1
|
Endo M, Tanaka Y, Fukuoka M, Suzuki H, Minami Y. Wnt5a/Ror2 promotes Nrf2-mediated tissue protective function of astrocytes after brain injury. Glia 2024; 72:411-432. [PMID: 37904612 DOI: 10.1002/glia.24483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023]
Abstract
Astrocytes, a type of glial cells, play critical roles in promoting the protection and repair of damaged tissues after brain injury. Inflammatory cytokines and growth factors can affect gene expression in astrocytes in injured brains, but signaling pathways and transcriptional mechanisms that regulate tissue protective functions of astrocytes are still poorly understood. In this study, we investigated the molecular mechanisms regulating the function of reactive astrocytes induced in mouse models of stab wound (SW) brain injury and collagenase-induced intracerebral hemorrhage (ICH). We show that basic fibroblast growth factor (bFGF), whose expression is up-regulated in mouse brains after SW injury and ICH, acts synergistically with inflammatory cytokines to activate E2F1-mediated transcription of a gene encoding the Ror-family protein Ror2, a receptor for Wnt5a, in cultured astrocytes. We also found that subsequent activation of Wnt5a/Ror2 signaling in astrocytes results in nuclear accumulation of antioxidative transcription factor Nrf2 at least partly by increased expression of p62/Sqstm1, leading to promoted expression of several Nrf2 target genes, including heme oxygenase 1. Finally, we provide evidence demonstrating that enhanced activation of Wnt5a/Ror2 signaling in astrocytes reduces cellular damage caused by hemin, a degradation product of hemoglobin, and promotes repair of the damaged blood brain barrier after brain hemorrhage.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mayo Fukuoka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Hayata Suzuki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
2
|
Bundalian L, Su YY, Chen S, Velluva A, Kirstein AS, Garten A, Biskup S, Battke F, Lal D, Heyne HO, Platzer K, Lin CC, Lemke JR, Le Duc D. The role of rare genetic variants enrichment in epilepsies of presumed genetic etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.17.23284702. [PMID: 36974069 PMCID: PMC10041669 DOI: 10.1101/2023.01.17.23284702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Previous studies suggested that severe epilepsies e.g., developmental and epileptic encephalopathies (DEE) are mainly caused by ultra-rare de novo genetic variants. For milder phenotypes, rare genetic variants could contribute to the phenotype. To determine the importance of rare variants for different epilepsy types, we analyzed a whole-exome sequencing cohort of 9,170 epilepsy-affected individuals and 8,436 controls. Here, we separately analyzed three different groups of epilepsies : severe DEEs, genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We required qualifying rare variants (QRVs) to occur in controls at a minor allele frequency ≤ 1:1,000, to be predicted as deleterious (CADD≥20), and to have an odds ratio in epilepsy cases ≥2. We identified genes enriched with QRVs in DEE (n=21), NAFE (n=72), and GGE (n=32) - the number of enriched genes are found greatest in NAFE and least in DEE. This suggests that rare variants may play a more important role for causality of NAFE than in DEE. Moreover, we found that QRV-carrying genes e.g., HSGP2, FLNA or TNC are involved in structuring the brain extracellular matrix. The present study confirms an involvement of rare variants for NAFE, while in DEE and GGE, the contribution of such variants appears more limited.
Collapse
Affiliation(s)
- Linnaeus Bundalian
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
| | - Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Siwei Chen
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Akhil Velluva
- Division of General Biochemistry, Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103, Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Anna Sophia Kirstein
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Antje Garten
- Pediatric Research Center, University Hospital for Children and Adolescents, Leipzig University, 04103, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH, 72076, Tuebingen, Germany
- Hertie-Institute for Clinical Brain Research, 72070, Tubingen, Germany
| | | | - Dennis Lal
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Cologne Center for Genomics, University of Cologne, 50937 Cologne, Germany
| | - Henrike O Heyne
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Hasso-Plattner-Institut for Digital Engineering, University of Potsdam, Potsdam, Germany
- Hasso Plattner Institute at Mount Sinai, Mount Sinai School of Medicine, NY, US
- Institute for Molecular Medicine Finland: FIMM, University of Helsinki, Helsinki, Finland
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, 4103 Leipzig, Germany
| | - Diana Le Duc
- Institute of Human Genetics, University of Leipzig Medical Center, 4103 Leipzig, Germany
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Tanaka Y, Minami Y, Endo M. Ror1 promotes PPARα-mediated fatty acid metabolism in astrocytes. Genes Cells 2023; 28:307-318. [PMID: 36811220 DOI: 10.1111/gtc.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
Ror1 signaling regulates cell polarity, migration, proliferation, and differentiation during developmental morphogenesis, and plays an important role in regulating neurogenesis in the embryonic neocortices. However, the role of Ror1 signaling in the brains after birth remains largely unknown. Here, we found that expression levels of Ror1 in the mouse neocortices increase during the postnatal period, when astrocytes mature and start expressing GFAP. Indeed, Ror1 is highly expressed in cultured postmitotic mature astrocytes. RNA-Seq analysis revealed that Ror1 expressed in cultured astrocytes mediates upregulated expression of genes related to fatty acid (FA) metabolism, including the gene encoding carnitine palmitoyl-transferase 1a (Cpt1a), the rate-limiting enzyme of mitochondrial fatty acid β-oxidation (FAO). We also found that Ror1 promotes the degradation of lipid droplets (LDs) accumulated in the cytoplasm of cultured astrocytes after oleic acid loading, and that suppressed expression of Ror1 decreases the amount of FAs localized at mitochondria, intracellular ATP levels, and expression levels of peroxisome proliferator-activated receptor α (PPARα) target genes, including Cpt1a. Collectively, these findings indicate that Ror1 signaling promotes PPARα-mediated transcription of FA metabolism-related genes, thereby facilitating the availability of FAs derived from LDs for mitochondrial FAO in the mature astrocytes.
Collapse
Affiliation(s)
- Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
4
|
Ishikawa T, Ogura Y, Tanaka K, Nagashima H, Sasayama T, Endo M, Minami Y. Ror1 is expressed inducibly by Notch and hypoxia signaling and regulates stem cell-like property of glioblastoma cells. Cancer Sci 2022; 114:561-573. [PMID: 36314076 PMCID: PMC9899608 DOI: 10.1111/cas.15630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/13/2022] [Indexed: 02/07/2023] Open
Abstract
Ror1 plays a crucial role in cancer progression by regulating cell proliferation and migration. Ror1 is expressed abundantly in various types of cancer cells and cancer stem-like cells. However, the molecular mechanisms regulating expression of Ror1 in these cells remain largely unknown. Ror1 and its putative ligand Wnt5a are expressed highly in malignant gliomas, especially in glioblastomas, and the extents of Ror1 expression are correlated positively with poorer prognosis in patients with gliomas. We show that Ror1 expression can be upregulated in glioblastoma cells under spheroid culture, but not adherent culture conditions. Notch and hypoxia signaling pathways have been shown to be activated in spheroid-forming glioblastoma stem-like cells (GSCs), and Ror1 expression in glioblastoma cells is indeed suppressed by inhibiting either Notch or hypoxia signaling. Meanwhile, either forced expression of the Notch intracellular domain (NICD) in or hypoxic culture of glioblastoma cells result in enhanced expression of Ror1 in the cells. Consistently, we show that both NICD and hypoxia-inducible factor 1 alpha bind to upstream regions within the Ror1 gene more efficiently in GSCs under spheroid culture conditions. Furthermore, we provide evidence indicating that binding of Wnt5a to Ror1, upregulated by Notch and hypoxia signaling pathways in GSCs, might promote their spheroid-forming ability. Collectively, these findings indicate for the first time that Notch and hypoxia signaling pathways can elicit a Wnt5a-Ror1 axis through transcriptional activation of Ror1 in glioblastoma cells, thereby promoting their stem cell-like property.
Collapse
Affiliation(s)
- Tomohiro Ishikawa
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| | - Yasuka Ogura
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| | - Kazuhiro Tanaka
- Department of Neurosurgery, Graduate School of MedicineKobe UniversityKobeJapan
| | - Hiroaki Nagashima
- Department of Neurosurgery, Graduate School of MedicineKobe UniversityKobeJapan
| | - Takashi Sasayama
- Department of Neurosurgery, Graduate School of MedicineKobe UniversityKobeJapan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of MedicineKobe UniversityKobeJapan
| |
Collapse
|
5
|
Endo M, Kamizaki K, Minami Y. The Ror-Family Receptors in Development, Tissue Regeneration and Age-Related Disease. Front Cell Dev Biol 2022; 10:891763. [PMID: 35493090 PMCID: PMC9043558 DOI: 10.3389/fcell.2022.891763] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
The Ror-family proteins, Ror1 and Ror2, act as receptors or co-receptors for Wnt5a and its related Wnt proteins to activate non-canonical Wnt signaling. Ror1 and/or Ror2-mediated signaling plays essential roles in regulating cell polarity, migration, proliferation and differentiation during developmental morphogenesis, tissue-/organo-genesis and regeneration of adult tissues following injury. Ror1 and Ror2 are expressed abundantly in developing tissues in an overlapping, yet distinct manner, and their expression in adult tissues is restricted to specific cell types such as tissue stem/progenitor cells. Expression levels of Ror1 and/or Ror2 in the adult tissues are increased following injury, thereby promoting regeneration or repair of these injured tissues. On the other hand, disruption of Wnt5a-Ror2 signaling is implicated in senescence of tissue stem/progenitor cells that is related to the impaired regeneration capacity of aged tissues. In fact, Ror1 and Ror2 are implicated in age-related diseases, including tissue fibrosis, atherosclerosis (or arteriosclerosis), neurodegenerative diseases, and cancers. In these diseases, enhanced and/or sustained (chronic) expression of Ror1 and/or Ror2 is observed, and they might contribute to the progression of these diseases through Wnt5a-dependent and -independent manners. In this article, we overview recent advances in our understanding of the roles of Ror1 and Ror2-mediated signaling in the development, tissue regeneration and age-related diseases, and discuss their potential to be therapeutic targets for chronic inflammatory diseases and cancers.
Collapse
|
6
|
Kamizaki K, Endo M, Minami Y, Kobayashi Y. Role of noncanonical Wnt ligands and Ror-family receptor tyrosine kinases in the development, regeneration, and diseases of the musculoskeletal system. Dev Dyn 2020; 250:27-38. [PMID: 31925877 DOI: 10.1002/dvdy.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
The Ror-family receptor tyrosine kinases (RTKs), consisting of Ror1 and Ror2, play crucial roles in morphogenesis and formation of various tissues/organs, including the bones and skeletal muscles, the so-called musculoskeletal system, during embryonic development, by acting as receptors or coreceptors for a noncanonical Wnt protein Wnt5a. Furthermore, several lines of evidence have indicated that Ror1 and/or Ror2 play critical roles in the regeneration and maintenance of the musculoskeletal system in adults. Considering the anatomical and functional relationship between the skeleton and skeletal muscles, their structural and functional association might be tightly regulated during their embryonic development, development after birth, and their regeneration after injury in adults. Importantly, in addition to their congenital anomalies, much attention has been paid onto the age-related disorders of the musculoskeletal system, including osteopenia and sarcopenia, which affect severely the quality of life. In this article, we overview recent advances in our understanding of the roles of Ror1- and/or Ror2-mediated signaling in the embryonic development, regeneration in adults, and congenital and age-related disorders of the musculoskeletal system and discuss possible therapeutic approaches to locomotive syndromes by modulating Ror1- and/or Ror2-mediated signaling.
Collapse
Affiliation(s)
- Koki Kamizaki
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | | |
Collapse
|
7
|
Endo M, Tanaka Y, Otsuka M, Minami Y. E2F1-Ror2 signaling mediates coordinated transcriptional regulation to promote G1/S phase transition in bFGF-stimulated NIH/3T3 fibroblasts. FASEB J 2020; 34:3413-3428. [PMID: 31922321 DOI: 10.1096/fj.201902849r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 01/18/2023]
Abstract
Ror2 signaling has been shown to regulate the cell cycle progression in normal and cancer cells. However, the molecular mechanism of the cell cycle progression upon activation of Ror2 signaling still remains unknown. Here, we found that the expression levels of Ror2 in G1-arrested NIH/3T3 fibroblasts are low and are rapidly increased following the cell cycle progression induced by basic fibroblast growth factor (bFGF) stimulation. By expressing wild-type or a dominant negative mutant of E2F1, we show that E2F1 mediates bFGF-induced expression of Ror2, and that E2F1 binds to the promoter of the Ror2 gene to activate its expression. We also found that G1/S phase transition of bFGF-stimulated NIH/3T3 cells is delayed by the suppressed expression of Ror2. RNA-seq analysis revealed that the suppressed expression of Ror2 results in the decreased expression of various E2F target genes concomitantly with increased expression of Forkhead box O (FoxO) target genes, including p21Cip1 , and p27Kip1 . Moreover, the inhibitory effect of Ror2 knockdown on the cell cycle progression can be restored by suppressed expression of p21Cip1 , p27Kip1 ,or FoxO3a. Collectively, these findings indicate that E2F1-Ror2 signaling mediates the transcriptional activation and inhibition of E2F1-driven and FoxO3a-driven cell cycle-regulated genes, respectively, thereby promoting G1/S phase transition of bFGF-stimulated NIH/3T3 cells.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yuki Tanaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Mako Otsuka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
8
|
Inoue F, Kreimer A, Ashuach T, Ahituv N, Yosef N. Identification and Massively Parallel Characterization of Regulatory Elements Driving Neural Induction. Cell Stem Cell 2019; 25:713-727.e10. [PMID: 31631012 PMCID: PMC6850896 DOI: 10.1016/j.stem.2019.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/15/2019] [Accepted: 09/26/2019] [Indexed: 12/16/2022]
Abstract
Epigenomic regulation and lineage-specific gene expression act in concert to drive cellular differentiation, but the temporal interplay between these processes is largely unknown. Using neural induction from human pluripotent stem cells (hPSCs) as a paradigm, we interrogated these dynamics by performing RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq), and assay for transposase accessible chromatin using sequencing (ATAC-seq) at seven time points during early neural differentiation. We found that changes in DNA accessibility precede H3K27ac, which is followed by gene expression changes. Using massively parallel reporter assays (MPRAs) to test the activity of 2,464 candidate regulatory sequences at all seven time points, we show that many of these sequences have temporal activity patterns that correlate with their respective cell-endogenous gene expression and chromatin changes. A prioritization method incorporating all genomic and MPRA data further identified key transcription factors involved in driving neural fate. These results provide a comprehensive resource of genes and regulatory elements that orchestrate neural induction and illuminate temporal frameworks during differentiation.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anat Kreimer
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tal Ashuach
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences and Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
A fully chimeric IgG antibody for ROR1 suppresses ovarian cancer growth in vitro and in vivo. Biomed Pharmacother 2019; 119:109420. [PMID: 31536932 DOI: 10.1016/j.biopha.2019.109420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Over-expression of Receptor-tyrosine-kinase-like Orphan Receptor 1 (ROR1) in cancer cells has been reported in the context of several tumors (including ovarian cancer) and is associated with poor prognosis. The aim of this study was to construct a fully chimeric anti-ROR1 IgG antibody (ROR1-IgG) and investigate its antitumor activity against ovarian cancer cells, bothin vitro and in vivo. METHODS A fully chimeric anti-ROR1 IgG antibody (ROR1-IgG) eukaryotic expression vector was constructed and ROR1-IgG antibody was expressed in CHO cells. The characteristics of ROR1-IgG were investigated by ELISA, SPR, Western blotting, FACS and fluorescence staining analyses. CCK8 and wound healing assays were performed to determine inhibition and migration capacity of ovarian cancer cells after treatment with ROR1-IgGin vitro. Further, the antitumor activity of ROR1-IgG was assessed in vivo using tumor-mice xenograft model. RESULTS The results showed that ROR1-IgG could specifically bind to ROR1-positive cells (HO8910 and A2780) with a high affinity. Functional studies revealed that ROR1-IgG inhibited the malignant behavior of ROR1-positive cells (HO8910 and A2780) in a time- and dose-dependent manner. These effects were not observed in ROR1-negative lose386 cells. The tumor inhibition rates following treatment with low, medium, and high concentrations of ROR1-IgG were approximately 47.72%, 53.79%, and 60.51%, respectively. In addition, the expression of Bcl-2 was obviously reduced while that of Bax was distinctly elevated in xenografts. CONCLUSIONS Collectively, our findings suggest that ROR1-IgG may be a novel therapeutic agent for patients with ROR1-positive ovarian cancer.
Collapse
|
10
|
Zhang H, Sathyamurthy A, Liu F, Li L, Zhang L, Dong Z, Cui W, Sun X, Zhao K, Wang H, Ho HYH, Xiong WC, Mei L. Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice. eLife 2019; 8:e45303. [PMID: 31268420 PMCID: PMC6650252 DOI: 10.7554/elife.45303] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis in the hippocampus may represent a form of plasticity in brain functions including mood, learning and memory. However, mechanisms underlying neural stem/progenitor cells (NSPCs) proliferation are not well understood. We found that Agrin, a factor critical for neuromuscular junction formation, is elevated in the hippocampus of mice that are stimulated by enriched environment (EE). Genetic deletion of the Agrn gene in excitatory neurons decreases NSPCs proliferation and increases depressive-like behavior. Low-density lipoprotein receptor-related protein 4 (Lrp4), a receptor for Agrin, is expressed in hippocampal NSPCs and its mutation blocked basal as well as EE-induced NSPCs proliferation and maturation of newborn neurons. Finally, we show that Lrp4 interacts with and activates receptor tyrosine kinase-like orphan receptor 2 (Ror2); and Ror2 mutation impairs NSPCs proliferation. Together, these observations identify a role of Agrin-Lrp4-Ror2 signaling for adult neurogenesis, uncovering previously unexpected functions of Agrin and Lrp4 in the brain.
Collapse
Affiliation(s)
- Hongsheng Zhang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Anupama Sathyamurthy
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Fang Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Lei Li
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Lei Zhang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Zhaoqi Dong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Wanpeng Cui
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Xiangdong Sun
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Kai Zhao
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
| | - Hongsheng Wang
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
| | - Hsin-Yi Henry Ho
- Department of NeurobiologyHarvard Medical SchoolBostonUnited States
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandUnited States
| | - Lin Mei
- Department of Neurosciences, School of MedicineCase Western Reserve UniversityClevelandUnited States
- Department of Neuroscience and Regenerative Medicine, Medical College of GeorgiaAugusta UniversityAugustaUnited States
- Louis Stokes Cleveland Veterans Affairs Medical CenterClevelandUnited States
| |
Collapse
|
11
|
Weissenböck M, Latham R, Nishita M, Wolff LI, Ho HYH, Minami Y, Hartmann C. Genetic interactions between Ror2 and Wnt9a, Ror1 and Wnt9a and Ror2 and Ror1: Phenotypic analysis of the limb skeleton and palate in compound mutants. Genes Cells 2019; 24:307-317. [PMID: 30801848 DOI: 10.1111/gtc.12676] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/20/2023]
Abstract
Mutations in the human receptor tyrosine kinase ROR2 are associated with Robinow syndrome (RRS) and brachydactyly type B1. Amongst others, the shortened limb phenotype associated with RRS is recapitulated in Ror2-/- mutant mice. In contrast, Ror1-/- mutant mice are viable and show no limb phenotype. Ror1-/- ;Ror2-/- double mutants are embryonic lethal, whereas double mutants containing a hypomorphic Ror1 allele (Ror1hyp ) survive up to birth and display a more severe shortened limb phenotype. Both orphan receptors have been shown to act as possible Wnt coreceptors and to mediate the Wnt5a signal. Here, we analyzed genetic interactions between the Wnt ligand, Wnt9a, and Ror2 or Ror1, as Wnt9a has also been implicated in skeletal development. Wnt9a-/- single mutants display a mild shortening of the long bones, whereas these are severely shortened in Ror2-/- mutants. Ror2-/- ;Wnt9a-/- double mutants displayed even more severely shortened long bones, and intermediate phenotypes were observed in compound Ror2;Wnt9a mutants. Long bones were also shorter in Ror1hyp/hyp ;Wnt9a-/- double mutants. In addition, Ror1hyp/hyp ;Wnt9a-/- double mutants displayed a secondary palate cleft phenotype, which was not present in the respective single mutants. Interestingly, 50% of compound mutant pups heterozygous for Ror2 and homozygous mutant for Ror1 also developed a secondary palate cleft phenotype.
Collapse
Affiliation(s)
| | - Richard Latham
- Research Institute of Molecular Pathology, Vienna, Austria
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Lena Ingeborg Wolff
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
| | - Hsin-Yi Henry Ho
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Medical Faculty, Institute of Musculoskeletal Medicine, University of Münster, Münster, Germany
| |
Collapse
|
12
|
Zhou XL, Zhang CJ, Peng YN, Wang Y, Xu HJ, Liu CM. ROR2 modulates neuropathic pain via phosphorylation of NMDA receptor subunit GluN2B in rats. Br J Anaesth 2018; 123:e239-e248. [PMID: 30916039 DOI: 10.1016/j.bja.2018.08.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuropathic pain, a type of chronic pain as a result of direct central or peripheral nerve damage, is associated with significant quality of life and functional impairment. Its underlying mechanisms remain unclear. We investigated whether ROR2, a member of the receptor tyrosine kinase-like orphan receptor (ROR) family, participates in modulation of neuropathic pain. METHODS Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and von Frey filament testing. Immunofluorescence staining was used to detect expression of ROR2 in neuronal nuclei. Fos expression was determined by immunocytochemistry. Phosphorylation status was detected by western blot and immunoprecipitation. Small interfering RNA was used to knock down ROR2 expression. RESULTS ROR2 was upregulated and activated in spinal neurones after chronic constriction injury (CCI) in mice [1.3 (0.1) to 2.1 (0.1)-fold of sham, P<0.01] from Day 1-21. CCI induced significant demethylation of the CpG island in the ROR2 gene promoter [0.37 (0.06) vs 0.12 (0.03)% CpG methylation, P<0.001]. Knockdown of ROR2 in the spinal cord prevented and reversed CCI-induced pain behaviours and spinal neuronal sensitisation [Fos expression: 130 (12) vs 81 (8) cells, P<0.05; 120 (11) vs 70 (7) cells, P<0.05]. In contrast, activation of spinal ROR2 by intrathecal injection of Wnt5a induced pain behaviours and spinal neuronal sensitisation [Fos expression: 11 (1) vs 100 (12) cells, P<0.001] in wild-type mice. Furthermore, ROR2-mediated pain modulation required phosphorylation of N-methyl-D-aspartate receptor 2B subunit (GluN2B) at Ser 1303 and Tyr1472 by pathways involving protein kinase C (PKC) and Src family kinases. Intrathecal injection of GluN2B, PKC, or Src family kinase-specific inhibitors significantly attenuated Wnt5a-induced pain behaviours. CONCLUSIONS ROR2 in the spinal cord regulates neuropathic pain via phosphorylation of GluN2B, suggesting a potential target for prevention and relief of neuropathic pain.
Collapse
Affiliation(s)
- X L Zhou
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - C J Zhang
- Department of Gastroenterology, Zhejiang Province People's Hospital, Hangzhou, Zhejiang, China
| | - Y N Peng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Y Wang
- Department of Anesthesiology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - H J Xu
- Department of Anesthesiology, First People's Hospital of Shanghai Transportation University, Shanghai, China
| | - C M Liu
- Department of Anesthesiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Hosseini V, Dani C, Geranmayeh MH, Mohammadzadeh F, Nazari Soltan Ahmad S, Darabi M. Wnt lipidation: Roles in trafficking, modulation, and function. J Cell Physiol 2018; 234:8040-8054. [PMID: 30341908 DOI: 10.1002/jcp.27570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
The Wnt signaling pathway consists of various downstream target proteins that have substantial roles in mammalian cell proliferation, differentiation, and development. Its aberrant activity can lead to uncontrolled proliferation and tumorigenesis. The posttranslational connection of fatty acyl chains to Wnt proteins provides the unique capacity for regulation of Wnt activity. In spite of the past belief that Wnt molecules are subject to dual acylation, it has been shown that these proteins have only one acylation site and undergo monounsaturated fatty acylation. The Wnt monounsaturated fatty acyl chain is more than just a hydrophobic coating and appears to be critical for Wnt signaling, transport, and receptor activation. Here, we provide an overview of recent findings in Wnt monounsaturated fatty acylation and the mechanism by which this lipid moiety regulates Wnt activity from the site of production to its receptor interactions.
Collapse
Affiliation(s)
- Vahid Hosseini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hossein Geranmayeh
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Mohammadzadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Masoud Darabi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
14
|
Kim JH, Kim M, He XB, Wulansari N, Yoon BH, Bae DH, Huh N, Kim YS, Lee SH, Kim SY. Vitamin C Promotes Astrocyte Differentiation Through DNA Hydroxymethylation. Stem Cells 2018; 36:1578-1588. [PMID: 30005139 DOI: 10.1002/stem.2886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 06/17/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Previous studies have reported that vitamin C (VC) promotes neural stem/precursor cell (NSC) differentiation toward dopamine (DA) neurons via DNA hydroxymethylation-induced transcriptional activation of DA neuron-specific genes. To further understand the VC effects on NSC differentiation, we profiled the transcriptome and DNA methylome/hydroxymethylome using high-throughput sequencing. Interestingly, RNA sequencing analyses have shown that, in addition to DA neuronal genes, astrocytic genes Gfap, Slc1a3, and S100a16 were also upregulated in NSC cultures differentiated with VC treatment. Consistently, enhanced GFAP+ astrocytic yields were manifested in the differentiated cultures with VC treatment, collectively indicating that VC promotes astrocytic differentiation. In genome-wide hydroxymethylome analyses, VC treatment induces enrichment of DNA hydroxymethylation (5-hydroxymethyl cytosine; 5hmC) near the consensus binding motifs of nuclear factor I (NFI). Furthermore, we showed that VC significantly enhanced recruitment of NFI and STAT3, key transcription factors for astrogenesis, in the 5hmC-enriched regions of the astrocyte-specific genes. These findings suggest that VC play important roles in astrocytogenesis during brain development. Stem Cells 2018;36:1578-1588.
Collapse
Affiliation(s)
- Jong-Hwan Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Mirang Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Xi-Biao He
- Shanghai University of Medicine & Health Sciences, Shanghai, People's Republic of China
| | - Noviana Wulansari
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Byoung-Ha Yoon
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Dong-Hyuck Bae
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Nanhyung Huh
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Yong Sung Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Sang-Hun Lee
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Seon-Young Kim
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon, South Korea
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
15
|
Saji T, Nishita M, Ogawa H, Doi T, Sakai Y, Maniwa Y, Minami Y. Critical role of the Ror-family of receptor tyrosine kinases in invasion and proliferation of malignant pleural mesothelioma cells. Genes Cells 2018; 23:606-613. [PMID: 29845703 DOI: 10.1111/gtc.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/28/2018] [Indexed: 01/16/2023]
Abstract
Malignant pleural mesothelioma (MPM) is a highly aggressive tumor with poor prognosis and closely related to exposure to asbestos. MPM is a heterogeneous tumor with three main histological subtypes, epithelioid, sarcomatoid, and biphasic types, among which sarcomatoid type shows the poorest prognosis. The Ror-family of receptor tyrosine kinases, Ror1 and Ror2, is expressed in various types of tumor cells at higher levels and affects their aggressiveness. However, it is currently unknown whether they are expressed in and involved in aggressiveness of MPM. Here, we show that Ror1 and Ror2 are expressed in clinical specimens and cell lines of MPM with different histological features. Studies using MPM cell lines indicate that expression of Ror2 is associated tightly with high invasiveness of MPM cells, whereas Ror1 can contribute to their invasion in the absence of Ror2. However, both Ror1 and Ror2 promote proliferation of MPM cells. We also show that promoted invasion and proliferation of MPM cells by Ror signaling can be mediated by the Rho-family of small GTPases, Rac1, and Cdc42. These findings elucidate the critical role of Ror signaling in promoting invasion and proliferation of MPM cells.
Collapse
Affiliation(s)
- Takeshi Saji
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Hiroyuki Ogawa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Takefumi Doi
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Sakai
- Department of Pathology, Hyogo Cancer Center, Akashi, Hyogo, Japan
| | - Yoshimasa Maniwa
- Division of Thoracic Surgery, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
16
|
Karvonen H, Summala K, Niininen W, Barker HR, Ungureanu D. Interaction between ROR1 and MuSK activation complex in myogenic cells. FEBS Lett 2018; 592:434-445. [DOI: 10.1002/1873-3468.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hanna Karvonen
- BioMediTech Institute; University of Tampere; Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| | - Katja Summala
- Department of Biological and Environmental Science; University of Jyväskylä; Finland
| | - Wilhelmiina Niininen
- BioMediTech Institute; University of Tampere; Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| | - Harlan R. Barker
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| | - Daniela Ungureanu
- BioMediTech Institute; University of Tampere; Finland
- Faculty of Medicine and Life Sciences; University of Tampere; Finland
| |
Collapse
|
17
|
Yin Z, Gao M, Chu S, Su Y, Ye C, Wang Y, Pan Z, Wang Z, Zhang H, Tong H, Zhu J. Antitumor activity of a newly developed monoclonal antibody against ROR1 in ovarian cancer cells. Oncotarget 2017; 8:94210-94222. [PMID: 29212222 PMCID: PMC5706868 DOI: 10.18632/oncotarget.21618] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Receptor-tyrosine-kinase-like Orphan Receptor 1 (ROR1) is a tyrosine-protein kinase transmembrane receptor and ROR1 overexpression is associated with a poor prognosis in various cancers, including ovarian cancer. Targeting of ROR1 has been evaluated as a novel cancer therapy strategy. This study developed a novel chimeric anti-ROR1 Fab antibody (named ROR1-cFab) and then assessed the antitumor activity of this antibody in ovarian cancer cells, an in vitro model of preclinical cancer therapy. A ROR1-cFab prokaryotic expression vector was constructed from positive fusion cells (splenocytes from mice with high ROR1 immune titers were fused with myeloma cells) after three rounds of sub-clone affinity screening. Then, a variety of assays were employed to assess the binding selectivity and specificity of ROR1-cFab to ROR1 protein. Furthermore, CCK8, flow cytometric apoptosis, wound healing, and Transwell migration assays were used to assess antitumor activity of this newly developed anti-ROR1 antibody in ovarian cancer cells. We demonstrated that ROR1-cFab could specifically bind to ROR1 protein and ROR1-positive ovarian cancer A2780 cells. Functional assays revealed that ROR1-cFab inhibited tumor cell proliferation and migration, as well as inducing apoptosis of ROR1-positive A2780 cells in a dose dependent manner. These effects were not observed in ROR1-negative lose386 cells. In conclusion, ROR1-cFab is a novel anti-ROR1 antibody with a high affinity to ROR1 protein and inhibitory effects on ROR1-positive cells. Future studies will determine whether the ROR1-cFab might be a promising candidate for treatment of ROR1-positive ovarian cancer.
Collapse
Affiliation(s)
- Zhengna Yin
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Mengyun Gao
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Sasa Chu
- Department of Infectious Disease, Institute of Liver Disease, Nanjing Jingdu Hospital, Nanjing 210002, China
| | - Yiping Su
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Chunping Ye
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Yiquan Wang
- Department of Traditional Chinese Internal Medicine, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Zhuanqin Pan
- Department of Nursing, Gaoyou People’s Hospital, Yangzhou 225600, China
| | - Zhuming Wang
- Department of Pathology, Chinese Ministry of Health-designated Key Laboratory of Antibody Technology, Nanjing Medical University, Nanjing 210029, China
| | - Huilin Zhang
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Hua Tong
- Department of Obstetrics and Gynecology, Nanjing Maternity and Child Health Care Hospital, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing 210002, China
| |
Collapse
|
18
|
Kamizaki K, Doi R, Hayashi M, Saji T, Kanagawa M, Toda T, Fukada SI, Ho HYH, Greenberg ME, Endo M, Minami Y. The Ror1 receptor tyrosine kinase plays a critical role in regulating satellite cell proliferation during regeneration of injured muscle. J Biol Chem 2017; 292:15939-15951. [PMID: 28790171 DOI: 10.1074/jbc.m117.785709] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
The Ror family receptor tyrosine kinases, Ror1 and Ror2, play important roles in regulating developmental morphogenesis and tissue- and organogenesis, but their roles in tissue regeneration in adult animals remain largely unknown. In this study, we examined the expression and function of Ror1 and Ror2 during skeletal muscle regeneration. Using an in vivo skeletal muscle injury model, we show that expression of Ror1 and Ror2 in skeletal muscles is induced transiently by the inflammatory cytokines, TNF-α and IL-1β, after injury and that inhibition of TNF-α and IL-1β by neutralizing antibodies suppresses expression of Ror1 and Ror2 in injured muscles. Importantly, expression of Ror1, but not Ror2, was induced primarily in Pax7-positive satellite cells (SCs) after muscle injury, and administration of neutralizing antibodies decreased the proportion of Pax7-positive proliferative SCs after muscle injury. We also found that stimulation of a mouse myogenic cell line, C2C12 cells, with TNF-α or IL-1β induced expression of Ror1 via NF-κB activation and that suppressed expression of Ror1 inhibited their proliferative responses in SCs. Intriguingly, SC-specific depletion of Ror1 decreased the number of Pax7-positive SCs after muscle injury. Collectively, these findings indicate for the first time that Ror1 has a critical role in regulating SC proliferation during skeletal muscle regeneration. We conclude that Ror1 might be a suitable target in the development of diagnostic and therapeutic approaches to manage muscular disorders.
Collapse
Affiliation(s)
- Koki Kamizaki
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Ryosuke Doi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Makoto Hayashi
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Takeshi Saji
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Motoi Kanagawa
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Tatsushi Toda
- Division of Neurology/Molecular Brain Science, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - So-Ichiro Fukada
- the Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871, Japan, and
| | - Hsin-Yi Henry Ho
- the Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Mitsuharu Endo
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| | - Yasuhiro Minami
- From the Division of Cell Physiology, Department of Physiology and Cell Biology, and
| |
Collapse
|
19
|
Endo M, Minami Y. Diverse roles for the ror-family receptor tyrosine kinases in neurons and glial cells during development and repair of the nervous system. Dev Dyn 2017; 247:24-32. [PMID: 28470690 DOI: 10.1002/dvdy.24515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 11/06/2022] Open
Abstract
The Ror-family of receptor tyrosine kinases (RTKs) are involved critically in tissue genesis and organogenesis during development. In mammals, Ror1 and Ror2, members of the Ror-family RTKs, have been shown to mediate cell polarity, migration, proliferation, and differentiation through the activation of noncanonical Wnt signaling by acting as receptors or co-receptors for Wnt5a. Nematodes bearing mutations within the cam-1 gene, encoding a Ror2 ortholog, exhibit defects in various developmental processes of the nervous system, including neuronal cell migration, polarization, axonal extension, and synaptic transmission. In mice, Ror2 and/or Ror1 are also shown to play roles in regulating neurite extension, synapse formation, and synaptic transmission of hippocampal neurons, indicating that the Ror-family RTKs have evolutionarily conserved functions at least in part in neurons during development. Furthermore, Ror2 and/or Ror1 are expressed in neural stem/progenitor cells of the developing brain and in astrocytes of the adult brain after injury, and they play important roles in regulating cell proliferation under these different contexts. In this article, we overview recent advances in our understanding of the roles of the Ror-family RTKs in the development and repair of the nervous system and discuss their potential for therapeutic targets to neurodegenerative diseases. Developmental Dynamics 247:24-32, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Japan
| |
Collapse
|
20
|
Nath O, Singh A, Singh IK. In-Silico Drug discovery approach targeting receptor tyrosine kinase-like orphan receptor 1 for cancer treatment. Sci Rep 2017; 7:1029. [PMID: 28432357 PMCID: PMC5430761 DOI: 10.1038/s41598-017-01254-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Receptor tyrosine kinases (RTK) are important cell signaling molecules that influence many cellular processes. Receptor tyrosine kinase such as orphan receptor 1 (Ror1), a surface antigen, is a member of the RTK family of Ror, which plays a crucial role in cancers that have high-grade histology. As Ror1 has been implicated to be a potential target for cancer therapy, we selected this protein for further investigation. The secondary and tertiary structure of this protein was determined, which revealed that this protein contained three β-sheets, seven α-helices, and coils. The prediction of the active site revealed its cage-like function that opens for ligand entry and then closes for interacting with the ligands. Optimized ligands from the database were virtually screened to obtain the most efficient and potent ones. The screened ligands were evaluated for their therapeutic usefulness. Furthermore, the ligands that passed the test were docked to the target protein resulting in a few ligands with high score, which were analyzed further. The highest scoring ligand, Beta-1, 2,3,4,6-Penta-O-Galloyl-D-Glucopyranose was reported to be a naturally occurring tannin. This in silico approach indicates the potential of this molecule for advancing a further step in cancer treatment.
Collapse
Affiliation(s)
- Onkar Nath
- Jawaharlal Nehru University, SCIS, New Delhi, 110067, India
| | - Archana Singh
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India.
- Department of Entomology, University of Kentucky, S-225 AG. Science - North, lexington, KY, 40546-0091, United States.
| |
Collapse
|
21
|
Sakamoto T, Kawano S, Matsubara R, Goto Y, Jinno T, Maruse Y, Kaneko N, Hashiguchi Y, Hattori T, Tanaka S, Kitamura R, Kiyoshima T, Nakamura S. Critical roles of Wnt5a-Ror2 signaling in aggressiveness of tongue squamous cell carcinoma and production of matrix metalloproteinase-2 via ΔNp63β-mediated epithelial-mesenchymal transition. Oral Oncol 2017; 69:15-25. [PMID: 28559016 DOI: 10.1016/j.oraloncology.2017.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVES We previously showed that ΔNp63β, a splicing variant of ΔNp63, mediated EMT and affected cell motility. DNA microarray was thus performed to elucidate the mechanism that ΔNp63β affects cell motility. As the results, Wnt5a was significantly down-regulated by ΔNp63β overexpression in tongue SCC cell line (SQUU-B) with EMT phenotype. MATERIALS AND METHODS Seven OSCC cell lines were used. Expression of ΔNp63, Wnt5a, its receptor Ror2, and matrix metalloproteinases (MMPs) were analyzed by RT-PCR, real-time PCR, and western blotting, and gelatin zymography. Furthermore, we examined the effects of siRNA for Wnt5a or Ror2 and recombinant human Wnt5a (rhWnt5a) on motility of tongue SCC cells. Biopsy specimens from tongue SCC patients were used for immunohistochemical staining of Wnt5a and Ror2. RESULTS Wnt5a and Ror2 were expressed only in SQUU-B cells without ΔNp63 expression, and negatively associated with ΔNp63 expression in other cells. ΔNp63β overexpression in SQUU-B cells decreased Wnt5a and Ror2 expression. By Wnt5a or Ror2 knockdown, cell motility was remarkably inhibited, but EMT markers expression was unaffected. MMP-2 expression and the activities inversely correlated with ΔNp63 expression, and were inhibited by Wnt5a or Ror2 knockdown. Cell motility and MMP-2 activities were recovered by adding rhWnt5a in the cells with Wnt5a knockdown, but not in those with Ror2 knockdown. Moreover, immunohistochemical analyses in tongue SCC specimens found that high expression of Wnt5a or Ror2 was associated with poorer prognosis. CONCLUSION Wnt5a-Ror2 signaling enhanced tongue SCC cell aggressiveness and promoted production of MMP-2 following ΔNp63β-mediated EMT.
Collapse
Affiliation(s)
- Taiki Sakamoto
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shintaro Kawano
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Ryota Matsubara
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yuichi Goto
- Maxillofacial Diagnostic and Surgical Sciences, Department of Oral and Maxillofacial Rehabilitation, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
| | - Teppei Jinno
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasuyuki Maruse
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Naoki Kaneko
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yuma Hashiguchi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Taichi Hattori
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Shoichi Tanaka
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Ryoji Kitamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
22
|
Subashini C, Dhanesh SB, Chen CM, Riya PA, Meera V, Divya TS, Kuruvilla R, Buttler K, James J. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep 2017; 7:42523. [PMID: 28205531 PMCID: PMC5311982 DOI: 10.1038/srep42523] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/10/2017] [Indexed: 12/14/2022] Open
Abstract
The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a−/− and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.
Collapse
Affiliation(s)
- Chandramohan Subashini
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Sivadasan Bindu Dhanesh
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Chih-Ming Chen
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Thulasi Sheela Divya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., 224 Mudd Hall, Baltimore, MD 21218, USA
| | - Kerstin Buttler
- Department of Anatomy and Cell Biology, University Medicine Göttingen, 37075-Göttingen, Germany
| | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala-695 014, India
| |
Collapse
|
23
|
Endo M, Ubulkasim G, Kobayashi C, Onishi R, Aiba A, Minami Y. Critical role of Ror2 receptor tyrosine kinase in regulating cell cycle progression of reactive astrocytes following brain injury. Glia 2016; 65:182-197. [DOI: 10.1002/glia.23086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/28/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Mitsuharu Endo
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Guljahan Ubulkasim
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Chiho Kobayashi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Reiko Onishi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine; The University of Tokyo; Bunkyo-ku, Tokyo 113-0033 Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine; Kobe University; Kobe 650-0017 Japan
| |
Collapse
|
24
|
Gonzalez-Fernandez C, Arevalo-Martin A, Paniagua-Torija B, Ferrer I, Rodriguez FJ, Garcia-Ovejero D. Wnts Are Expressed in the Ependymal Region of the Adult Spinal Cord. Mol Neurobiol 2016; 54:6342-6355. [PMID: 27722925 DOI: 10.1007/s12035-016-0132-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
The Wnt family of proteins plays key roles during central nervous system development and in several physiological processes during adulthood. Recently, experimental evidence has linked Wnt-related genes to regulation and maintenance of stem cells in the adult neurogenic niches. In the spinal cord, the ependymal cells surrounding the central canal form one of those niches, but little is known about their Wnt expression patterns. Using microdissection followed by TaqMan® low-density arrays, we show here that the ependymal regions of young, mature rats and adult humans express several Wnt-related genes, including ligands, conventional and non-conventional receptors, co-receptors, and soluble inhibitors. We found 13 genes shared between rats and humans, 4 exclusively expressed in rats and 9 expressed only in humans. Also, we observed a reduction with age on spontaneous proliferation of ependymal cells in rats paralleled by a decrease in the expression of Fzd1, Fzd8, and Fzd9. Our results suggest a role for Wnts in the regulation of the adult spinal cord neurogenic niche and provide new data on the specific differences in this region between humans and rodents.
Collapse
Affiliation(s)
- Carlos Gonzalez-Fernandez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Angel Arevalo-Martin
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Beatriz Paniagua-Torija
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, Serveid'AnatomiaPatològica, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, Spain
| | - Francisco J Rodriguez
- Laboratory of Molecular Neurology, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| | - Daniel Garcia-Ovejero
- Laboratory of Neuroinflammation, Hospital Nacional de Paraplejicos (SESCAM), Finca La Peraleda s/n, 45071, Toledo, Spain.
| |
Collapse
|
25
|
Bengoa-Vergniory N, Gorroño-Etxebarria I, López-Sánchez I, Marra M, Di Chiaro P, Kypta R. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells. Mol Neurobiol 2016; 54:6213-6224. [DOI: 10.1007/s12035-016-0151-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/22/2016] [Indexed: 12/11/2022]
|
26
|
Jung EH, Lee HN, Han GY, Kim MJ, Kim CW. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells. Cell Biochem Funct 2016; 34:149-57. [PMID: 26923195 DOI: 10.1002/cbf.3172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/07/2022]
Abstract
Glioblastoma is the most malignant of brain tumours and is difficult to cure because of interruption of drug delivery by the blood-brain barrier system, its high metastatic capacity and the existence of cancer stem cells (CSCs). Although CSCs are present as a small population in malignant tumours, CSCs have been studied as they are responsible for causing recurrence, metastasis and resistance to chemotherapy and radiotherapy for cancer. CSCs have self-renewal characteristics like normal stem cells. The aim of this study was to investigate whether receptor tyrosine kinase-like orphan receptor 1 (ROR1) is involved in stem cell maintenance and malignant properties in human glioblastoma. Knockdown of ROR1 caused reduction of stemness and sphere formation capacity. Moreover, down-regulation of ROR1 suppressed the expression of epithelial-mesenchymal transition-related genes and the tumour migratory and invasive abilities. The results of this study indicate that targeting ROR1 can induce differentiation of CSCs and inhibit metastasis in glioblastoma. In addition, ROR1 may be used as a potential marker for glioblastoma stem cells as well as a potential target for glioblastoma stem cell therapy.
Collapse
Affiliation(s)
- Eun-Hwa Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Han-Na Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Gi-Yeon Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Min-Jung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Ministry of Food and Drug Safety, Chungcheongbuk-do, Korea
| | - Chan-Wha Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
27
|
Qi X, Okinaka Y, Nishita M, Minami Y. Essential role of Wnt5a-Ror1/Ror2 signaling in metanephric mesenchyme and ureteric bud formation. Genes Cells 2016; 21:325-34. [PMID: 26840931 DOI: 10.1111/gtc.12342] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022]
Abstract
Spatiotemporally regulated interaction between the metanephric mesenchyme (MM) and Wolffian duct (WD) is essential for the induction of a single ureteric bud (UB). The MM then interacts with the tip of the UB to induce outgrowth and branching of the UB, which in turn promotes growth of the adjacent MM. The Ror family receptor tyrosine kinases, Ror1 and Ror2, have been shown to act as receptors for Wnt5a to mediate noncanonical Wnt signaling. Previous studies have shown that Ror2-mutant mice exhibit ectopic formation of the UB, due to abnormal juxtaposition of the MM to the WD. We show here that both Ror1 and Ror2 are expressed in the mesenchyme between the MM and WD during UB formation. Although Ror1-mutant mice show no apparent defects in UB formation, Ror1;Ror2-double-mutant mice exhibit either defects in UB outgrowth and branching morphogenesis, associated with the loss of the MM from the UB domain, or ectopic formation of the UB. We also show genetic interactions between Ror1 and Wnt5a during UB formation. These findings suggest that Wnt5a-Ror1/Ror2 signaling regulates cooperatively the formation of the MM at the proper position to ensure normal development of the UB.
Collapse
Affiliation(s)
- Xiaoyuan Qi
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yuka Okinaka
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
28
|
Rieger ME, Zhou B, Solomon N, Sunohara M, Li C, Nguyen C, Liu Y, Pan JH, Minoo P, Crandall ED, Brody SL, Kahn M, Borok Z. p300/β-Catenin Interactions Regulate Adult Progenitor Cell Differentiation Downstream of WNT5a/Protein Kinase C (PKC). J Biol Chem 2016; 291:6569-82. [PMID: 26833564 DOI: 10.1074/jbc.m115.706416] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Indexed: 12/31/2022] Open
Abstract
Maintenance of stem/progenitor cell-progeny relationships is required for tissue homeostasis during normal turnover and repair. Wnt signaling is implicated in both maintenance and differentiation of adult stem/progenitor cells, yet how this pathway serves these dichotomous roles remains enigmatic. We previously proposed a model suggesting that specific interaction of β-catenin with either of the homologous Kat3 co-activators, p300 or CREB-binding protein, differentially regulates maintenance versus differentiation of embryonic stem cells. Limited knowledge of endogenous mechanisms driving differential β-catenin/co-activator interactions and their role in adult somatic stem/progenitor cell maintenance versus differentiation led us to explore this process in defined models of adult progenitor cell differentiation. We focused primarily on alveolar epithelial type II (AT2) cells, progenitors of distal lung epithelium, and identified a novel axis whereby WNT5a/protein kinase C (PKC) signaling regulates specific β-catenin/co-activator interactions to promote adult progenitor cell differentiation. p300/β-catenin but not CBP/β-catenin interaction increases as AT2 cells differentiate to a type I (AT1) cell-like phenotype. Additionally, p300 transcriptionally activates AT1 cell-specific gene Aqp-5. IQ-1, a specific inhibitor of p300/β-catenin interaction, prevents differentiation of not only primary AT2 cells, but also tracheal epithelial cells, and C2C12 myoblasts. p300 phosphorylation at Ser-89 enhances p300/β-catenin interaction, concurrent with alveolar epithelial cell differentiation. WNT5a, a traditionally non-canonical WNT ligand regulates Ser-89 phosphorylation and p300/β-catenin interactions in a PKC-dependent manner, likely involving PKCζ. These studies identify a novel intersection of canonical and non-canonical Wnt signaling in adult progenitor cell differentiation that has important implications for targeting β-catenin to modulate adult progenitor cell behavior in disease.
Collapse
Affiliation(s)
- Megan E Rieger
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Beiyun Zhou
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Nicola Solomon
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Mitsuhiro Sunohara
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Changgong Li
- the Departments of Pediatrics, Division of Neonatology
| | - Cu Nguyen
- Biochemistry and Molecular Biology, and
| | - Yixin Liu
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine
| | - Jie-hong Pan
- the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and
| | - Parviz Minoo
- the Departments of Pediatrics, Division of Neonatology
| | - Edward D Crandall
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Pathology, the Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California 90089
| | - Steven L Brody
- the Department of Medicine, School of Medicine, Washington University, St. Louis, Missouri 63110, and
| | - Michael Kahn
- Biochemistry and Molecular Biology, and the Center for Molecular Pathways and Drug Discovery, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033
| | - Zea Borok
- From the Department of Medicine, Will Rogers Institute Pulmonary Research Center, Division of Pulmonary, Critical Care and Sleep Medicine, Biochemistry and Molecular Biology, and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033,
| |
Collapse
|
29
|
Bengoa-Vergniory N, Kypta RM. Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 2015; 72:4157-72. [PMID: 26306936 PMCID: PMC11113751 DOI: 10.1007/s00018-015-2028-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/17/2015] [Accepted: 08/18/2015] [Indexed: 02/07/2023]
Abstract
The first mammalian Wnt to be discovered, Wnt-1, was found to be essential for the development of a large part of the mouse brain over 25 years ago. We have since learned that Wnt family secreted glycolipoproteins, of which there are nineteen, which activate a diverse network of signals that are particularly important during embryonic development and tissue regeneration. Wnt signals in the developing and adult brain can drive neural stem cell self-renewal, expansion, asymmetric cell division, maturation and differentiation. The molecular events taking place after a Wnt binds to its cell-surface receptors are complex and, at times, controversial. A deeper understanding of these events is anticipated to lead to improvements in the treatment of neurodegenerative diseases and stem cell-based replacement therapies. Here, we review the roles played by Wnts in neural stem cells in the developing mouse brain, at neurogenic sites of the adult mouse and in neural stem cell culture models.
Collapse
Affiliation(s)
- Nora Bengoa-Vergniory
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK.
| | - Robert M Kypta
- Cell Biology and Stem Cells Unit, CIC bioGUNE, Bilbao, Spain.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
30
|
Exome sequencing to detect rare variants associated with general cognitive ability: a pilot study. Twin Res Hum Genet 2015; 18:117-25. [PMID: 25744449 DOI: 10.1017/thg.2015.10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Variation in human cognitive ability is of consequence to a large number of health and social outcomes and is substantially heritable. Genetic linkage, genome-wide association, and copy number variant studies have investigated the contribution of genetic variation to individual differences in normal cognitive ability, but little research has considered the role of rare genetic variants. Exome sequencing studies have already met with success in discovering novel trait-gene associations for other complex traits. Here, we use exome sequencing to investigate the effects of rare variants on general cognitive ability. Unrelated Scottish individuals were selected for high scores on a general component of intelligence (g). The frequency of rare genetic variants (in n = 146) was compared with those from Scottish controls (total n = 486) who scored in the lower to middle range of the g distribution or on a proxy measure of g. Biological pathway analysis highlighted enrichment of the mitochondrial inner membrane component and apical part of cell gene ontology terms. Global burden analysis showed a greater total number of rare variants carried by high g cases versus controls, which is inconsistent with a mutation load hypothesis whereby mutations negatively affect g. The general finding of greater non-synonymous (vs. synonymous) variant effects is in line with evolutionary hypotheses for g. Given that this first sequencing study of high g was small, promising results were found, suggesting that the study of rare variants in larger samples would be worthwhile.
Collapse
|
31
|
Wnt Signaling Regulates Multipolar-to-Bipolar Transition of Migrating Neurons in the Cerebral Cortex. Cell Rep 2015; 10:1349-61. [DOI: 10.1016/j.celrep.2015.01.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/17/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022] Open
|
32
|
The clinical pathological significance of FRAT1 and ROR2 expression in cartilage tumors. Clin Transl Oncol 2014; 17:438-45. [PMID: 25387569 DOI: 10.1007/s12094-014-1254-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Chondrosarcoma is a malignant bone tumor with poor prognosis. Surgical treatment is the first choice for chondrosarcomas. Chondrosarcoma is not sensitive to chemotherapy and radiotherapy. Identification of biological markers is important for the early diagnosis and targeted treatment of chondrosarcoma. This study investigated the protein expression and clinicopathological significance of ROR2 and FRAT1 in 59 chondrosarcomas and 33 osteochondromas. METHODS ROR2 and FRAT1 protein expression in tissues was measured by immunohistochemistry. RESULTS The percentage of positive ROR2 and FRAT1 expression was significantly higher in patients with chondrosarcoma than in patients with osteochondroma (P < 0.01). The percentage of positive ROR2 and FRAT1 expression was significantly lower in patients with histological grade I, AJCC stage I/II stage, Enneking stage I, non-metastatic and invasive chondrosarcoma than patients with histological grade III, AJCC stage III/IV, Enneking stage II + III, metastatic and invasive chondrosarcoma (P < 0.05 or P < 0.01). ROR2 expression was positively correlated with FRAT1 expression in chondrosarcoma. Kaplan-Meier survival analysis demonstrated that histological grade, AJCC stage, Enneking stage, metastasis, invasion, and ROR2 and FRAT1 expression significantly correlated with a short mean survival time of patients with chondrosarcoma (P < 0.05 or P < 0.01). Cox multivariate analysis showed that positive ROR2 and FRAT1 expression was an independent prognostic factor that negatively correlated with postoperative survival and positively correlated with mortality. CONCLUSION Positive ROR2 and FRAT1 expression is associated with the progression and poor prognosis of chondrosarcoma.
Collapse
|
33
|
Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol 2014; 34:3096-105. [PMID: 24891614 DOI: 10.1128/mcb.00491-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of the metanephric kidney begins with the induction of a single ureteric bud (UB) on the caudal Wolffian duct (WD) in response to GDNF (glial cell line-derived neurotrophic factor) produced by the adjacent metanephric mesenchyme (MM). Mutual interaction between the UB and MM maintains expression of GDNF in the MM, thereby supporting further outgrowth and branching morphogenesis of the UB, while the MM also grows and aggregates around the branched tips of the UB. Ror2, a member of the Ror family of receptor tyrosine kinases, has been shown to act as a receptor for Wnt5a to mediate noncanonical Wnt signaling. We show that Ror2 is predominantly expressed in the MM during UB induction and that Ror2- and Wnt5a-deficient mice exhibit duplicated ureters and kidneys due to ectopic UB induction. During initial UB formation, these mutant embryos show dysregulated positioning of the MM, resulting in spatiotemporally aberrant interaction between the MM and WD, which provides the WD with inappropriate GDNF signaling. Furthermore, the numbers of proliferating cells in the mutant MM are markedly reduced compared to the wild-type MM. These results indicate an important role of Wnt5a-Ror2 signaling in morphogenesis of the MM to ensure proper epithelial tubular formation of the UB required for kidney development.
Collapse
|
34
|
Barua S, Kuizon S, Chadman KK, Flory MJ, Brown WT, Junaid MA. Single-base resolution of mouse offspring brain methylome reveals epigenome modifications caused by gestational folic acid. Epigenetics Chromatin 2014; 7:3. [PMID: 24484737 PMCID: PMC3928622 DOI: 10.1186/1756-8935-7-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/07/2014] [Indexed: 12/29/2022] Open
Abstract
Background Epigenetic modifications, such as cytosine methylation in CpG-rich regions, regulate multiple functions in mammalian development. Maternal nutrients affecting one-carbon metabolism during gestation can exert long-term effects on the health of the progeny. Using C57BL/6 J mice, we investigated whether the amount of ingested maternal folic acid (FA) during gestation impacted DNA methylation in the offspring’s cerebral hemispheres. Reduced representation bisulfite sequencing at single-base resolution was performed to analyze genome-wide DNA methylation profiles. Results We identified widespread differences in the methylation patterns of CpG and non-CpG sites of key developmental genes, including imprinted and candidate autism susceptibility genes (P <0.05). Such differential methylation of the CpG and non-CpG sites may use different mechanisms to alter gene expressions. Quantitative real time reverse transcription-polymerase chain reaction confirmed altered expression of several genes. Conclusions These finding demonstrate that high maternal FA during gestation induces substantial alteration in methylation pattern and gene expression of several genes in the cerebral hemispheres of the offspring, and such changes may influence the overall development. Our findings provide a foundation for future studies to explore the influence of gestational FA on genetic/epigenetic susceptibility to altered development and disease in offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Mohammed A Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| |
Collapse
|
35
|
Green J, Nusse R, van Amerongen R. The role of Ryk and Ror receptor tyrosine kinases in Wnt signal transduction. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a009175. [PMID: 24370848 DOI: 10.1101/cshperspect.a009175] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Receptor tyrosine kinases of the Ryk and Ror families were initially classified as orphan receptors because their ligands were unknown. They are now known to contain functional extracellular Wnt-binding domains and are implicated in Wnt-signal transduction in multiple species. Although their signaling mechanisms still remain to be resolved in detail, both Ryk and Ror control important developmental processes in different tissues. However, whereas many other Wnt-signaling responses affect cell proliferation and differentiation, Ryk and Ror are mostly associated with controlling processes that rely on the polarized migration of cells. Here we discuss what is currently known about the involvement of this exciting class of receptors in development and disease.
Collapse
Affiliation(s)
- Jennifer Green
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305
| | | | | |
Collapse
|
36
|
Cui B, Zhang S, Chen L, Yu J, Widhopf GF, Fecteau JF, Rassenti LZ, Kipps TJ. Targeting ROR1 inhibits epithelial-mesenchymal transition and metastasis. Cancer Res 2013; 73:3649-60. [PMID: 23771907 DOI: 10.1158/0008-5472.can-12-3832] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metastasis is responsible for 90% of cancer-related deaths. Strategies are needed that can inhibit the capacity of cancer cells to migrate across the anatomic barriers and colonize distant organs. Here, we show an association between metastasis and expression of a type I receptor tyrosine kinase-like orphan receptor, ROR1, which is expressed during embryogenesis and by various cancers, but not by normal postpartum tissues. We found that expression of ROR1 associates with the epithelial-mesenchymal transition (EMT), which occurs during embryogenesis and cancer metastasis. Breast adenocarcinomas expressing high levels of ROR1 were more likely to have gene expression signatures associated with EMT and had higher rates of relapse and metastasis than breast adenocarcinomas expressing low levels of ROR1. Suppressing expression of ROR1 in metastasis-prone breast cancer cell lines, MDA-MB-231, HS-578T, or BT549, attenuated expression of proteins associated with EMT (e.g., vimentin, SNAIL-1/2, and ZEB1), enhanced expression of E-cadherin, epithelial cytokeratins (e.g., CK-19), and tight junction proteins (e.g., ZO-1), and impaired their migration/invasion capacity in vitro and the metastatic potential of MDA-MB-231 cells in immunodeficient mice. Conversely, transfection of MCF-7 cells to express ROR1 reduced expression of E-cadherin and CK-19, but enhanced the expression of SNAIL-1/2 and vimentin. Treatment of MDA-MB-231 with a monoclonal antibody specific for ROR1 induced downmodulation of vimentin and inhibited cancer cell migration and invasion in vitro and tumor metastasis in vivo. Collectively, this study indicates that ROR1 may regulate EMT and metastasis and that antibodies targeting ROR1 can inhibit cancer progression and metastasis.
Collapse
Affiliation(s)
- Bing Cui
- UC San Diego Moores Cancer Center, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wnt signaling through the Ror receptor in the nervous system. Mol Neurobiol 2013; 49:303-15. [PMID: 23990374 DOI: 10.1007/s12035-013-8520-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/18/2013] [Indexed: 01/04/2023]
Abstract
The receptor tyrosine kinase-like orphan receptor (Ror) proteins are conserved tyrosine kinase receptors that play roles in a variety of cellular processes that pattern tissues and organs during vertebrate and invertebrate development. Ror signaling is required for skeleton and neuronal development and modulates cell migration, cell polarity, and convergent extension. Ror has also been implicated in two human skeletal disorders, brachydactyly type B and Robinow syndrome. Rors are widely expressed during metazoan development including domains in the nervous system. Here, we review recent progress in understanding the roles of the Ror receptors in neuronal migration, axonal pruning, axon guidance, and synaptic plasticity. The processes by which Ror signaling execute these diverse roles are still largely unknown, but they likely converge on cytoskeletal remodeling. In multiple species, Rors have been shown to act as Wnt receptors signaling via novel non-canonical Wnt pathways mediated in some tissues by the adapter protein disheveled and the non-receptor tyrosine kinase Src. Rors can either activate or repress Wnt target expression depending on the cellular context and can also modulate signal transduction by sequestering Wnt ligands away from their signaling receptors. Future challenges include the identification of signaling components of the Ror pathways and bettering our understanding of the roles of these pleiotropic receptors in patterning the nervous system.
Collapse
|
38
|
Li X, Yamagata K, Nishita M, Endo M, Arfian N, Rikitake Y, Emoto N, Hirata KI, Tanaka Y, Minami Y. Activation of Wnt5a-Ror2 signaling associated with epithelial-to-mesenchymal transition of tubular epithelial cells during renal fibrosis. Genes Cells 2013; 18:608-19. [DOI: 10.1111/gtc.12064] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 03/27/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Xin Li
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Kaoru Yamagata
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Michiru Nishita
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Mitsuharu Endo
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Nur Arfian
- Division of Cardiovascular Medicine; Department of Internal Medicine; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | | | | | - Ken-ichi Hirata
- Division of Cardiovascular Medicine; Department of Internal Medicine; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine; School of Medicine; University of Occupational and Environmental Health; 1-1 Iseigaoka Yahatanishi-ku; Kitakyushu; 807-8555; Japan
| | - Yasuhiro Minami
- Division of Cell Physiology; Department of Physiology and Cell Biology; Graduate School of Medicine; Kobe University; 7-5-1, Kusunoki-cho; Chuo-ku; Kobe; 650-0017; Japan
| |
Collapse
|
39
|
Hojjat-Farsangi M, Ghaemimanesh F, Daneshmanesh AH, Bayat AA, Mahmoudian J, Jeddi-Tehrani M, Rabbani H, Mellstedt H. Inhibition of the receptor tyrosine kinase ROR1 by anti-ROR1 monoclonal antibodies and siRNA induced apoptosis of melanoma cells. PLoS One 2013; 8:e61167. [PMID: 23593420 PMCID: PMC3620154 DOI: 10.1371/journal.pone.0061167] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/07/2013] [Indexed: 12/17/2022] Open
Abstract
The receptor tyrosine kinase (RTK) ROR1 is overexpressed and of importance for the survival of various malignancies, including lung adenocarcinoma, breast cancer and chronic lymphocytic leukemia (CLL). There is limited information however on ROR1 in melanoma. In the present study we analysed in seven melanoma cell lines ROR1 expression and phosphorylation as well as the effects of anti-ROR1 monoclonal antibodies (mAbs) and ROR1 suppressing siRNA on cell survival. ROR1 was overexpressed at the protein level to a varying degree and phosphorylated at tyrosine and serine residues. Three of our four self-produced anti-ROR1 mAbs (clones 3H9, 5F1 and 1A8) induced a significant direct apoptosis of the ESTDAB049, ESTDAB112, DFW and A375 cell lines as well as cell death in complement dependent cytotoxicity (CDC) and antibody dependent cellular cytotoxicity (ADCC). The ESTDAB081 and 094 cell lines respectively were resistant to direct apoptosis of the four anti-ROR1 mAbs alone but not in CDC or ADCC. ROR1 siRNA transfection induced downregulation of ROR1 expression both at mRNA and protein levels proceeded by apoptosis of the melanoma cells (ESTDAB049, ESTDAB112, DFW and A375) including ESTDAB081, which was resistant to the direct apoptotic effect of the mAbs. The results indicate that ROR1 may play a role in the survival of melanoma cells. The surface expression of ROR1 on melanoma cells may support the notion that ROR1 might be a suitable target for mAb therapy.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
- * E-mail:
| | - Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir Hossein Daneshmanesh
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Ali-Ahmad Bayat
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hodjatallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hakan Mellstedt
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
40
|
Li B, Shi Y, Shu J, Gao J, Wu P, Tang SJ. Wingless-type mammary tumor virus integration site family, member 5A (Wnt5a) regulates human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein 120 (gp120)-induced expression of pro-inflammatory cytokines via the Ca2+/calmodulin-dependent protein kinase II (CaMKII) and c-Jun N-terminal kinase (JNK) signaling pathways. J Biol Chem 2013; 288:13610-9. [PMID: 23539626 DOI: 10.1074/jbc.m112.381046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND HIV-1 infection causes chronic neuroinflammation in the central nervous system (CNS). RESULTS The spinal cytokine up-regulation induced by HIV-1 gp120 protein depends on Wnt5a/CaMKII and/or Wnt5a/JNK pathways. CONCLUSION gp120 stimulates cytokine expression in the spinal cord dorsal horn by activating Wnt5a signaling. SIGNIFICANCE The finding reveals Wnt signaling-mediated novel mechanisms by which HIV-1 may cause neuroinflammation. Chronic expression of pro-inflammatory cytokines critically contributes to the pathogenesis of HIV-associated neurological disorders (HANDs), but the host mechanism that regulates the HIV-induced cytokine expression in the CNS remains elusive. Here, we present evidence for a crucial role of Wnt5a signaling in the expression of pro-inflammatory cytokines in the spinal cord induced by a major HIV-envelope protein, gp120. Wnt5a is mainly expressed in spinal neurons, and rapidly up-regulated by intrathecal injection (i.t.) of gp120. We show that inhibition of Wnt5a by specific antagonists blocks gp120-induced up-regulation of IL-1β, IL-6, and TNF-α in the spinal cord. Conversely, injection (i.t.) of purified recombinant Wnt5a stimulates the expression of these cytokines. To elucidate the role of the Wnt5a-regulated signaling pathways in gp120-induced cytokine expression, we have focused on CaMKII and JNKs, the well characterized down-stream targets of Wnt5a signaling. We find that Wnt5a is required for gp120 to activate CaMKII and JNK signaling. Furthermore, we demonstrate that the Wnt5a/CaMKII pathway is critical for the gp120-induced expression of IL-1β, whereas the Wnt5a/JNK pathway is for TNF-α expression. Meanwhile, the expression of IL-6 is co-regulated by both pathways. These results collectively suggest that Wnt5a signaling cascades play a crucial role in the regulation of gp120-induced expression of pro-inflammatory cytokines in the CNS.
Collapse
Affiliation(s)
- Bei Li
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ford CE, Qian Ma SS, Quadir A, Ward RL. The dual role of the novel Wnt receptor tyrosine kinase, ROR2, in human carcinogenesis. Int J Cancer 2013; 133:779-87. [PMID: 23233346 DOI: 10.1002/ijc.27984] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/21/2012] [Accepted: 11/29/2012] [Indexed: 01/31/2023]
Abstract
The Wnt signaling pathway is involved in the development and progression of many human cancers, yet attempts to target the pathway therapeutically have been disappointing to date. The recent discovery that the ROR2 receptor tyrosine kinase (RTK) is a novel Wnt receptor provides the potential to target the non-canonical Wnt pathway for cancer treatments. As a member of the RTK superfamily of surface receptors ROR2 appears to possess dual roles as a tumor suppressor or activator depending on tumor type. This review will explore the dual role of ROR2 in tumorigenesis and provide an up to date analysis of current literature in this rapidly expanding field.
Collapse
Affiliation(s)
- Caroline E Ford
- Wnt Signaling & Metastasis Group, Lowy Cancer Research Centre and Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Australia.
| | | | | | | |
Collapse
|