previously, we proposed that budding yeast SC is assembled via noncovalent interactions between the axial SC protein Red1, SUMO chains or conjugates, and the central SC protein Zip1. Incomplete synapsis and unrepaired DNA are monitored by Mec1/Tel1-dependent checkpoint responses that prevent exit from the pachytene stage. Here, our results distinguished three distinct modes of Mec1/Tec1 activation during early meiosis that led to phosphorylation of three targets, histone H2A at S129 (γH2A), Hop1, and Zip1, which are involved, respectively, in DNA replication, the interhomolog recombination and chromosome synapsis checkpoint, and destabilization of homology-independent centromere pairing. γH2A phosphorylation is Red1 independent and occurs prior to Spo11-induced DSBs. DSB- and Red1-dependent Hop1 phosphorylation is activated via interaction of the Red1-SUMO chain/conjugate ensemble with the Ddc1-Rad17-Mec3 (9-1-1) checkpoint complex and the Mre11-Rad50-Xrs2 complex. During SC assembly, Zip1 outcompetes 9-1-1 from the Red1-SUMO chain ensemble to attenuate Hop1 phosphorylation. In contrast, chromosome synapsis cannot attenuate DSB-dependent and Red1-independent Zip1 phosphorylation. These results reveal how DNA replication, DSB repair, and chromosome synapsis are differentially monitored by the meiotic checkpoint network.
Collapse
|
37
|
Ontoso D, Acosta I, van Leeuwen F, Freire R, San-Segundo PA. Dot1-dependent histone H3K79 methylation promotes activation of the Mek1 meiotic checkpoint effector kinase by regulating the Hop1 adaptor. PLoS Genet 2013; 9:e1003262. [PMID: 23382701 PMCID: PMC3561090 DOI: 10.1371/journal.pgen.1003262] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/06/2012] [Indexed: 12/20/2022] Open
Abstract
During meiosis, accurate chromosome segregation relies on the proper interaction between homologous chromosomes, including synapsis and recombination. The meiotic recombination checkpoint is a quality control mechanism that monitors those crucial events. In response to defects in synapsis and/or recombination, this checkpoint blocks or delays progression of meiosis, preventing the formation of aberrant gametes. Meiotic recombination occurs in the context of chromatin and histone modifications, which play crucial roles in the maintenance of genomic integrity. Here, we unveil the role of Dot1-dependent histone H3 methylation at lysine 79 (H3K79me) in this meiotic surveillance mechanism. We demonstrate that the meiotic checkpoint function of Dot1 relies on H3K79me because, like the dot1 deletion, H3-K79A or H3-K79R mutations suppress the checkpoint-imposed meiotic delay of a synapsis-defective zip1 mutant. Moreover, by genetically manipulating Dot1 catalytic activity, we find that the status of H3K79me modulates the meiotic checkpoint response. We also define the phosphorylation events involving activation of the meiotic checkpoint effector Mek1 kinase. Dot1 is required for Mek1 autophosphorylation, but not for its Mec1/Tel1-dependent phosphorylation. Dot1-dependent H3K79me also promotes Hop1 activation and its proper distribution along zip1 meiotic chromosomes, at least in part, by regulating Pch2 localization. Furthermore, HOP1 overexpression bypasses the Dot1 requirement for checkpoint activation. We propose that chromatin remodeling resulting from unrepaired meiotic DSBs and/or faulty interhomolog interactions allows Dot1-mediated H3K79-me to exclude Pch2 from the chromosomes, thus driving localization of Hop1 along chromosome axes and enabling Mek1 full activation to trigger downstream responses, such as meiotic arrest. In sexually reproducing organisms, meiosis divides the number of chromosomes by half to generate gametes. Meiosis involves a series of interactions between maternal and paternal chromosomes leading to the exchange of genetic material by recombination. Completion of these processes is required for accurate distribution of chromosomes to the gametes. Meiotic cells possess quality-control mechanisms (checkpoints) to monitor those critical events. When failures occur, the checkpoint blocks meiotic progression to prevent the formation of aneuploid gametes. Genetic information is packaged into chromatin; histone modifications regulate multiple aspects of DNA metabolism to maintain genomic integrity. Dot1 is a conserved methyltransferase, responsible for histone H3 methylation at lysine 79, that is required for the meiotic recombination checkpoint. Here we decipher the molecular mechanism underlying Dot1 meiotic checkpoint function. We show that Dot1 catalytic activity correlates with the strength of the checkpoint response. By regulating Pch2 chromatin distribution, Dot1 controls localization of the chromosome axial component Hop1, which, in turn, contributes to activation of Mek1, the major effector kinase of the checkpoint. Our findings suggest that, in response to meiotic defects, the chromatin environment created by a constitutive histone mark orchestrates distribution of structural components of the chromosomes supporting activation of the meiotic checkpoint.
Collapse
Affiliation(s)
- David Ontoso
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
| | - Isabel Acosta
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Raimundo Freire
- Unidad de Investigación, Hospital Universitario de Canarias, Tenerife, Spain
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas and University of Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|
38
|
Acosta I, Ontoso D, San-Segundo PA. The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway. Mol Biol Cell 2011; 22:3478-90. [PMID: 21795394 PMCID: PMC3172271 DOI: 10.1091/mbc.e11-06-0482] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes. Accurate distribution of genetic information to the meiotic progeny is ensured by the action of the meiotic recombination checkpoint. The function of the evolutionarily conserved polo-like kinase in this meiotic surveillance mechanism is described. Defects in chromosome synapsis and/or meiotic recombination activate a surveillance mechanism that blocks meiotic cell cycle progression to prevent anomalous chromosome segregation and formation of aberrant gametes. In the budding yeast zip1 mutant, which lacks a synaptonemal complex component, the meiotic recombination checkpoint is triggered, resulting in extremely delayed meiotic progression. We report that overproduction of the polo-like kinase Cdc5 partially alleviates the meiotic prophase arrest of zip1, leading to the formation of inviable meiotic products. Unlike vegetative cells, we demonstrate that Cdc5 overproduction does not stimulate meiotic checkpoint adaptation because the Mek1 kinase remains activated in zip1 2μ-CDC5 cells. Inappropriate meiotic divisions in zip1 promoted by high levels of active Cdc5 do not result from altered function of the cyclin-dependent kinase (CDK) inhibitor Swe1. In contrast, CDC5 overexpression leads to premature induction of the Ndt80 transcription factor, which drives the expression of genes required for meiotic divisions, including CLB1. We also show that depletion of Cdc5 during meiotic prophase prevents the production of Ndt80 and that CDK activity contributes to the induction of Ndt80 in zip1 cells overexpressing CDC5. Our results reveal a role for Cdc5 in meiotic checkpoint control by regulating Ndt80 function.
Collapse
Affiliation(s)
- Isabel Acosta
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas/Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | |
Collapse
|