1
|
Gu S, Bodai Z, Anderson RA, So HYA, Cowan QT, Komor AC. Elucidating the genetic mechanisms governing cytosine base editing outcomes through CRISPRi screens. Nat Commun 2025; 16:4685. [PMID: 40394064 DOI: 10.1038/s41467-025-59948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Cytosine base editors enable programmable and efficient genome editing using an intermediate featuring a U•G mismatch across from a DNA nick. This intermediate facilitates two major outcomes, C•G to T•A and C•G to G•C point mutations, and it is not currently well-understood which DNA repair factors are involved. Here, we couple reporters for cytosine base editing activity with knockdown of 2015 DNA processing genes to identify genes involved in these two outcomes. Our data suggest that mismatch repair factors facilitate C•G to T•A outcomes, while C•G to G•C outcomes are mediated by RFWD3, an E3 ubiquitin ligase. We also propose that XPF, a 3'-flap endonuclease, and LIG3, a DNA ligase, are involved in repairing the intermediate back to the original C•G base pair. Our results demonstrate that competition and collaboration among different DNA repair pathways shape cytosine base editing outcomes.
Collapse
Affiliation(s)
- Sifeng Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Rachel A Anderson
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Hei Yu Annika So
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, USA.
- Moores UCSD Cancer Center, University of California, San Diego, CA, USA.
- Sanford Stem Cell Institute, University of California, San Diego, CA, USA.
| |
Collapse
|
2
|
Palacka P, Holíčková A, Roška J, Makovický P, Vallová M, Biró C, Órásová E, Obertová J, Mardiak J, Ward TA, Kajo K, Chovanec M. Prognostic value of nucleotide excision repair and translesion DNA synthesis proteins in muscle-infiltrating bladder carcinoma. BMC Cancer 2024; 24:1103. [PMID: 39237917 PMCID: PMC11376035 DOI: 10.1186/s12885-024-12865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Cisplatin (CDDP) remains a key agent in the treatment of muscle-infiltrating bladder carcinoma (MIBC). However, a proportion of MIBC patients do not respond to chemotherapy, which may be caused by the increased repair of CDDP-induced DNA damage. The purpose of this study was to explore the prognostic value of proteins involved in nucleotide excision repair (NER) and translesion DNA synthesis (TLS) in MIBC patients. METHODS This is a retrospective analysis of 86 MIBC patients. The XPA, XPF, XPG, ERCC1, POLI, POLH and REV3L proteins were stained in primary bladder tumors and their levels were analyzed both in the total cohort and in a subgroup with metastatic urothelial carcinoma (mUC) that received gemcitabine and CDDP as a first-line therapy. Both cohorts were divided by percentage of cancer cells stained positive for each protein into subgroups with high and low expression. In the same manner, the combined expression of NER (XPA + ERCC1 + XPF + XPG) and TLS (POLI + POLH + REV3L), as the whole pathways, was analyzed. RESULTS Mortality was 89.5% at the median follow-up of 120.2 months. In the total cohort, patients with tumors stained positive for XPA, XPG and POLI had significantly worse overall survival (OS) compared to those with negative staining [hazard ratio (HR) = 0.60, 0.62 and 0.53, respectively]. Both XPG and POLI were independent prognostic factors in multivariate analyses (MVA). In addition, an increase in NER and TLS pathway expression was significantly associated with worse OS in the total cohort (HR = 0.54 and 0.60, respectively). In the mUC subgroup, high POLI expression was associated with significant deterioration of OS (HR = 0.56) in univariate analyses, and its independent prognostic value was shown in MVA. CONCLUSIONS Our study showed significant correlations between the tumor expression of XPG and POLI, as well as NER and TLS as the whole pathways, and inferior OS. Hence, they could constitute prognostic biomarkers and potentially promising therapeutic targets in MIBC. However, a prospective trial is required for further validation, thereby overcoming the limitations of this study.
Collapse
Affiliation(s)
- Patrik Palacka
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia.
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Andrea Holíčková
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jan Roška
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Makovický
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslava Vallová
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Csaba Biró
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Eveline Órásová
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Obertová
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Jozef Mardiak
- 2nd Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Thomas A Ward
- XCellR8 Ltd, Sci-Tech Daresbury, Cheshire, WA4 4AB, UK
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Cancer Institute, Bratislava, Slovakia
| | - Miroslav Chovanec
- Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
3
|
Martins DJ, Singh JK, Jahjah T, Vessoni AT, Leandro GDS, Silva MM, Biard DSF, Quinet A, Menck CFM. Polymerase iota plays a key role during translesion synthesis of UV-induced lesions in the absence of polymerase eta. Photochem Photobiol 2024; 100:4-18. [PMID: 37926965 DOI: 10.1111/php.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/29/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Xeroderma pigmentosum (XP) variant cells are deficient in the translesion synthesis (TLS) DNA polymerase Polη (eta). This protein contributes to DNA damage tolerance, bypassing unrepaired UV photoproducts and allowing S-phase progression with minimal delay. In the absence of Polη, backup polymerases perform TLS of UV lesions. However, which polymerase plays this role in human cells remains an open question. Here, we investigated the potential role of Polι (iota) in bypassing ultraviolet (UV) induced photoproducts in the absence of Polη, using NER-deficient (XP-C) cells knocked down for Polι and/or Polη genes. Our results indicate that cells lacking either Polι or Polη have increased sensitivity to UVC radiation. The lack of both TLS polymerases led to increased cell death and defects in proliferation and migration. Loss of both polymerases induces a significant replication fork arrest and G1/S-phase blockage, compared to the lack of Polη alone. In conclusion, we propose that Polι acts as a bona fide backup for Polη in the TLS of UV-photoproducts.
Collapse
Affiliation(s)
- Davi Jardim Martins
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Jenny Kaur Singh
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
| | - Tiya Jahjah
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
| | - Alexandre Teixeira Vessoni
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
- Sanofi R&D, Vitry-sur-Seine, France
| | - Giovana da Silva Leandro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Matheus Molina Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Denis Serge François Biard
- Université Paris-Saclay, Institut de Biologie François Jacob, Service d'étude des prions et maladies atypiques, iRCM/IBJF, Fontenay-aux-Roses, France
| | - Annabel Quinet
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, LRS/iRCM/IBFJ, Fontenay-aux-Roses, France
| | | |
Collapse
|
4
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
5
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
6
|
Wang W, Zhou H, Peng L, Yu F, Xu Q, Wang Q, He J, Liu X. Translesion synthesis of apurinic/apyrimidic site analogues by Y-family DNA polymerase Dbh from Sulfolobus acidocaldarius. Acta Biochim Biophys Sin (Shanghai) 2022; 54:637-646. [PMID: 35920197 PMCID: PMC9828665 DOI: 10.3724/abbs.2022045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Apurinic/apyrimidic (AP) sites are severe DNA damages and strongly block DNA extension by major DNA polymerases. Y-family DNA polymerases possess a strong ability to bypass AP sites and continue the DNA synthesis reaction, which is called translesion synthesis (TLS) activity. To investigate the effect of the molecular structure of the AP site on the TLS efficiency of Dbh, a Y-family DNA polymerase from Sulfolobus acidocaldarius, a series of different AP site analogues (various spacers) are used to characterize the bypass efficiency. We find that not only the molecular structure and atomic composition but also the number and position of AP site analogues determine the TLS efficiency of Dbh. Increasing the spacer length decreases TLS activity. The TLS efficiency also decreases when more than one spacer exists on the DNA template. The position of the AP site analogues is also an important factor for TLS. When the spacer is opposite to the first incorporated dNTPs, the TLS efficiency is the lowest, suggesting that AP sites are largely harmful for the formation of hydrogen bonds. These results deepen our understanding of the TLS activity of Y-family DNA polymerases and provide a biochemical basis for elucidating the TLS mechanism in Sulfolobus acidocaldarius cells.
Collapse
Affiliation(s)
- Weiwei Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China,University of Chinese Academy of SciencesBeijing100049China
| | - Huan Zhou
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China,University of Chinese Academy of SciencesBeijing100049China
| | - Li Peng
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Feng Yu
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China,University of Chinese Academy of SciencesBeijing100049China
| | - Qin Xu
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China,University of Chinese Academy of SciencesBeijing100049China
| | - Qisheng Wang
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China,University of Chinese Academy of SciencesBeijing100049China,Correspondence address. Tel: +86-21-34204378; E-mail: (X.L.) / Tel: +86-21-33933192; E-mail: (Q.W.) /Tel: +86-21-33933186; E-mail: (J.H.)@
| | - Jianhua He
- Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China,University of Chinese Academy of SciencesBeijing100049China,Correspondence address. Tel: +86-21-34204378; E-mail: (X.L.) / Tel: +86-21-33933192; E-mail: (Q.W.) /Tel: +86-21-33933186; E-mail: (J.H.)@
| | - Xipeng Liu
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China,Correspondence address. Tel: +86-21-34204378; E-mail: (X.L.) / Tel: +86-21-33933192; E-mail: (Q.W.) /Tel: +86-21-33933186; E-mail: (J.H.)@
| |
Collapse
|
7
|
Dash RC, Hadden K. Protein-Protein Interactions in Translesion Synthesis. Molecules 2021; 26:5544. [PMID: 34577015 PMCID: PMC8468184 DOI: 10.3390/molecules26185544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Translesion synthesis (TLS) is an error-prone DNA damage tolerance mechanism used by actively replicating cells to copy past DNA lesions and extend the primer strand. TLS ensures that cells continue replication in the presence of damaged DNA bases, albeit at the expense of an increased mutation rate. Recent studies have demonstrated a clear role for TLS in rescuing cancer cells treated with first-line genotoxic agents by allowing them to replicate and survive in the presence of chemotherapy-induced DNA lesions. The importance of TLS in both the initial response to chemotherapy and the long-term development of acquired resistance has allowed it to emerge as an interesting target for small molecule drug discovery. Proper TLS function is a complicated process involving a heteroprotein complex that mediates multiple attachment and switching steps through several protein-protein interactions (PPIs). In this review, we briefly describe the importance of TLS in cancer and provide an in-depth analysis of key TLS PPIs, focusing on key structural features at the PPI interface while also exploring the potential druggability of each key PPI.
Collapse
Affiliation(s)
| | - Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Rd, Storrs, CT 06029-3092, USA;
| |
Collapse
|
8
|
Gu S, Bodai Z, Cowan QT, Komor AC. Base Editors: Expanding the Types of DNA Damage Products Harnessed for Genome Editing. ACTA ACUST UNITED AC 2021; 1. [PMID: 34368792 DOI: 10.1016/j.ggedit.2021.100005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Base editors are an innovative addition to the genome editing toolbox that introduced a new genome editing strategy to the field. Instead of using double-stranded DNA breaks, base editors use nucleobase modification chemistry to efficiently and precisely incorporate single nucleotide variants (SNVs) into the genome of living cells. Two classes of DNA base editors currently exist: deoxycytidine deamination-derived editors (CBEs, which facilitate C•G to T•A mutations) and deoxyadenosine deamination-derived base editors (ABEs, which facilitate A•T to G•C mutations). More recently, the development of mitochondrial base editors allowed the introduction of C•G to T•A mutations into mitochondrial DNA as well. Base editors show great potential as therapeutic agents and research tools, and extensive studies have been carried out to improve upon the original base editor constructs to aid researchers in a variety of disciplines. Despite their widespread use, there are few publications that focus on elucidating the biological pathways involved during the processing of base editor intermediates. Because base editors introduce unique types of DNA damage products (a U•G mismatch with a DNA backbone nick for CBEs, and an I•T mismatch with a DNA backbone nick for ABEs) to facilitate genome editing, a deep understanding of the DNA damage repair pathways that facilitate or impede base editing represents an important aspect for the further expansion and improvement of the technologies. Here, we first review canonical deoxyuridine, deoxyinosine, and single-stranded break repair. Then, we discuss how interactions among these different repair processes can lead to different base editing outcomes. Through this review, we hope to promote thoughtful discussions on the DNA repair mechanisms of base editing, as well as help researchers in the improvement of the current base editors and the development of new base editors.
Collapse
Affiliation(s)
- Sifeng Gu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Zsolt Bodai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Quinn T Cowan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
9
|
Doi G, Okada S, Yasukawa T, Sugiyama Y, Bala S, Miyazaki S, Kang D, Ito T. Catalytically inactive Cas9 impairs DNA replication fork progression to induce focal genomic instability. Nucleic Acids Res 2021; 49:954-968. [PMID: 33398345 PMCID: PMC7826275 DOI: 10.1093/nar/gkaa1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Catalytically inactive Cas9 (dCas9) has become an increasingly popular tool for targeted gene activation/inactivation, live-cell imaging, and base editing. While dCas9 was reported to induce base substitutions and indels, it has not been associated with structural variations. Here, we show that dCas9 impedes replication fork progression to destabilize tandem repeats in budding yeast. When targeted to the CUP1 array comprising ∼16 repeat units, dCas9 induced its contraction in most cells, especially in the presence of nicotinamide. Replication intermediate analysis demonstrated replication fork stalling in the vicinity of dCas9-bound sites. Genetic analysis indicated that while destabilization is counteracted by the replisome progression complex components Ctf4 and Mrc1 and the accessory helicase Rrm3, it involves single-strand annealing by the recombination proteins Rad52 and Rad59. Although dCas9-mediated replication fork stalling is a potential risk in conventional applications, it may serve as a novel tool for both mechanistic studies and manipulation of genomic instability.
Collapse
Affiliation(s)
- Goro Doi
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Okada
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takehiro Yasukawa
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuki Sugiyama
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Siqin Bala
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shintaro Miyazaki
- Kyushu University School of Medicine, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Fedorov DV, Evstyukhina TA, Peshekhonov VT, Korolev VG. Pph3 Phosphatase Participates in the Regulation of the Error-Free Branch of Postreplication DNA Repair in Yeast Saccharomyces cerevisiae. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Tirman S, Cybulla E, Quinet A, Meroni A, Vindigni A. PRIMPOL ready, set, reprime! Crit Rev Biochem Mol Biol 2021; 56:17-30. [PMID: 33179522 PMCID: PMC7906090 DOI: 10.1080/10409238.2020.1841089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022]
Abstract
DNA replication forks are constantly challenged by DNA lesions induced by endogenous and exogenous sources. DNA damage tolerance mechanisms ensure that DNA replication continues with minimal effects on replication fork elongation either by using specialized DNA polymerases, which have the ability to replicate through the damaged template, or by skipping the damaged DNA, leaving it to be repaired after replication. These mechanisms are evolutionarily conserved in bacteria, yeast, and higher eukaryotes, and are paramount to ensure timely and faithful duplication of the genome. The Primase and DNA-directed Polymerase (PRIMPOL) is a recently discovered enzyme that possesses both primase and polymerase activities. PRIMPOL is emerging as a key player in DNA damage tolerance, particularly in vertebrate and human cells. Here, we review our current understanding of the function of PRIMPOL in DNA damage tolerance by focusing on the structural aspects that define its dual enzymatic activity, as well as on the mechanisms that control its chromatin recruitment and expression levels. We also focus on the latest findings on the mitochondrial and nuclear functions of PRIMPOL and on the impact of loss of these functions on genome stability and cell survival. Defining the function of PRIMPOL in DNA damage tolerance is becoming increasingly important in the context of human disease. In particular, we discuss recent evidence pointing at the PRIMPOL pathway as a novel molecular target to improve cancer cell response to DNA-damaging chemotherapy and as a predictive parameter to stratify patients in personalized cancer therapy.
Collapse
Affiliation(s)
- Stephanie Tirman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emily Cybulla
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Annabel Quinet
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alice Meroni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis MO, 63110, USA
| |
Collapse
|
12
|
Yokogawa T, Yano W, Tsukioka S, Osada A, Wakasa T, Ueno H, Hoshino T, Yamamura K, Fujioka A, Fukuoka M, Ohkubo S, Matsuo K. dUTPase inhibition confers susceptibility to a thymidylate synthase inhibitor in DNA-repair-defective human cancer cells. Cancer Sci 2020; 112:422-432. [PMID: 33140501 PMCID: PMC7780055 DOI: 10.1111/cas.14718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022] Open
Abstract
Deficiency in DNA repair proteins confers susceptibility to DNA damage, making cancer cells vulnerable to various cancer chemotherapies. 5‐Fluorouracil (5‐FU) is an anticancer nucleoside analog that both inhibits thymidylate synthase (TS) and causes DNA damage via the misincorporation of FdUTP and dUTP into DNA under the conditions of dTTP depletion. However, the role of the DNA damage response to its antitumor activity is still unclear. To determine which DNA repair pathway contributes to DNA damage caused by 5‐FU and uracil misincorporation, we examined cancer cells treated with 2ʹ‐deoxy‐5‐fluorouridine (FdUrd) in the presence of TAS‐114, a highly potent inhibitor of dUTPase that restricts aberrant base misincorporation. Addition of TAS‐114 increased FdUTP and dUTP levels in HeLa cells and facilitated 5‐FU and uracil misincorporation into DNA, but did not alter TS inhibition or 5‐FU incorporation into RNA. TAS‐114 showed synergistic potentiation of FdUrd cytotoxicity and caused aberrant base misincorporation, leading to DNA damage and induced cell death even after short‐term exposure to FdUrd. Base excision repair (BER) and homologous recombination (HR) were found to be involved in the DNA repair of 5‐FU and uracil misincorporation caused by dUTPase inhibition in genetically modified chicken DT40 cell lines and siRNA‐treated HeLa cells. These results suggested that BER and HR are major pathways that protect cells from the antitumor effects of massive incorporation of 5‐FU and uracil. Further, dUTPase inhibition has the potential to maximize the antitumor activity of fluoropyrimidines in cancers that are defective in BER or HR.
Collapse
Affiliation(s)
- Tatsushi Yokogawa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Wakako Yano
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Sayaka Tsukioka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Akiko Osada
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Takeshi Wakasa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Hiroyuki Ueno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Takuya Hoshino
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Keisuke Yamamura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Akio Fujioka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Masayoshi Fukuoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| | - Kenichi Matsuo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Japan
| |
Collapse
|
13
|
Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis. Curr Genet 2020; 67:141-151. [PMID: 33128582 PMCID: PMC7886746 DOI: 10.1007/s00294-020-01115-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/04/2022]
Abstract
In eukaryotes, DNA damage tolerance (DDT) is determined by two repair pathways, homologous repair recombination (HRR) and a pathway controlled by the RAD6-epistatic group of genes. Monoubiquitylation of PCNA mediates an error-prone pathway, whereas polyubiquitylation stimulates an error-free pathway. The error-free pathway involves components of recombination repair; however, the factors that act in this pathway remain largely unknown. Here, we report that the HIM1 gene participates in error-free DDT. Notably, inactivation RAD30 gene encoding Polη completely suppresses him1-dependent UV mutagenesis. Furthermore, data obtained show a significant role of Polη in him1-dependent mutagenesis, especially at non-bipyrimidine sites (NBP sites). We demonstrate that him1 mutation significantly reduces the efficiency of the induction expression of RNR genes after UV irradiation. Besides, this paper presents evidence that significant increase in the dNTP levels suppress him1-dependent mutagenesis. Our findings show that Polη responsible for him1-dependent mutagenesis.
Collapse
|
14
|
Valles GJ, Bezsonova I, Woodgate R, Ashton NW. USP7 Is a Master Regulator of Genome Stability. Front Cell Dev Biol 2020; 8:717. [PMID: 32850836 PMCID: PMC7419626 DOI: 10.3389/fcell.2020.00717] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/25/2022] Open
Abstract
Genetic alterations, including DNA mutations and chromosomal abnormalities, are primary drivers of tumor formation and cancer progression. These alterations can endow cells with a selective growth advantage, enabling cancers to evade cell death, proliferation limits, and immune checkpoints, to metastasize throughout the body. Genetic alterations occur due to failures of the genome stability pathways. In many cancers, the rate of alteration is further accelerated by the deregulation of these processes. The deubiquitinating enzyme ubiquitin specific protease 7 (USP7) has recently emerged as a key regulator of ubiquitination in the genome stability pathways. USP7 is also deregulated in many cancer types, where deviances in USP7 protein levels are correlated with cancer progression. In this work, we review the increasingly evident role of USP7 in maintaining genome stability, the links between USP7 deregulation and cancer progression, as well as the rationale of targeting USP7 in cancer therapy.
Collapse
Affiliation(s)
- Gabrielle J Valles
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Nicholas W Ashton
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Zhang M, Li W, Feng J, Gong Z, Yao Y, Zheng C. Integrative transcriptomics and proteomics analysis constructs a new molecular model for ovule abortion in the female-sterile line of Pinus tabuliformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 294:110462. [PMID: 32234230 DOI: 10.1016/j.plantsci.2020.110462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Ovule development is critical to plant reproduction and free nuclear mitosis of megagametophyte (FNMM) is vital for ovule development. However, most results of ovule development were based on the studies in angiosperms, and its molecular regulation remained largely unknown in gymnosperms, particularly, during FNMM. In this context, we studied the genome-wide difference between sterile line (SL) and fertile line (FL) ovules using transcriptomics and proteomics approaches in Pinus tabuliformis Carr. Comparative analyses revealed that genes involved in DNA replication, DNA damage repair, Cell cycle, Apoptosis and Energy metabolism were highlighted. Further results showed the low expressions of MCM 2-7, RRM1, etc. perhaps led to abnormal DNA replication and damage repair, and the significantly different expressions of PARP2, CCs1, CCs3, etc. implied that the accumulated DNA double-stranded breaks were failed to be repaired and the cell cycle was arrested at G2/M in SL ovules, potentially resulting in the occurrence of apoptosis. Moreover, the deficiency of ETF-QO might hinder FNMM. Consequently, FNMM stopped and ovule aborted in SL ovules. Our results suggested a selective regulatory mechanism led to FNMM half-stop and ovule abortion in P. tabuliformis and these insights could be exploited to investigate the molecular regulations of ovule development in woody gymnosperms.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Wenhai Li
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Jun Feng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, China.
| |
Collapse
|
16
|
Laporte GA, Leguisamo NM, Gloria HDCE, Azambuja DB, Kalil AN, Saffi J. The role of double-strand break repair, translesion synthesis, and interstrand crosslinks in colorectal cancer progression-clinicopathological data and survival. J Surg Oncol 2020; 121:906-916. [PMID: 31650563 DOI: 10.1002/jso.25737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVES DNA repair is a new and important pathway that explains colorectal carcinogenesis. This study will evaluate the prognostic value of molecular modulation of double-strand break repair (XRCC2 and XRCC5); DNA damage tolerance/translesion synthesis (POLH, POLK, and POLQ), and interstrand crosslink repair (DCLRE1A) in sporadic colorectal cancer (CRC). METHODS Tumor specimens and matched healthy mucosal tissues from 47 patients with CRC who underwent surgery were assessed for gene expression of XRCC2, XRCC5, POLH, POLK, POLQ, and DCLRE1A; protein expression of Polk, Ku80, p53, Ki67, and mismatch repair MLH1 and MSH2 components; CpG island promoter methylation of XRCC5, POLH, POLK, POLQ, and DCLRE1A was performed. RESULTS Neoplastic tissues exhibited induction of POLK (P < .001) and DCLRE1A (P < .001) expression and low expression of POLH (P < .001) and POLQ (P < .001) in comparison to healthy paired mucosa. Low expression of POLH was associated with mucinous histology and T1-T2 tumors (P = .038); low tumor expression of POLK was associated with distant metastases (P = .042). CRC harboring POLK promoter methylation exhibited better disease-free survival (DFS) (P = .005). CONCLUSIONS This study demonstrated that low expression or unmethylated POLH and POLK were related to worse biological behavior tumors. However, POLK methylation was associated with better DFS. POLK and POLH are potential prognostic biomarkers in CRC.
Collapse
Affiliation(s)
- Gustavo A Laporte
- Division of Surgical Oncology, Santa Rita Hospital/ISCMPA, Porto Alegre, Brazil
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre/UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália M Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre/UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
- Institute of Cardiology of Rio Grande do Sul, University Foundation of Cardiology, Porto Alegre, Brazil
| | - Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre/UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Antonio N Kalil
- Division of Surgical Oncology, Santa Rita Hospital/ISCMPA, Porto Alegre, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre/UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
17
|
Cui Y, Dong H, Ma Y, Zhang D. Strategies for Applying Nonhomologous End Joining-Mediated Genome Editing in Prokaryotes. ACS Synth Biol 2019; 8:2194-2202. [PMID: 31525995 DOI: 10.1021/acssynbio.9b00179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of genome editing technology based on the CRISPR/Cas system enabled revolutionary progress in genetic engineering. Double-strand breaks (DSBs), which can be induced by the CRISPR/Cas9 system, cause serious DNA damage that can be repaired by a homologous recombination (HR) system or the nonhomologous end joining (NHEJ) pathway. However, many bacterial species have a very weak HR system. Thus, the NHEJ pathway can be used in prokaryotes. Starting with a brief introduction of the mechanism of the NHEJ pathway, this review focuses on current research and details of applications of NHEJ in eukaryotes, which forms the theoretical basis for the application of the NHEJ system in prokaryotes.
Collapse
|
18
|
Tsuda M, Ogawa S, Ooka M, Kobayashi K, Hirota K, Wakasugi M, Matsunaga T, Sakuma T, Yamamoto T, Chikuma S, Sasanuma H, Debatisse M, Doherty AJ, Fuchs RP, Takeda S. PDIP38/PolDIP2 controls the DNA damage tolerance pathways by increasing the relative usage of translesion DNA synthesis over template switching. PLoS One 2019; 14:e0213383. [PMID: 30840704 PMCID: PMC6402704 DOI: 10.1371/journal.pone.0213383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/19/2019] [Indexed: 12/05/2022] Open
Abstract
Replicative DNA polymerases are frequently stalled at damaged template strands. Stalled replication forks are restored by the DNA damage tolerance (DDT) pathways, error-prone translesion DNA synthesis (TLS) to cope with excessive DNA damage, and error-free template switching (TS) by homologous DNA recombination. PDIP38 (Pol-delta interacting protein of 38 kDa), also called Pol δ-interacting protein 2 (PolDIP2), physically associates with TLS DNA polymerases, polymerase η (Polη), Polλ, and PrimPol, and activates them in vitro. It remains unclear whether PDIP38 promotes TLS in vivo, since no method allows for measuring individual TLS events in mammalian cells. We disrupted the PDIP38 gene, generating PDIP38-/- cells from the chicken DT40 and human TK6 B cell lines. These PDIP38-/- cells did not show a significant sensitivity to either UV or H2O2, a phenotype not seen in any TLS-polymerase-deficient DT40 or TK6 mutants. DT40 provides a unique opportunity of examining individual TLS and TS events by the nucleotide sequence analysis of the immunoglobulin variable (Ig V) gene as the cells continuously diversify Ig V by TLS (non-templated Ig V hypermutation) and TS (Ig gene conversion) during in vitro culture. PDIP38-/- cells showed a shift in Ig V diversification from TLS to TS. We measured the relative usage of TLS and TS in TK6 cells at a chemically synthesized UV damage (CPD) integrated into genomic DNA. The loss of PDIP38 also caused an increase in the relative usage of TS. The number of UV-induced sister chromatid exchanges, TS events associated with crossover, was increased a few times in PDIP38-/- human and chicken cells. Collectively, the loss of PDIP38 consistently causes a shift in DDT from TLS to TS without enhancing cellular sensitivity to DNA damage. We propose that PDIP38 controls the relative usage of TLS and TS increasing usage of TLS without changing the overall capability of DDT.
Collapse
Affiliation(s)
- Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Saki Ogawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masato Ooka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Kaori Kobayashi
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Mitsuo Wakasugi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tsukasa Matsunaga
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michelle Debatisse
- Institut Curie UMR 3244, Universite Pierre et Marie Curie (Paris 06), CNRS Paris, France
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Robert P. Fuchs
- DNA Damage Tolerance CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille University, UM 105, Marseille, France
- Inserm, U1068, CRCM, Marseille, France
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
19
|
AKT inhibition impairs PCNA ubiquitylation and triggers synthetic lethality in homologous recombination-deficient cells submitted to replication stress. Oncogene 2019; 38:4310-4324. [PMID: 30705406 PMCID: PMC6756059 DOI: 10.1038/s41388-019-0724-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/12/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023]
Abstract
Translesion DNA synthesis (TLS) and homologous recombination (HR) cooperate during S-phase to safeguard replication forks integrity. Thus, the inhibition of TLS becomes a promising point of therapeutic intervention in HR-deficient cancers, where TLS impairment might trigger synthetic lethality (SL). The main limitation to test this hypothesis is the current lack of selective pharmacological inhibitors of TLS. Herein, we developed a miniaturized screening assay to identify inhibitors of PCNA ubiquitylation, a key post-translational modification required for efficient TLS activation. After screening a library of 627 kinase inhibitors, we found that targeting the pro-survival kinase AKT leads to strong impairment of PCNA ubiquitylation. Mechanistically, we found that AKT-mediated modulation of Proliferating Cell Nuclear Antigen (PCNA) ubiquitylation after UV requires the upstream activity of DNA PKcs, without affecting PCNA ubiquitylation levels in unperturbed cells. Moreover, we confirmed that persistent AKT inhibition blocks the recruitment of TLS polymerases to sites of DNA damage and impairs DNA replication forks processivity after UV irradiation, leading to increased DNA replication stress and cell death. Remarkably, when we compared the differential survival of HR-proficient vs HR-deficient cells, we found that the combination of UV irradiation and AKT inhibition leads to robust SL induction in HR-deficient cells. We link this phenotype to AKT ability to inhibit PCNA ubiquitylation, since the targeted knockdown of PCNA E3-ligase (RAD18) and a non-ubiquitylable (PCNA K164R) knock-in model recapitulate the observed SL induction. Collectively, this work identifies AKT as a novel regulator of PCNA ubiquitylation and provides the proof-of-concept of inhibiting TLS as a therapeutic approach to selectively kill HR-deficient cells submitted to replication stress.
Collapse
|
20
|
Lerner LK, Sale JE. Replication of G Quadruplex DNA. Genes (Basel) 2019; 10:genes10020095. [PMID: 30700033 PMCID: PMC6409989 DOI: 10.3390/genes10020095] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/03/2023] Open
Abstract
A cursory look at any textbook image of DNA replication might suggest that the complex machine that is the replisome runs smoothly along the chromosomal DNA. However, many DNA sequences can adopt non-B form secondary structures and these have the potential to impede progression of the replisome. A picture is emerging in which the maintenance of processive DNA replication requires the action of a significant number of additional proteins beyond the core replisome to resolve secondary structures in the DNA template. By ensuring that DNA synthesis remains closely coupled to DNA unwinding by the replicative helicase, these factors prevent impediments to the replisome from causing genetic and epigenetic instability. This review considers the circumstances in which DNA forms secondary structures, the potential responses of the eukaryotic replisome to these impediments in the light of recent advances in our understanding of its structure and operation and the mechanisms cells deploy to remove secondary structure from the DNA. To illustrate the principles involved, we focus on one of the best understood DNA secondary structures, G quadruplexes (G4s), and on the helicases that promote their resolution.
Collapse
Affiliation(s)
- Leticia Koch Lerner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
21
|
Abe T, Branzei D, Hirota K. DNA Damage Tolerance Mechanisms Revealed from the Analysis of Immunoglobulin V Gene Diversification in Avian DT40 Cells. Genes (Basel) 2018; 9:genes9120614. [PMID: 30544644 PMCID: PMC6316486 DOI: 10.3390/genes9120614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 01/19/2023] Open
Abstract
DNA replication is an essential biochemical reaction in dividing cells that frequently stalls at damaged sites. Homologous/homeologous recombination (HR)-mediated template switch and translesion DNA synthesis (TLS)-mediated bypass processes release arrested DNA replication forks. These mechanisms are pivotal for replication fork maintenance and play critical roles in DNA damage tolerance (DDT) and gap-filling. The avian DT40 B lymphocyte cell line provides an opportunity to examine HR-mediated template switch and TLS triggered by abasic sites by sequencing the constitutively diversifying immunoglobulin light-chain variable gene (IgV). During IgV diversification, activation-induced deaminase (AID) converts dC to dU, which in turn is excised by uracil DNA glycosylase and yields abasic sites within a defined window of around 500 base pairs. These abasic sites can induce gene conversion with a set of homeologous upstream pseudogenes via the HR-mediated template switch, resulting in templated mutagenesis, or can be bypassed directly by TLS, resulting in non-templated somatic hypermutation at dC/dG base pairs. In this review, we discuss recent works unveiling IgV diversification mechanisms in avian DT40 cells, which shed light on DDT mode usage in vertebrate cells and tolerance of abasic sites.
Collapse
Affiliation(s)
- Takuya Abe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy.
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
22
|
SUMOylation of PCNA by PIAS1 and PIAS4 promotes template switch in the chicken and human B cell lines. Proc Natl Acad Sci U S A 2018; 115:12793-12798. [PMID: 30487218 DOI: 10.1073/pnas.1716349115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA damage tolerance (DDT) releases replication blockage caused by damaged nucleotides on template strands employing two alternative pathways, error-prone translesion DNA synthesis (TLS) and error-free template switch (TS). Lys164 of proliferating cell nuclear antigen (PCNA) is SUMOylated during the physiological cell cycle. To explore the role for SUMOylation of PCNA in DDT, we characterized chicken DT40 and human TK6 B cells deficient in the PIAS1 and PIAS4 small ubiquitin-like modifier (SUMO) E3 ligases. DT40 cells have a unique advantage in the phenotypic analysis of DDT as they continuously diversify their immunoglobulin (Ig) variable genes by TLS and TS [Ig gene conversion (GC)], both relieving replication blocks at abasic sites without accompanying by DNA breakage. Remarkably, PIAS1 -/- /PIAS4 -/- cells displayed a multifold decrease in SUMOylation of PCNA at Lys164 and over a 90% decrease in the rate of TS. Likewise, PIAS1 -/- /PIAS4 -/- TK6 cells showed a shift of DDT from TS to TLS at a chemosynthetic UV lesion inserted into the genomic DNA. The PCNA K164R/K164R mutation caused a ∼90% decrease in the rate of Ig GC and no additional impact on PIAS1 -/- /PIAS4 -/- cells. This epistatic relationship between the PCNA K164R/K164R and the PIAS1 -/- /PIAS4 -/- mutations suggests that PIAS1 and PIAS4 promote TS mainly through SUMOylation of PCNA at Lys164. This idea is further supported by the data that overexpression of a PCNA-SUMO1 chimeric protein restores defects in TS in PIAS1 -/- /PIAS4 -/- cells. In conclusion, SUMOylation of PCNA at Lys164 promoted by PIAS1 and PIAS4 ensures the error-free release of replication blockage during physiological DNA replication in metazoan cells.
Collapse
|
23
|
Litwin I, Bakowski T, Szakal B, Pilarczyk E, Maciaszczyk-Dziubinska E, Branzei D, Wysocki R. Error-free DNA damage tolerance pathway is facilitated by the Irc5 translocase through cohesin. EMBO J 2018; 37:e98732. [PMID: 30111537 PMCID: PMC6138436 DOI: 10.15252/embj.201798732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
DNA damage tolerance (DDT) mechanisms facilitate replication resumption and completion when DNA replication is blocked by bulky DNA lesions. In budding yeast, template switching (TS) via the Rad18/Rad5 pathway is a favored DDT pathway that involves usage of the sister chromatid as a template to bypass DNA lesions in an error-free recombination-like process. Here, we establish that the Snf2 family translocase Irc5 is a novel factor that promotes TS and averts single-stranded DNA persistence during replication. We demonstrate that, during replication stress, Irc5 enables replication progression by assisting enrichment of cohesin complexes, recruited in an Scc2/Scc4-dependent fashion, near blocked replication forks. This allows efficient formation of sister chromatid junctions that are crucial for error-free DNA lesion bypass. Our results support the notion of a key role of cohesin in the completion of DNA synthesis under replication stress and reveal that the Rad18/Rad5-mediated DDT pathway is linked to cohesin enrichment at sites of perturbed replication via the Snf2 family translocase Irc5.
Collapse
Affiliation(s)
- Ireneusz Litwin
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Tomasz Bakowski
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Barnabas Szakal
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Ewa Pilarczyk
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | | | - Dana Branzei
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Pavia, Italy
| | - Robert Wysocki
- Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
24
|
Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo) 2018; 73:e478s. [PMID: 30208165 PMCID: PMC6113849 DOI: 10.6061/clinics/2018/e478s] [Citation(s) in RCA: 281] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/20/2018] [Indexed: 02/06/2023] Open
Abstract
The main goal of chemotherapeutic drugs is to induce massive cell death in tumors. Cisplatin is an antitumor drug widely used to treat several types of cancer. Despite its remarkable efficiency, most tumors show intrinsic or acquired drug resistance. The primary biological target of cisplatin is genomic DNA, and it causes a plethora of DNA lesions that block transcription and replication. These cisplatin-induced DNA lesions strongly induce cell death if they are not properly repaired or processed. To counteract cisplatin-induced DNA damage, cells use an intricate network of mechanisms, including DNA damage repair and translesion synthesis. In this review, we describe how cisplatin-induced DNA lesions are repaired or tolerated by cells and focus on the pivotal role of DNA repair and tolerance mechanisms in tumor resistance to cisplatin. In fact, several recent clinical findings have correlated the tumor cell status of DNA repair/translesion synthesis with patient response to cisplatin treatment. Furthermore, these mechanisms provide interesting targets for pharmacological modulation that can increase the efficiency of cisplatin chemotherapy.
Collapse
Affiliation(s)
| | - Matheus Molina Silva
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Annabel Quinet
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Januario Bispo Cabral-Neto
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, BR
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail: mailto:
| |
Collapse
|
25
|
Abstract
Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each cell division cycle. However, the idea that replication forks would form at origins of DNA replication and proceed without impairment to copy the chromosomes has proven naive. It is now clear that replication forks stall frequently as a result of encounters between the replication machinery and template damage, slow-moving or paused transcription complexes, unrelieved positive superhelical tension, covalent protein-DNA complexes, and as a result of cellular stress responses. These stalled forks are a major source of genome instability. The cell has developed many strategies for ensuring that these obstructions to DNA replication do not result in loss of genetic information, including DNA damage tolerance mechanisms such as lesion skipping, whereby the replisome jumps the lesion and continues downstream; template switching both behind template damage and at the stalled fork; and the error-prone pathway of translesion synthesis.
Collapse
Affiliation(s)
- Kenneth J Marians
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
26
|
Szwajczak E, Fijalkowska IJ, Suski C. The importance of an interaction network for proper DNA polymerase ζ heterotetramer activity. Curr Genet 2018; 64:575-580. [PMID: 29189894 PMCID: PMC5948306 DOI: 10.1007/s00294-017-0789-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/22/2022]
Abstract
Precisely controlled mechanisms have been evolved to rescue impeded DNA replication resulting from encountered obstacles and involve a set of low-fidelity translesion synthesis (TLS) DNA polymerases. Studies in recent years have brought new insights into those TLS polymerases, especially concerning the structure and subunit composition of DNA polymerase zeta (Pol ζ). Pol ζ is predominantly involved in induced mutagenesis as well as the bypass of noncanonical DNA structures, and it is proficient in extending from terminal mismatched nucleotides incorporated by major replicative DNA polymerases. Two active forms of Pol ζ, heterodimeric (Pol ζ2) and heterotetrameric (Pol ζ4) ones, have been identified and studied. Here, in the light of recent publications regarding induced and spontaneous mutagenesis and diverse interactions within Pol ζ holoenzyme, combined with Pol ζ binding to the TLS polymerase Rev1p, we discuss the subunit composition of Pol ζ in various cellular physiological conditions. Available data show that it is the heterotetrameric form of Pol ζ that is involved both during spontaneous and induced mutagenesis, and underline the importance of interactions within Pol ζ when an increased Pol ζ recruitment occurs. Understanding Pol ζ function in the bypass of DNA obstacles would give a significant insight into cellular tolerance of DNA damage, genetic instability and the onset of cancer progression.
Collapse
Affiliation(s)
- Ewa Szwajczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Iwona J Fijalkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Catherine Suski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106, Warszawa, Poland.
| |
Collapse
|
27
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
28
|
Replication Fork Slowing and Reversal upon DNA Damage Require PCNA Polyubiquitination and ZRANB3 DNA Translocase Activity. Mol Cell 2017; 67:882-890.e5. [PMID: 28886337 PMCID: PMC5594246 DOI: 10.1016/j.molcel.2017.08.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022]
Abstract
DNA damage tolerance during eukaryotic replication is orchestrated by PCNA ubiquitination. While monoubiquitination activates mutagenic translesion synthesis, polyubiquitination activates an error-free pathway, elusive in mammals, enabling damage bypass by template switching. Fork reversal is driven in vitro by multiple enzymes, including the DNA translocase ZRANB3, shown to bind polyubiquitinated PCNA. However, whether this interaction promotes fork remodeling and template switching in vivo was unknown. Here we show that damage-induced fork reversal in mammalian cells requires PCNA ubiquitination, UBC13, and K63-linked polyubiquitin chains, previously involved in error-free damage tolerance. Fork reversal in vivo also requires ZRANB3 translocase activity and its interaction with polyubiquitinated PCNA, pinpointing ZRANB3 as a key effector of error-free DNA damage tolerance. Mutations affecting fork reversal also induced unrestrained fork progression and chromosomal breakage, suggesting fork remodeling as a global fork slowing and protection mechanism. Targeting these fork protection systems represents a promising strategy to potentiate cancer chemotherapy. Fork slowing and reversal upon damage require K63-linked PCNA polyubiquitination ZRANB3 mediates fork slowing/reversal in vivo via binding to polyubiquitinated PCNA ZRANB3 DNA translocase—not nuclease—activity mediates fork slowing and reversal Mammalian error-free postreplication repair entails global fork slowing and reversal
Collapse
|
29
|
Wilson KA, Szemethy KG, Wetmore SD. Conformational flexibility and base-pairing tendency of the tobacco carcinogen O6-[4-oxo-4-(3-pyridyl)butyl]guanine. Biophys Chem 2017; 228:25-37. [PMID: 28654813 DOI: 10.1016/j.bpc.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 11/26/2022]
Abstract
The present work uses DFT calculations to characterize the conformational and hydrogen-bonding properties of O6-[4-oxo-4-(3-pyridyl)butyl]guanine (POB-G), a DNA adduct caused by tobacco. POB-G is found to adopt many isoenergetic conformations that allow for discrete interactions between the bulky moiety and the adducted G and/or pairing base. The calculated structure and stability of the hydrogen-bonded pairs between the Watson-Crick or Hoogsteen face of POB-G and the canonical DNA nucleobases fully rationalize the previously reported mutational spectra. Specifically, the stable, non-distorted pseudo-Watson-Crick POB-G:T pair explains the predominant G➔A mutations, while the stable, yet marginally distorted pairs between the Watson-Crick face of POB-G and A or C clarify the G➔T mutations and non-mutagenic replication. Finally, the stable, yet highly distorted Hoogsteen POB-G:G pair rationalizes the experimentally-observed insertion but lack of persistence of G opposite POB-G in DNA. Overall, these structural insights are critical for guiding future studies that strive to fully understand the adduct mutagenicity, including the accessible conformations and the replication of POB-G-adducted DNA.
Collapse
Affiliation(s)
- Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Kariann G Szemethy
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.
| |
Collapse
|
30
|
Iyer DR, Rhind N. Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA. PLoS Genet 2017; 13:e1006958. [PMID: 28806726 PMCID: PMC5570505 DOI: 10.1371/journal.pgen.1006958] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/24/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022] Open
Abstract
In response to DNA damage during S phase, cells slow DNA replication. This slowing is orchestrated by the intra-S checkpoint and involves inhibition of origin firing and reduction of replication fork speed. Slowing of replication allows for tolerance of DNA damage and suppresses genomic instability. Although the mechanisms of origin inhibition by the intra-S checkpoint are understood, major questions remain about how the checkpoint regulates replication forks: Does the checkpoint regulate the rate of fork progression? Does the checkpoint affect all forks, or only those encountering damage? Does the checkpoint facilitate the replication of polymerase-blocking lesions? To address these questions, we have analyzed the checkpoint in the fission yeast Schizosaccharomyces pombe using a single-molecule DNA combing assay, which allows us to unambiguously separate the contribution of origin and fork regulation towards replication slowing, and allows us to investigate the behavior of individual forks. Moreover, we have interrogated the role of forks interacting with individual sites of damage by using three damaging agents-MMS, 4NQO and bleomycin-that cause similar levels of replication slowing with very different frequency of DNA lesions. We find that the checkpoint slows replication by inhibiting origin firing, but not by decreasing fork rates. However, the checkpoint appears to facilitate replication of damaged templates, allowing forks to more quickly pass lesions. Finally, using a novel analytic approach, we rigorously identify fork stalling events in our combing data and show that they play a previously unappreciated role in shaping replication kinetics in response to DNA damage.
Collapse
Affiliation(s)
- Divya Ramalingam Iyer
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nicholas Rhind
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
31
|
Hyttinen JMT, Błasiak J, Niittykoski M, Kinnunen K, Kauppinen A, Salminen A, Kaarniranta K. DNA damage response and autophagy in the degeneration of retinal pigment epithelial cells-Implications for age-related macular degeneration (AMD). Ageing Res Rev 2017; 36:64-77. [PMID: 28351686 DOI: 10.1016/j.arr.2017.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/23/2017] [Accepted: 03/23/2017] [Indexed: 12/14/2022]
Abstract
In this review we will discuss the links between autophagy, a mechanism involved in the maintenance of cellular homeostasis and controlling cellular waste management, and the DNA damage response (DDR), comprising various mechanisms preserving the integrity and stability of the genome. A reduced autophagy capacity in retinal pigment epithelium has been shown to be connected in the pathogenesis of age-related macular degeneration (AMD), an eye disease. This degenerative disease is a major and increasing cause of vision loss in the elderly in developed countries, primarily due to the profound accumulation of intra- and extracellular waste: lipofuscin and drusen. An abundance of reactive oxygen species is produced in the retina since this tissue has a high oxygen demand and contains mitochondria-rich cells. The retina is exposed to light and it also houses many photoactive molecules. These factors are clearly reflected in both the autophagy and DNA damage rates, and in both nuclear and mitochondrial genomes. It remains to be revealed whether DNA damage and DDR capacity have a more direct role in the development of AMD.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Janusz Błasiak
- Department of Molecular Genetics, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Minna Niittykoski
- Institute of Biotechnology, Developmental Biology Program, University of Helsinki, P.O. Box 56, FI-00014, Finland
| | - Kati Kinnunen
- Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Finland
| |
Collapse
|
32
|
Zhang M, Song X, Lv K, Yao Y, Gong Z, Zheng C. Differential proteomic analysis revealing the ovule abortion in the female-sterile line of Pinus tabulaeformis Carr. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:31-49. [PMID: 28554473 DOI: 10.1016/j.plantsci.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 05/26/2023]
Abstract
Ovule abortion affects the yield and quality of Pinus tabulaeformis Carr. seeds. Research into ovule abortion has importance for improving the seed setting rate and establishing artificial seed production techniques. Fertile line (FL) ovules (FL-E) and sterile line (SL) ovules (SL-E) in the early stage of free nuclear mitosis of megagametophyte (FNMM), FL ovules (FL-L) and SL ovules (SL-L) in the late stage of FNMM of P. tabulaeformis were collected as materials. 4192 proteins were identified by isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis. Bioinformatics analysis implied that in SL ovules, substances and energy might be deficient, perhaps leading to abnormal DNA replication. Because the incomplete antioxidant system and the abnormal expression levels of enzymes involved in cell signal transduction, DNA DSBs probably occurs. Facing the abnormities of DNA replication and damage, the cell cycle was arrested and the DNA damage failed to be repaired, potentially resulting in the occurrence of PCD. Taken together, an inference can be drawn from our study - substance and energy deficiencies, reactive oxygen stress, and the failure of both cell cycle progression and DNA damage repair, which possibly hinder FNMM, leading to ovule abortion in the female-sterile line of P. tabulaeformis.
Collapse
Affiliation(s)
- Min Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Xiaoxin Song
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Kun Lv
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Yang Yao
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Zaixin Gong
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China
| | - Caixia Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qing Hua Dong Lu, Beijing, 100083, China.
| |
Collapse
|
33
|
Zacharioudakis E, Agarwal P, Bartoli A, Abell N, Kunalingam L, Bergoglio V, Xhemalce B, Miller KM, Rodriguez R. Chromatin Regulates Genome Targeting with Cisplatin. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emmanouil Zacharioudakis
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Poonam Agarwal
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Alexandra Bartoli
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Nathan Abell
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Lavaniya Kunalingam
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Valérie Bergoglio
- CRCT; University of Toulouse; INSERM, CNRS, UPS; Avenue Hubert Curien 31037 Toulouse France
| | - Blerta Xhemalce
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Kyle M. Miller
- Department of Molecular Biosciences; Institute of Cellular and Molecular Biology; University of Texas at Austin; 2506 Speedway Stop A5000 Austin TX 78712 USA
| | - Raphaël Rodriguez
- Institut Curie; PSL Research University; Chemical Cell Biology Group; 26 Rue d'Ulm 75248 Paris Cedex 05 France
- CNRS UMR3666; 75005 Paris France
- INSERM U1143; 75005 Paris France
- Institut de Chimie des Substances Naturelles; UPR2301; 1 Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| |
Collapse
|
34
|
Zacharioudakis E, Agarwal P, Bartoli A, Abell N, Kunalingam L, Bergoglio V, Xhemalce B, Miller KM, Rodriguez R. Chromatin Regulates Genome Targeting with Cisplatin. Angew Chem Int Ed Engl 2017; 56:6483-6487. [PMID: 28474855 PMCID: PMC5488169 DOI: 10.1002/anie.201701144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/14/2017] [Indexed: 01/11/2023]
Abstract
Cisplatin derivatives can form various types of DNA lesions (DNA‐Pt) and trigger pleiotropic DNA damage responses. Here, we report a strategy to visualize DNA‐Pt with high resolution, taking advantage of a novel azide‐containing derivative of cisplatin we named APPA, a cellular pre‐extraction protocol and the labeling of DNA‐Pt by means of click chemistry in cells. Our investigation revealed that pretreating cells with the histone deacetylase (HDAC) inhibitor SAHA led to detectable clusters of DNA‐Pt that colocalized with the ubiquitin ligase RAD18 and the replication protein PCNA. Consistent with activation of translesion synthesis (TLS) under these conditions, SAHA and cisplatin cotreatment promoted focal accumulation of the low‐fidelity polymerase Polη that also colocalized with PCNA. Remarkably, these cotreatments synergistically triggered mono‐ubiquitination of PCNA and apoptosis in a RAD18‐dependent manner. Our data provide evidence for a role of chromatin in regulating genome targeting with cisplatin derivatives and associated cellular responses.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Poonam Agarwal
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Alexandra Bartoli
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Nathan Abell
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Lavaniya Kunalingam
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Valérie Bergoglio
- CRCT, University of Toulouse, INSERM, CNRS, UPS, Avenue Hubert Curien, 31037, Toulouse, France
| | - Blerta Xhemalce
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute of Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX, 78712, USA
| | - Raphaël Rodriguez
- Institut Curie, PSL Research University, Chemical Cell Biology Group, 26 Rue d'Ulm, 75248, Paris Cedex 05, France.,CNRS UMR3666, 75005, Paris, France.,INSERM U1143, 75005, Paris, France.,Institut de Chimie des Substances Naturelles, UPR2301, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
35
|
DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in Saccharomyces cerevisiae. Genetics 2017; 206:513-525. [PMID: 28341648 DOI: 10.1534/genetics.116.196568] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/09/2017] [Indexed: 01/24/2023] Open
Abstract
DNA damage tolerance and homologous recombination pathways function to bypass replication-blocking lesions and ensure completion of DNA replication. However, inappropriate activation of these pathways may lead to increased mutagenesis or formation of deleterious recombination intermediates, often leading to cell death or cancer formation in higher organisms. Post-translational modifications of PCNA regulate the choice of repair pathways at replication forks. Its monoubiquitination favors translesion synthesis, while polyubiquitination stimulates template switching. Srs2 helicase binds to small ubiquitin-related modifier (SUMO)-modified PCNA to suppress a subset of Rad51-dependent homologous recombination. Conversely, SUMOylation of Srs2 attenuates its interaction with PCNA Sgs1 helicase and Mus81 endonuclease are crucial for disentanglement of repair intermediates at the replication fork. Deletion of both genes is lethal and can be rescued by inactivation of Rad51-dependent homologous recombination. Here we show that Saccharomyces cerevisiae Uls1, a member of the Swi2/Snf2 family of ATPases and a SUMO-targeted ubiquitin ligase, physically interacts with both PCNA and Srs2, and promotes Srs2 binding to PCNA by downregulating Srs2-SUMO levels at replication forks. We also identify deletion of ULS1 as a suppressor of mus81Δ sgs1Δ synthetic lethality and hypothesize that uls1Δ mutation results in a partial inactivation of the homologous recombination pathway, detrimental in cells devoid of both Sgs1 and Mus81 We thus propose that Uls1 contributes to the pathway where intermediates generated at replication forks are dismantled by Srs2 bound to SUMO-PCNA. Upon ULS1 deletion, accumulating Srs2-SUMO-unable to bind PCNA-takes part in an alternative PCNA-independent recombination repair salvage pathway(s).
Collapse
|
36
|
The Intra-S Checkpoint Responses to DNA Damage. Genes (Basel) 2017; 8:genes8020074. [PMID: 28218681 PMCID: PMC5333063 DOI: 10.3390/genes8020074] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 02/03/2023] Open
Abstract
Faithful duplication of the genome is a challenge because DNA is susceptible to damage by a number of intrinsic and extrinsic genotoxins, such as free radicals and UV light. Cells activate the intra-S checkpoint in response to damage during S phase to protect genomic integrity and ensure replication fidelity. The checkpoint prevents genomic instability mainly by regulating origin firing, fork progression, and transcription of G1/S genes in response to DNA damage. Several studies hint that regulation of forks is perhaps the most critical function of the intra-S checkpoint. However, the exact role of the checkpoint at replication forks has remained elusive and controversial. Is the checkpoint required for fork stability, or fork restart, or to prevent fork reversal or fork collapse, or activate repair at replication forks? What are the factors that the checkpoint targets at stalled replication forks? In this review, we will discuss the various pathways activated by the intra-S checkpoint in response to damage to prevent genomic instability.
Collapse
|
37
|
Jeon YJ, Park JH, Chung CH. Interferon-Stimulated Gene 15 in the Control of Cellular Responses to Genotoxic Stress. Mol Cells 2017; 40:83-89. [PMID: 28241406 PMCID: PMC5339507 DOI: 10.14348/molcells.2017.0027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 12/15/2022] Open
Abstract
Error-free replication and repair of DNA are pivotal to organisms for faithful transmission of their genetic information. Cells orchestrate complex signaling networks that sense and resolve DNA damage. Post-translational protein modifications by ubiquitin and ubiquitin-like proteins, including SUMO and NEDD8, are critically involved in DNA damage response (DDR) and DNA damage tolerance (DDT). The expression of interferon-stimulated gene 15 (ISG15), the first identified ubiquitin-like protein, has recently been shown to be induced under various DNA damage conditions, such as exposure to UV, camptothecin, and doxorubicin. Here we overview the recent findings on the role of ISG15 and its conjugation to target proteins (e.g., p53, ΔNp63α, and PCNA) in the control of cellular responses to genotoxic stress, such as the inhibition of cell growth and tumorigenesis.
Collapse
Affiliation(s)
- Young Joo Jeon
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon 35015,
Korea
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon 35015,
Korea
| | - Jong Ho Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| | - Chin Ha Chung
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826,
Korea
| |
Collapse
|
38
|
Brown JS, O'Carrigan B, Jackson SP, Yap TA. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 2017; 7:20-37. [PMID: 28003236 PMCID: PMC5300099 DOI: 10.1158/2159-8290.cd-16-0860] [Citation(s) in RCA: 460] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023]
Abstract
Germline aberrations in critical DNA-repair and DNA damage-response (DDR) genes cause cancer predisposition, whereas various tumors harbor somatic mutations causing defective DDR/DNA repair. The concept of synthetic lethality can be exploited in such malignancies, as exemplified by approval of poly(ADP-ribose) polymerase inhibitors for treating BRCA1/2-mutated ovarian cancers. Herein, we detail how cellular DDR processes engage various proteins that sense DNA damage, initiate signaling pathways to promote cell-cycle checkpoint activation, trigger apoptosis, and coordinate DNA repair. We focus on novel therapeutic strategies targeting promising DDR targets and discuss challenges of patient selection and the development of rational drug combinations. SIGNIFICANCE Various inhibitors of DDR components are in preclinical and clinical development. A thorough understanding of DDR pathway complexities must now be combined with strategies and lessons learned from the successful registration of PARP inhibitors in order to fully exploit the potential of DDR inhibitors and to ensure their long-term clinical success. Cancer Discov; 7(1); 20-37. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Stephen P Jackson
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Timothy A Yap
- Royal Marsden NHS Foundation Trust, London, United Kingdom.
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
39
|
Callegari AJ, Kelly TJ. Coordination of DNA damage tolerance mechanisms with cell cycle progression in fission yeast. Cell Cycle 2016; 15:261-73. [PMID: 26652183 PMCID: PMC5007584 DOI: 10.1080/15384101.2015.1121353] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA damage tolerance (DDT) mechanisms allow cells to synthesize a new DNA strand when the template is damaged. Many mutations resulting from DNA damage in eukaryotes are generated during DDT when cells use the mutagenic translesion polymerases, Rev1 and Polζ, rather than mechanisms with higher fidelity. The coordination among DDT mechanisms is not well understood. We used live-cell imaging to study the function of DDT mechanisms throughout the cell cycle of the fission yeast Schizosaccharomyces pombe. We report that checkpoint-dependent mitotic delay provides a cellular mechanism to ensure the completion of high fidelity DDT, largely by homology-directed repair (HDR). DDT by mutagenic polymerases is suppressed during the checkpoint delay by a mechanism dependent on Rad51 recombinase. When cells pass the G2/M checkpoint and can no longer delay mitosis, they completely lose the capacity for HDR and simultaneously exhibit a requirement for Rev1 and Polζ. Thus, DDT is coordinated with the checkpoint response so that the activity of mutagenic polymerases is confined to a vulnerable period of the cell cycle when checkpoint delay and HDR are not possible.
Collapse
Affiliation(s)
- A John Callegari
- a Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| | - Thomas J Kelly
- a Molecular Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
40
|
Kobayashi K, Guilliam TA, Tsuda M, Yamamoto J, Bailey LJ, Iwai S, Takeda S, Doherty AJ, Hirota K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016; 15:1997-2008. [PMID: 27230014 PMCID: PMC4968974 DOI: 10.1080/15384101.2016.1191711] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 01/28/2023] Open
Abstract
PrimPol is a DNA damage tolerance enzyme possessing both translesion synthesis (TLS) and primase activities. To uncover its potential role in TLS-mediated IgVλ hypermutation and define its interplay with other TLS polymerases, PrimPol(-/-) and PrimPol(-/-)/Polη(-/-)/Polζ (-/-) gene knockouts were generated in avian cells. Loss of PrimPol had no significant impact on the rate of hypermutation or the mutation spectrum of IgVλ. However, PrimPol(-/-) cells were sensitive to methylmethane sulfonate, suggesting that it may bypass abasic sites at the IgVλ segment by repriming DNA synthesis downstream of these sites. PrimPol(-/-) cells were also sensitive to cisplatin and hydroxyurea, indicating that it assists in maintaining / restarting replication at a variety of lesions. To accurately measure the relative contribution of the TLS and primase activities, we examined DNA damage sensitivity in PrimPol(-/-) cells complemented with polymerase or primase-deficient PrimPol. Polymerase-defective, but not primase-deficient, PrimPol suppresses the hypersensitivity of PrimPol(-/-) cells. This indicates that its primase, rather than TLS activity, is pivotal for DNA damage tolerance. Loss of TLS polymerases, Polη and Polζ has an additive effect on the sensitivity of PrimPol(-/-) cells. Moreover, we found that PrimPol and Polη-Polζ redundantly prevented cell death and facilitated unperturbed cell cycle progression. PrimPol(-/-) cells also exhibited increased sensitivity to a wide variety of chain-terminating nucleoside analogs (CTNAs). PrimPol could perform close-coupled repriming downstream of CTNAs and oxidative damage in vitro. Together, these results indicate that PrimPol's repriming activity plays a central role in reinitiating replication downstream from CTNAs and other specific DNA lesions.
Collapse
Affiliation(s)
- Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Thomas A. Guilliam
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton, UK
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Laura J. Bailey
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton, UK
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, Japan
| | - Aidan J. Doherty
- Genome Damage and Stability Center, School of Life Sciences, University of Sussex, Brighton, UK
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
41
|
Korzhnev DM, Hadden MK. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics. J Med Chem 2016; 59:9321-9336. [PMID: 27362876 DOI: 10.1021/acs.jmedchem.6b00596] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human cells possess tightly controlled mechanisms to rescue DNA replication following DNA damage caused by environmental and endogenous carcinogens using a set of low-fidelity translesion synthesis (TLS) DNA polymerases. These polymerases can copy over replication blocking DNA lesions while temporarily leaving them unrepaired, preventing cell death at the expense of increasing mutation rates and contributing to the onset and progression of cancer. In addition, TLS has been implicated as a major cellular mechanism promoting acquired resistance to genotoxic chemotherapy. Owing to its central role in mutagenesis and cell survival after DNA damage, inhibition of the TLS pathway has emerged as a potential target for the development of anticancer agents. This review will recap our current understanding of the structure and regulation of DNA polymerase complexes that mediate TLS and describe how this knowledge is beginning to translate into the development of small molecule TLS inhibitors.
Collapse
Affiliation(s)
- Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center , Farmington, Connecticut 06030, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269, United States
| |
Collapse
|
42
|
Naiman K, Pagès V, Fuchs RP. A defect in homologous recombination leads to increased translesion synthesis in E. coli. Nucleic Acids Res 2016; 44:7691-9. [PMID: 27257075 PMCID: PMC5027485 DOI: 10.1093/nar/gkw488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/19/2016] [Indexed: 12/29/2022] Open
Abstract
DNA damage tolerance pathways allow cells to duplicate their genomes despite the presence of replication blocking lesions. Cells possess two major tolerance strategies, namely translesion synthesis (TLS) and homology directed gap repair (HDGR). TLS pathways involve specialized DNA polymerases that are able to synthesize past DNA lesions with an intrinsic risk of causing point mutations. In contrast, HDGR pathways are essentially error-free as they rely on the recovery of missing information from the sister chromatid by RecA-mediated homologous recombination. We have investigated the genetic control of pathway choice between TLS and HDGR in vivo in Escherichia coli In a strain with wild type RecA activity, the extent of TLS across replication blocking lesions is generally low while HDGR is used extensively. Interestingly, recA alleles that are partially impaired in D-loop formation confer a decrease in HDGR and a concomitant increase in TLS. Thus, partial defect of RecA's capacity to invade the homologous sister chromatid increases the lifetime of the ssDNA.RecA filament, i.e. the 'SOS signal'. This increase favors TLS by increasing both the TLS polymerase concentration and the lifetime of the TLS substrate, before it becomes sequestered by homologous recombination. In conclusion, the pathway choice between error-prone TLS and error-free HDGR is controlled by the efficiency of homologous recombination.
Collapse
Affiliation(s)
- Karel Naiman
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Vincent Pagès
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| | - Robert P Fuchs
- Team DNA Damage Tolerance, Cancer Research Center of Marseille (CRCM), CNRS, UMR7258, Marseille, F-13009, France Inserm, U1068, CRCM, Marseille, F-13009, France Institut Paoli-Calmettes, Marseille, F-13009, France Aix-Marseille University, UM 105, F-13284, Marseille, France
| |
Collapse
|
43
|
Hirota K, Tsuda M, Mohiuddin, Tsurimoto T, Cohen IS, Livneh Z, Kobayashi K, Narita T, Nishihara K, Murai J, Iwai S, Guilbaud G, Sale JE, Takeda S. In vivo evidence for translesion synthesis by the replicative DNA polymerase δ. Nucleic Acids Res 2016; 44:7242-50. [PMID: 27185888 PMCID: PMC5009730 DOI: 10.1093/nar/gkw439] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/06/2016] [Indexed: 12/17/2022] Open
Abstract
The intolerance of DNA polymerase δ (Polδ) to incorrect base pairing contributes to its extremely high accuracy during replication, but is believed to inhibit translesion synthesis (TLS). However, chicken DT40 cells lacking the POLD3 subunit of Polδ are deficient in TLS. Previous genetic and biochemical analysis showed that POLD3 may promote lesion bypass by Polδ itself independently of the translesion polymerase Polζ of which POLD3 is also a subunit. To test this hypothesis, we have inactivated Polδ proofreading in pold3 cells. This significantly restored TLS in pold3 mutants, enhancing dA incorporation opposite abasic sites. Purified proofreading-deficient human Polδ holoenzyme performs TLS of abasic sites in vitro much more efficiently than the wild type enzyme, with over 90% of TLS events resulting in dA incorporation. Furthermore, proofreading deficiency enhances the capability of Polδ to continue DNA synthesis over UV lesions both in vivo and in vitro. These data support Polδ contributing to TLS in vivo and suggest that the mutagenesis resulting from loss of Polδ proofreading activity may in part be explained by enhanced lesion bypass.
Collapse
Affiliation(s)
- Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji- shi, Tokyo 192-0397, Japan
| | - Masataka Tsuda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Toshiki Tsurimoto
- Department of Biology, School of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Isadora S Cohen
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot 76100, Israel
| | - Zvi Livneh
- Weizmann Institute of Science, Department of Biological Chemistry, Rehovot 76100, Israel
| | - Kaori Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji- shi, Tokyo 192-0397, Japan
| | - Takeo Narita
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kana Nishihara
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junko Murai
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Guillaume Guilbaud
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
44
|
Abstract
Replication perturbations activate DNA damage tolerance (DDT) pathways, which are crucial to promote replication completion and to prevent fork breakage, a leading cause of genome instability. One mode of DDT uses translesion synthesis polymerases, which however can also introduce mutations. The other DDT mode involves recombination-mediated mechanisms, which are generally accurate. DDT occurs prevalently postreplicatively, but in certain situations homologous recombination is needed to restart forks. Fork reversal can function to stabilize stalled forks, but may also promote error-prone outcome when used for fork restart. Recent years have witnessed important advances in our understanding of the mechanisms and DNA structures that mediate recombination-mediated damage-bypass and highlighted principles that regulate DDT pathway choice locally and temporally. In this review we summarize the current knowledge and paradoxes on recombination-mediated DDT pathways and their workings, discuss how the intermediate DNA structures may influence genome integrity, and outline key open questions for future research.
Collapse
Affiliation(s)
- Dana Branzei
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Barnabas Szakal
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
45
|
Quinet A, Martins DJ, Vessoni AT, Biard D, Sarasin A, Stary A, Menck CFM. Translesion synthesis mechanisms depend on the nature of DNA damage in UV-irradiated human cells. Nucleic Acids Res 2016; 44:5717-31. [PMID: 27095204 PMCID: PMC4937316 DOI: 10.1093/nar/gkw280] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/06/2016] [Indexed: 12/17/2022] Open
Abstract
Ultraviolet-induced 6-4 photoproducts (6-4PP) and cyclobutane pyrimidine dimers (CPD) can be tolerated by translesion DNA polymerases (TLS Pols) at stalled replication forks or by gap-filling. Here, we investigated the involvement of Polη, Rev1 and Rev3L (Polζ catalytic subunit) in the specific bypass of 6-4PP and CPD in repair-deficient XP-C human cells. We combined DNA fiber assay and novel methodologies for detection and quantification of single-stranded DNA (ssDNA) gaps on ongoing replication forks and postreplication repair (PRR) tracts in the human genome. We demonstrated that Rev3L, but not Rev1, is required for postreplicative gap-filling, while Polη and Rev1 are responsible for TLS at stalled replication forks. Moreover, specific photolyases were employed to show that in XP-C cells, CPD arrest replication forks, while 6-4PP are responsible for the generation of ssDNA gaps and PRR tracts. On the other hand, in the absence of Polη or Rev1, both types of lesion block replication forks progression. Altogether, the data directly show that, in the human genome, Polη and Rev1 bypass CPD and 6-4PP at replication forks, while only 6-4PP are also tolerated by a Polζ-dependent gap-filling mechanism, independent of S phase.
Collapse
Affiliation(s)
- Annabel Quinet
- Institute of Biomedical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | - Davi Jardim Martins
- Institute of Biomedical Sciences, University of São Paulo, SP, 05508-000, Brazil
| | | | - Denis Biard
- CEA, IMETI, SEPIA, Team Cellular Engineering and Human Syndromes, F-92265 Fontenay-aux-Roses, France
| | - Alain Sarasin
- CNRS-UMR8200, Université Paris Sud, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | - Anne Stary
- CNRS-UMR8200, Université Paris Sud, Institut de Cancérologie Gustave Roussy, 94805 Villejuif, France
| | | |
Collapse
|
46
|
Muñoz S, Méndez J. DNA replication stress: from molecular mechanisms to human disease. Chromosoma 2016; 126:1-15. [PMID: 26797216 DOI: 10.1007/s00412-016-0573-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 12/29/2022]
Abstract
The genome of proliferating cells must be precisely duplicated in each cell division cycle. Chromosomal replication entails risks such as the possibility of introducing breaks and/or mutations in the genome. Hence, DNA replication requires the coordinated action of multiple proteins and regulatory factors, whose deregulation causes severe developmental diseases and predisposes to cancer. In recent years, the concept of "replicative stress" (RS) has attracted much attention as it impinges directly on genomic stability and offers a promising new avenue to design anticancer therapies. In this review, we summarize recent progress in three areas: (1) endogenous and exogenous factors that contribute to RS, (2) molecular mechanisms that mediate the cellular responses to RS, and (3) the large list of diseases that are directly or indirectly linked to RS.
Collapse
Affiliation(s)
- Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| |
Collapse
|
47
|
Morine M, Kohmoto T, Masuda K, Inagaki H, Watanabe M, Naruto T, Kurahashi H, Maeda K, Imoto I. A unique TBX5 microdeletion with microinsertion detected in patient with Holt-Oram syndrome. Am J Med Genet A 2016; 167A:3192-6. [PMID: 26780237 DOI: 10.1002/ajmg.a.37359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022]
Abstract
Holt-Oram syndrome (HOS) is an autosomal dominant condition characterized by upper limb and congenital heart defects and caused by numerous germline mutations of TBX5 producing preterminal stop codons. Here, we report on a novel and unusual heterozygous TBX5 microdeletion with microinsertion (microindel) mutation (c.627delinsGTGACTCAGGAAACGCTTTCCTGA), which is predicted to synthesize a truncated TBX5 protein, detected in a sporadic patient with clinical features of HOS prenatally diagnosed by ultrasonography. This uncommon and relatively large inserted sequence contains sequences derived from nearby but not adjacent templates on both sense and antisense strands, suggesting two possible models, which require no repeat sequences, causing this complex microindel through the bypass of large DNA adducts via an error-prone DNA polymerase-mediated translesion synthesis.
Collapse
Affiliation(s)
- Mikio Morine
- General Perinatal Medical Center, Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Tomohiro Kohmoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Kiyoshi Masuda
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hidehito Inagaki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Miki Watanabe
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Student Lab, Tokushima University Faculty of Medicine, Tokushima, Japan
| | - Takuya Naruto
- Department of Stress Science, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroki Kurahashi
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Kazuhisa Maeda
- General Perinatal Medical Center, Shikoku Medical Center for Children and Adults, Zentsuji, Japan
| | - Issei Imoto
- Department of Human Genetics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
48
|
Abstract
DNA is vulnerable to damage resulting from endogenous metabolites, environmental and dietary carcinogens, some anti-inflammatory drugs, and genotoxic cancer therapeutics. Cells respond to DNA damage by activating complex signalling networks that decide cell fate, promoting not only DNA repair and survival but also cell death. The decision between cell survival and death following DNA damage rests on factors that are involved in DNA damage recognition, and DNA repair and damage tolerance, as well as on factors involved in the activation of apoptosis, necrosis, autophagy and senescence. The pathways that dictate cell fate are entwined and have key roles in cancer initiation and progression. Furthermore, they determine the outcome of cancer therapy with genotoxic drugs. Understanding the molecular basis of these pathways is important not only for gaining insight into carcinogenesis, but also in promoting successful cancer therapy. In this Review, we describe key decision-making nodes in the complex interplay between cell survival and death following DNA damage.
Collapse
Affiliation(s)
- Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Adam D Thomas
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
49
|
Ucisik MN, Hammes-Schiffer S. Comparative Molecular Dynamics Studies of Human DNA Polymerase η. J Chem Inf Model 2015; 55:2672-81. [PMID: 26562587 PMCID: PMC4696480 DOI: 10.1021/acs.jcim.5b00606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
High-energy
ultraviolet radiation damages DNA through the formation
of cyclobutane pyrimidine dimers, which stall replication. When the
lesion is a thymine–thymine dimer (TTD), human DNA polymerase
η (Pol η) assists in resuming the replication process
by inserting nucleotides opposite the damaged site. We performed extensive
molecular dynamics (MD) simulations to investigate the structural
and dynamical effects of four different Pol η complexes with
or without a TTD and with either dATP or dGTP as the incoming base.
No major differences in the overall structures and equilibrium dynamics
were detected among the four systems, suggesting that the specificity
of this enzyme is due predominantly to differences in local interactions
in the binding regions. Analysis of the hydrogen-bonding interactions
between the enzyme and the DNA and dNTP provided molecular-level insights.
Specifically, the TTD was observed to engage in more hydrogen-bonding
interactions with the enzyme than its undamaged counterpart of two
normal thymines. The resulting greater rigidity and specific orientation
of the TTD are consistent with the experimental observation of higher
processivity and overall efficiency at TTD sites than at analogous
sites with two normal thymines. The similarities between the systems
containing dATP and dGTP are consistent with the experimental observation
of relatively low fidelity with respect to the incoming base. Moreover,
Q38 and R61, two strictly conserved amino acids across the Pol η
family, were found to exhibit persistent hydrogen-bonding interactions
with the TTD and cation-π interactions with the free base, respectively.
Thus, these simulations provide molecular level insights into the
basis for the selectivity and efficiency of this enzyme, as well as
the roles of the two most strictly conserved residues.
Collapse
Affiliation(s)
- Melek N Ucisik
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801-3364, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801-3364, United States
| |
Collapse
|
50
|
Aksenova AY, Han G, Shishkin AA, Volkov KV, Mirkin SM. Expansion of Interstitial Telomeric Sequences in Yeast. Cell Rep 2015; 13:1545-51. [PMID: 26586439 DOI: 10.1016/j.celrep.2015.10.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/07/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
Telomeric repeats located within chromosomes are called interstitial telomeric sequences (ITSs). They are polymorphic in length and are likely hotspots for initiation of chromosomal rearrangements that have been linked to human disease. Using our S. cerevisiae system to study repeat-mediated genome instability, we have previously shown that yeast telomeric (Ytel) repeats induce various gross chromosomal rearrangements (GCR) when their G-rich strands serve as the lagging strand template for replication (G orientation). Here, we show that interstitial Ytel repeats in the opposite C orientation prefer to expand rather than cause GCR. A tract of eight Ytel repeats expands at a rate of 4 × 10(-4) per replication, ranking them among the most expansion-prone DNA microsatellites. A candidate-based genetic analysis implicates both post-replication repair and homologous recombination pathways in the expansion process. We propose a model for Ytel repeat expansions and discuss its applications for genome instability and alternative telomere lengthening (ALT).
Collapse
Affiliation(s)
- Anna Y Aksenova
- Department of Biology, Tufts University, Medford, MA 02155, USA; Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Gil Han
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | - Kirill V Volkov
- Department of Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|