1
|
Gardano L, Ferreira J, Le Roy C, Ledoux D, Varin-Blank N. The survival grip-how cell adhesion promotes tumor maintenance within the microenvironment. FEBS Lett 2024. [PMID: 39704141 DOI: 10.1002/1873-3468.15074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Cell adhesion is warranted by proteins that are crucial for the maintenance of tissue integrity and homeostasis. Most of these proteins behave as receptors to link adhesion to the control of cell survival and their expression or regulation are often altered in cancers. B-cell malignancies do not evade this principle as they are sustained in relapsed niches by interacting with the microenvironment that includes cells and their secreted factors. Focusing on chronic lymphocytic leukemia and mantle cell lymphoma, this Review delves with the molecules involved in the dialog between the adhesion platforms and signaling pathways known to regulate both cell adhesion and survival. Current therapeutic strategies disrupt adhesive structures and compromise the microenvironment support to tumor cells, rendering them sensitive to immune recognition. The development of organ-on-chip and 3D culture systems, such as spheroids, have revealed the importance of mechanical cues in regulating signaling pathways to organize cell adhesion and survival. All these elements contribute to the elaboration of the crosstalk of lymphoma cells with the microenvironment and the education processes that allow the establishment of the supportive niche.
Collapse
Affiliation(s)
- Laura Gardano
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Jordan Ferreira
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Christine Le Roy
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Dominique Ledoux
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| | - Nadine Varin-Blank
- INSERM U978, Bobigny, France
- UFR SMBH Universite Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
2
|
Chen Y, Wu Y, Feng W, Luo X, Xiao B, Ding X, Gu Y, Lu Y, Yu Y. Vav2 promotes ductus arteriosus anatomic closure via the remodeling of smooth muscle cells by Rac1 activation. J Mol Med (Berl) 2023; 101:1567-1585. [PMID: 37804474 DOI: 10.1007/s00109-023-02377-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
The ductus arteriosus (DA), bridging the aorta and pulmonary artery, immediately starts closing after birth. Remodeling of DA leads to anatomic obstruction to prevent repatency. Several histological changes, especially extracellular matrices (ECMs) deposition and smooth muscle cells (SMCs) migration bring to anatomic closure. The genetic etiology and mechanism of DA closure remain elusive. We have previously reported a novel copy number variant containing Vav2 in patent ductus arteriosus (PDA) patients, but its specific role in DA closure remains unknown. The present study revealed that the expression of Vav2 was reduced in human patent DA, and it was less enrichment in the adjacent aorta. Matrigel experiments demonstrated that Vav2 could promote SMC migration from PDA patient explants. Smooth muscle cells with Vav2 overexpression also presented an increased capacity in migration and downregulated contractile-related proteins. Meanwhile, SMCs with Vav2 overexpression exhibited higher expression of collagen III and lessened protein abundance of lysyl oxidase, and both changes are beneficial to DA remodeling. Overexpression of Vav2 resulted in increased activity of Rac1, Cdc42, and RhoA in SMCs. Further investigation noteworthily found that the above alterations caused by Vav2 overexpression were particularly reversed by Rac1 inhibitor. A heterozygous, rare Vav2 variant was identified in PDA patients. Compared with the wild type, this variant attenuated Vav2 protein expression and weakened the activation of downstream Rac1, further impairing its functions in SMCs. In conclusion, Vav2 functions as an activator for Rac1 in SMCs to promote SMCs migration, dedifferentiation, and ECMs production. Deleterious variant potentially induces Vav2 loss of function, further providing possible molecular mechanisms about Vav2 in PDA pathogenesis. These findings enriched the current genetic etiology of PDA, which may provide a novel target for prenatal diagnosis and treatment. KEY MESSAGES: Although we have proposed the potential association between Vav2 and PDA incidence through whole exome sequencing, the molecular mechanisms underlying Vav2 in PDA have never been reported. This work, for the first time, demonstrated that Vav2 was exclusively expressed in closed DAs. Moreover, we found that Vav2 participated in the process of anatomic closure by mediating SMCs migration, dedifferentiation, and ECMs deposition through Rac1 activation. Our findings first identified a deleterious Vav2 c.701C>T variant that affected its function in SMCs by impairing Rac1 activation, which may lead to PDA defect. Vav2 may become an early diagnosis and an effective intervention target for PDA clinical therapy.
Collapse
Affiliation(s)
- Yinghui Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yizhuo Wu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Weiqi Feng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xueyang Luo
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Bing Xiao
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Xiaowei Ding
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yongjia Gu
- Department of Stomatology, Shidong Hospital of Yangpu District, Shanghai, 200438, China.
| | - Yanan Lu
- Department of Pediatric Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yu Yu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Donta MS, Srivastava Y, Di Mauro CM, Paulucci-Holthauzen A, Waxham MN, McCrea PD. p120-catenin subfamily members have distinct as well as shared effects on dendrite morphology during neuron development in vitro. Front Cell Neurosci 2023; 17:1151249. [PMID: 37082208 PMCID: PMC10112520 DOI: 10.3389/fncel.2023.1151249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/22/2023] Open
Abstract
Dendritic arborization is essential for proper neuronal connectivity and function. Conversely, abnormal dendrite morphology is associated with several neurological pathologies like Alzheimer's disease and schizophrenia. Among major intrinsic mechanisms that determine the extent of the dendritic arbor is cytoskeletal remodeling. Here, we characterize and compare the impact of the four proteins involved in cytoskeletal remodeling-vertebrate members of the p120-catenin subfamily-on neuronal dendrite morphology. In relation to each of their own distributions, we find that p120-catenin and delta-catenin are expressed at relatively higher proportions in growth cones compared to ARVCF-catenin and p0071-catenin; ARVCF-catenin is expressed at relatively high proportions in the nucleus; and all catenins are expressed in dendritic processes and the soma. Through altering the expression of each p120-subfamily catenin in neurons, we find that exogenous expression of either p120-catenin or delta-catenin correlates with increased dendritic length and branching, whereas their respective depletion decreases dendritic length and branching. While increasing ARVCF-catenin expression also increases dendritic length and branching, decreasing expression has no grossly observable morphological effect. Finally, increasing p0071-catenin expression increases dendritic branching, but not length, while decreasing expression decreases dendritic length and branching. These distinct localization patterns and morphological effects during neuron development suggest that these catenins have both shared and distinct roles in the context of dendrite morphogenesis.
Collapse
Affiliation(s)
- Maxsam S. Donta
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Yogesh Srivastava
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Christina M. Di Mauro
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - M. Neal Waxham
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Pierre D. McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Program in Genetics and Epigenetics, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
- Program in Neuroscience, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol 2023; 42:1-13. [PMID: 36399409 DOI: 10.1089/dna.2022.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/β-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule β-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How β-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of β-CATENIN chaperone molecules, phosphorylation of β-CATENIN and related proteins, epithelial mesenchymal transition, β-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/β-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Shan B, Horton EC, Xu SC, Huntington KE, Kawano DK, Mendoza CL, Lin L, Stafford CM, Allen ED, Huang J, Nakahara H, Greenstein LE, Hille MB. Dephosphorylation of Y228 and Y217 and phosphorylation of Y335 in p120 catenin activate convergent extension during zebrafish gastrulation. Dev Dyn 2022; 251:1934-1951. [PMID: 35996230 DOI: 10.1002/dvdy.524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The cadherin-associated protein p120 catenin regulates convergent extension through interactions with cadherin proteins, Cdc42, and Rac1, as we previously showed in zebrafish (Danio rerio). Phosphorylation of p120 catenin changes the nature of its activity in vitro but is virtually unexplored in embryos. We used our previously developed antisense RNA splice-site morpholino targeted to endogenous p120 catenin-δ1 to cause defects in axis elongation probing the functions of three p120 catenin tyrosine-phosphorylation sites in gastrulating zebrafish embryos. RESULTS The morpholino-induced defects were rescued by co-injections with mouse p120 catenin-δ1-3A mRNAs mutated at residues Y228 and Y217 to a non-phosphorylatable phenylalanine (F) or mutated at residue Y335 to a phosphomimetic glutamic acid (E). Co-injection of the complementary mutations Y228E, Y217E, or Y335F mRNAs partially rescued embryos whereas dual mutation to Y228E-Y217E blocked rescue. Immunopurification showed Y228F mutant proteins preferentially interacted with Rac1, potentially promoting cell migration. In contrast, the phosphomimetic Y228E preferentially interacted with E-cadherin increasing adhesion. Both Y228F and Y335F strongly bind VAV2. CONCLUSIONS p120 catenin serves dual roles during gastrulation of zebrafish. Phosphorylation and dephosphorylation of tyrosine residues Y217, Y228, and Y335 precisely balance cell adhesion and cell migration to facilitate somite compaction and axis elongation.
Collapse
Affiliation(s)
- Botao Shan
- Department of Biology, University of Washington, Seattle, Washington, USA.,Tulane University School of Medicine, New Orleans, LA, USA
| | - Emma C Horton
- Department of Biology, University of Washington, Seattle, Washington, USA.,Developmental and Stem Cell Biology Program, University of California San Francisco, San Francisco, CA, USA
| | - Shan C Xu
- Department of Biology, University of Washington, Seattle, Washington, USA.,New York University Stern Business School, New York, NY, USA
| | - Kelsey E Huntington
- Department of Biology, University of Washington, Seattle, Washington, USA.,Pathobiology Graduate Program, Division of Biology and Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Dane K Kawano
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Clemence L Mendoza
- Department of Biology, University of Washington, Seattle, Washington, USA.,VA Portland Health Care System, Portland, OR, USA
| | - Laura Lin
- Department of Biology, University of Washington, Seattle, Washington, USA.,Touro University California College of Osteopathic Medicine, Vallejo, CA, USA
| | | | - Emili D Allen
- Department of Biology, University of Washington, Seattle, Washington, USA.,Adaptive Biotechnologies Corp, Seattle, WA, USA
| | - Joyce Huang
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Bioengineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Hiroko Nakahara
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Lewis E Greenstein
- Department of Biology, University of Washington, Seattle, Washington, USA.,Department of Medical Entomology, Champaign, IL, USA
| | - Merrill B Hille
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Bayo J, Fiore EJ, Dominguez LM, Cantero MJ, Ciarlantini MS, Malvicini M, Atorrasagasti C, Garcia MG, Rossi M, Cavasotto C, Martinez E, Comin J, Mazzolini GD. Bioinformatic analysis of RHO family of GTPases identifies RAC1 pharmacological inhibition as a new therapeutic strategy for hepatocellular carcinoma. Gut 2021; 70:1362-1374. [PMID: 33106353 DOI: 10.1136/gutjnl-2020-321454] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC). DESIGN We studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated. RESULTS Among the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo. CONCLUSIONS The bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.
Collapse
Affiliation(s)
- Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Esteban J Fiore
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Luciana María Dominguez
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - María Jose Cantero
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Matias S Ciarlantini
- Departamento de Ingredientes Activos y Biorrefinerías, INTI, San Martin, Buenos Aires, Argentina
| | - Mariana Malvicini
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina.,Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Mariana Gabriela Garcia
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Mario Rossi
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Genómica Funcional y Ciencia de Datos, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina
| | - Claudio Cavasotto
- Facultad de Ciencias Biomédicas, Facultad de Ingeniería, and Austral Institute for Applied Artificial Intelligence, Universidad Austral, Derqui, Buenos Aires, Argentina.,Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Elisabeth Martinez
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Julieta Comin
- Departamento de Ingredientes Activos y Biorrefinerías, INTI, San Martin, Buenos Aires, Argentina.,Departamento de Ingredientes Activos y Biorrefinerías, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Martin, Buenos Aires, Argentina
| | - Guillermo D Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina .,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Villarroel A, Del Valle-Pérez B, Fuertes G, Curto J, Ontiveros N, Garcia de Herreros A, Duñach M. Src and Fyn define a new signaling cascade activated by canonical and non-canonical Wnt ligands and required for gene transcription and cell invasion. Cell Mol Life Sci 2020; 77:919-935. [PMID: 31312879 PMCID: PMC11104847 DOI: 10.1007/s00018-019-03221-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/01/2019] [Accepted: 07/05/2019] [Indexed: 01/12/2023]
Abstract
Wnt ligands signal through canonical or non-canonical signaling pathways. Although both routes share common elements, such as the Fz2 receptor, they differ in the co-receptor and in many of the final responses; for instance, whereas canonical Wnts increase β-catenin stability, non-canonical ligands downregulate it. However, both types of ligands stimulate tumor cell invasion. We show here that both the canonical Wnt3a and the non-canonical Wnt5a stimulate Fz2 tyrosine phosphorylation, Fyn binding to Fz2, Fyn activation and Fyn-dependent Stat3 phosphorylation. Wnt3a and Wnt5a require Src for Fz2 tyrosine phosphorylation; Src binds to canonical and non-canonical co-receptors (LRP5/6 and Ror2, respectively) and is activated by Wnt3a and Wnt5a. This Fz2/Fyn/Stat3 branch is incompatible with the classical Fz2/Dvl2 pathway as shown by experiments of over-expression or depletion. Fyn is necessary for transcription of genes associated with invasiveness, such as Snail1, and for activation of cell invasion by both Wnt ligands. Our results extend the knowledge about canonical Wnt pathways, demonstrating additional roles for Fyn in this pathway and describing how this protein kinase is activated by both canonical and non-canonical Wnts.
Collapse
Affiliation(s)
- Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Neus Ontiveros
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Antonio Garcia de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, Parc de Recerca Biomèdica de Barcelona, c/Doctor Aiguader 88, 08003, Barcelona, Spain.
- Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| |
Collapse
|
8
|
Devaux CA, Mezouar S, Mege JL. The E-Cadherin Cleavage Associated to Pathogenic Bacteria Infections Can Favor Bacterial Invasion and Transmigration, Dysregulation of the Immune Response and Cancer Induction in Humans. Front Microbiol 2019; 10:2598. [PMID: 31781079 PMCID: PMC6857109 DOI: 10.3389/fmicb.2019.02598] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/25/2019] [Indexed: 12/21/2022] Open
Abstract
Once bound to the epithelium, pathogenic bacteria have to cross epithelial barriers to invade their human host. In order to achieve this goal, they have to destroy the adherens junctions insured by cell adhesion molecules (CAM), such as E-cadherin (E-cad). The invasive bacteria use more or less sophisticated mechanisms aimed to deregulate CAM genes expression or to modulate the cell-surface expression of CAM proteins, which are otherwise rigorously regulated by a molecular crosstalk essential for homeostasis. Apart from the repression of CAM genes, a drastic decrease in adhesion molecules on human epithelial cells can be obtained by induction of eukaryotic endoproteases named sheddases or through synthesis of their own (prokaryotic) sheddases. Cleavage of CAM by sheddases results in the release of soluble forms of CAM. The overexpression of soluble CAM in body fluids can trigger inflammation and pro-carcinogenic programming leading to tumor induction and metastasis. In addition, the reduction of the surface expression of E-cad on epithelia could be accompanied by an alteration of the anti-bacterial and anti-tumoral immune responses. This immune response dysfunction is likely to occur through the deregulation of immune cells homing, which is controlled at the level of E-cad interaction by surface molecules αE integrin (CD103) and lectin receptor KLRG1. In this review, we highlight the central role of CAM cell-surface expression during pathogenic microbial invasion, with a particular focus on bacterial-induced cleavage of E-cad. We revisit herein the rapidly growing body of evidence indicating that high levels of soluble E-cad (sE-cad) in patients’ sera could serve as biomarker of bacterial-induced diseases.
Collapse
Affiliation(s)
- Christian A Devaux
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,CNRS, Institute of Biological Science (INSB), Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Soraya Mezouar
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France
| | - Jean-Louis Mege
- IRD, MEPHI, APHM, Aix-Marseille University, Marseille, France.,Institut Hospitalo-Universitaire (IHU)-Mediterranee Infection, Marseille, France.,APHM, UF Immunology Department, Marseille, France
| |
Collapse
|
9
|
García de Herreros A, Duñach M. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells 2019; 8:cells8101148. [PMID: 31557964 PMCID: PMC6829497 DOI: 10.3390/cells8101148] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022] Open
Abstract
In contrast to non-canonical ligands, canonical Wnts promote the stabilization of β-catenin, which is a prerequisite for formation of the TCF4/β-catenin transcriptional complex and activation of its target genes. This pathway is initiated by binding of Wnt ligands to the Frizzled/LRP5/6 receptor complex, and it increases the half-life of β-catenin by precluding the phosphorylation of β-catenin by GSK3 and its binding to the βTrCP1 ubiquitin ligase. Other intercellular signals are also activated by Wnt ligands that do not inhibit GSK3 and increase β-catenin protein but that either facilitate β-catenin transcriptional activity or stimulate other transcriptional factors that cooperate with it. In this review, we describe the layers of complexity of these signals and discuss their crosstalk with β-catenin in activation of transcriptional targets.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
10
|
Zhu Q, Zhu Y, Tighe S, Liu Y, Hu M. Engineering of Human Corneal Endothelial Cells In Vitro. Int J Med Sci 2019; 16:507-512. [PMID: 31171901 PMCID: PMC6535652 DOI: 10.7150/ijms.30759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Human corneal endothelial cells are responsible for controlling corneal transparency, however they are notorious for their limited proliferative capability. Thus, damage to these cells may cause irreversible blindness. Currently, the only way to cure blindness caused by corneal endothelial dysfunction is via corneal transplantation of a cadaver donor cornea with healthy corneal endothelium. Due to severe shortage of donor corneas worldwide, it has become paramount to develop human corneal endothelial grafts in vitro that can subsequently be transplanted in humans. Recently, we have reported effective expansion of human corneal endothelial cells by reprogramming the cells into progenitor status through use of p120-Kaiso siRNA knockdown. This new reprogramming approach circumvents the need of using induced pluripotent stem cells or embryonic stem cells. Successful promotion of this technology will encourage scientists to re-think how "contact inhibition" can safely be perturbed to our benefit, i.e., effective engineering of an in vivo-like tissue while successful maintaining the normal phenotype. In this review, we present current advances in reprogramming corneal endothelial cells in vitro, detail the methods to successful engineer human corneal endothelial grafts, and discuss their future clinical applications to cure corneal blindness.
Collapse
Affiliation(s)
- Qin Zhu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| | - Yingting Zhu
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Sean Tighe
- Tissue Tech, Inc., Ocular Surface Center, and Ocular Surface Research & Education Foundation, Miami, FL, 33173 USA
| | - Yongsong Liu
- Department of Ophthalmology, Yan' An Hospital of Kunming City, Kunming, 650051, China
| | - Min Hu
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province (Fourth Affiliated Hospital of Kunming Medical University); Yunnan Eye Institute; Key Laboratory of Yunnan Province for the Prevention and Treatment of ophthalmology (2017DG008); Provincial Innovation Team for Cataract and Ocular Fundus Disease (2017HC010); Expert Workstation of Yao Ke (2017IC064), Kunming, 650021 China
| |
Collapse
|
11
|
Olabi S, Ucar A, Brennan K, Streuli CH. Integrin-Rac signalling for mammary epithelial stem cell self-renewal. Breast Cancer Res 2018; 20:128. [PMID: 30348189 PMCID: PMC6198444 DOI: 10.1186/s13058-018-1048-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Background Stem cells are precursors for all mammary epithelia, including ductal and alveolar epithelia, and myoepithelial cells. In vivo mammary epithelia reside in a tissue context and interact with their milieu via receptors such as integrins. Extracellular matrix receptors coordinate important cellular signalling platforms, of which integrins are the central architects. We have previously shown that integrins are required for mammary epithelial development and function, including survival, cell cycle, and polarity, as well as for the expression of mammary-specific genes. In the present study we looked at the role of integrins in mammary epithelial stem cell self-renewal. Methods We used an in vitro stem cell assay with primary mouse mammary epithelial cells isolated from genetically altered mice. This involved a 3D organoid assay, providing an opportunity to distinguish the stem cell- or luminal progenitor-driven organoids as structures with solid or hollow appearances, respectively. Results We demonstrate that integrins are essential for the maintenance and self-renewal of mammary epithelial stem cells. Moreover integrins activate the Rac1 signalling pathway in stem cells, which leads to the stimulation of a Wnt pathway, resulting in expression of β-catenin target genes such as Axin2 and Lef1. Conclusions Integrin/Rac signalling has a role in specifying the activation of a canonical Wnt pathway that is required for mammary epithelial stem cell self-renewal. Electronic supplementary material The online version of this article (10.1186/s13058-018-1048-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Safiah Olabi
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Ahmet Ucar
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Keith Brennan
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Charles H Streuli
- Wellcome Centre for Cell-Matrix Research and Manchester Breast Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
13
|
Curto J, Del Valle-Pérez B, Villarroel A, Fuertes G, Vinyoles M, Peña R, García de Herreros A, Duñach M. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 2018; 12:611-629. [PMID: 29465811 PMCID: PMC5928365 DOI: 10.1002/1878-0261.12184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120‐catenin for the association with the Wnt5a co‐receptor Ror2. Wnt5a promotes the formation of the Ror2–Fz complex and enables the activation of Ror2‐bound CK1ε by Fz‐associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal‐dependent degradation in the absence of this kinase. Although p120‐catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120‐catenin binds and maintains Ror2 at the plasma membrane; in p120‐depleted cells, Ror2 is rapidly internalized through a clathrin‐dependent mechanism. Accordingly, downregulation of p120‐catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120‐catenin and CK1ε as two critical factors controlling Ror2 function.
Collapse
Affiliation(s)
- Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
14
|
RAC1 GTP-ase signals Wnt-beta-catenin pathway mediated integrin-directed metastasis-associated tumor cell phenotypes in triple negative breast cancers. Oncotarget 2018; 8:3072-3103. [PMID: 27902969 PMCID: PMC5356866 DOI: 10.18632/oncotarget.13618] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
The acquisition of integrin-directed metastasis-associated (ID-MA) phenotypes by Triple-Negative Breast Cancer (TNBC) cells is caused by an upregulation of the Wnt-beta-catenin pathway (WP). We reported that WP is one of the salient genetic features of TNBC. RAC-GTPases, small G-proteins which transduce signals from cell surface proteins including integrins, have been implicated in tumorigenesis and metastasis by their role in essential cellular functions like motility. The collective percentage of alteration(s) in RAC1 in ER+ve BC was lower as compared to ER-ve BC (35% vs 57%) (brca/tcga/pub2015). High expression of RAC1 was associated with poor outcome for RFS with HR=1.48 [CI: 1.15-1.9] p=0.0019 in the Hungarian ER-veBC cohort. Here we examined how WP signals are transduced via RAC1 in the context of ID-MA phenotypes in TNBC. Using pharmacological agents (sulindac sulfide), genetic tools (beta-catenin siRNA), WP modulators (Wnt-C59, XAV939), RAC1 inhibitors (NSC23766, W56) and WP stimulations (LWnt3ACM, Wnt3A recombinant) in a panel of 6-7 TNBC cell lines, we studied fibronectin-directed (1) migration, (2) matrigel invasion, (3) RAC1 and Cdc42 activation, (4) actin dynamics (confocal microscopy) and (5) podia-parameters. An attenuation of WP, which (a) decreased cellular levels of beta-catenin, as well as its nuclear active-form, (b) decreased fibronectin-induced migration, (c) decreased invasion, (d) altered actin dynamics and (e) decreased podia-parameters was successful in blocking fibronectin-mediated RAC1/Cdc42 activity. Both Wnt-antagonists and RAC1 inhibitors blocked fibronectin-induced RAC1 activation and inhibited the fibronectin-induced ID-MA phenotypes following specific WP stimulation by LWnt3ACM as well as Wnt3A recombinant protein. To test a direct involvement of RAC1-activation in WP-mediated ID-MA phenotypes, we stimulated brain-metastasis specific MDA-MB231BR cells with LWnt3ACM. LWnt3ACM-stimulated fibronectin-directed migration was blocked by RAC1 inhibition in MDA-MB231BR cells. In the light of our previous report that WP upregulation causes ID-MA phenotypes in TNBC tumor cells, here we provide the first mechanism based evidence to demonstrate that WP upregulation signals ID-MA tumor cell phenotypes in a RAC1-GTPase dependent manner involving exchange-factors like TIAM1 and VAV2. Our study demonstrates for the first time that beta-catenin-RAC1 cascade signals integrin-directed metastasis-associated tumor cell phenotypes in TNBC.
Collapse
|
15
|
Arnold TR, Stephenson RE, Miller AL. Rho GTPases and actomyosin: Partners in regulating epithelial cell-cell junction structure and function. Exp Cell Res 2017; 358:20-30. [PMID: 28363828 DOI: 10.1016/j.yexcr.2017.03.053] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/11/2023]
Abstract
Epithelial tissues are defined by polarized epithelial cells that are integrated into tissues and exhibit barrier function in order to regulate what is allowed to pass between cells. Cell-cell junctions must be stable enough to promote barrier function and tissue integrity, yet plastic enough to remodel when necessary. This remarkable ability to dynamically sense and respond to changes in cell shape and tissue tension allows cell-cell junctions to remain functional during events that disrupt epithelial homeostasis including morphogenesis, wound healing, and cell division. In order to achieve this plasticity, both tight junctions and adherens junctions are coupled to the underlying actomyosin cytoskeleton. Here, we discuss the importance of the junctional linkage to actomyosin and how a localized zone of active RhoA along with other Rho GTPases work together to orchestrate junctional actomyosin dynamics. We focus on how scaffold proteins help coordinate Rho GTPases, their upstream regulators, and their downstream effectors for efficient, localized Rho GTPase signaling output. Additionally, we highlight important roles junctional actin-binding proteins play in addition to their traditional roles in organizing actin. Together, Rho GTPases, their regulators, and effectors form compartmentalized signaling modules that regulate actomyosin structure and contractility to achieve proper cell-cell adhesion and tissue barriers.
Collapse
Affiliation(s)
- Torey R Arnold
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Rachel E Stephenson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Ann L Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
16
|
Duñach M, Del Valle-Pérez B, García de Herreros A. p120-catenin in canonical Wnt signaling. Crit Rev Biochem Mol Biol 2017; 52:327-339. [PMID: 28276699 DOI: 10.1080/10409238.2017.1295920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical Wnt signaling controls β-catenin protein stabilization, its translocation to the nucleus and the activation of β-catenin/Tcf-4-dependent transcription. In this review, we revise and discuss the recent results describing actions of p120-catenin in different phases of this pathway. More specifically, we comment its involvement in four different steps: (i) the very early activation of CK1ɛ, essential for Dvl-2 binding to the Wnt receptor complex; (ii) the internalization of GSK3 and Axin into multivesicular bodies, necessary for a complete stabilization of β-catenin; (iii) the activation of Rac1 small GTPase, required for β-catenin translocation to the nucleus; and (iv) the release of the inhibitory action caused by Kaiso transcriptional repressor. We integrate these new results with the previously known action of other elements in this pathway, giving a particular relevance to the responses of the Wnt pathway not required for β-catenin stabilization but for β-catenin transcriptional activity. Moreover, we discuss the possible future implications, suggesting that the two cellular compartments where β-catenin is localized, thus, the adherens junction complex and the Wnt signalosome, are more physically connected that previously thought.
Collapse
Affiliation(s)
- Mireia Duñach
- a Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Beatriz Del Valle-Pérez
- a Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Antonio García de Herreros
- b Programa de Recerca en Càncer , Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) , Barcelona , Spain.,c Departament de Ciències Experimentals i de la Salut , Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
17
|
Erasmus JC, Bruche S, Pizarro L, Maimari N, Pogglioli T, Tomlinson C, Lees J, Zalivina I, Wheeler A, Alberts A, Russo A, Braga VMM. Defining functional interactions during biogenesis of epithelial junctions. Nat Commun 2016; 7:13542. [PMID: 27922008 PMCID: PMC5150262 DOI: 10.1038/ncomms13542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/13/2016] [Indexed: 12/26/2022] Open
Abstract
In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. Formation and reinforcement of E-cadherin-mediated adhesion depends on intracellular trafficking and interactions with the actin cytoskeleton, but how these are coordinated is not known. Here the authors conduct a focused phenotypic screen to identify new pathways regulating cell–cell junction homeostasis.
Collapse
Affiliation(s)
- J C Erasmus
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - S Bruche
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - L Pizarro
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.,Computing Department, Imperial College London, London SW7 2AZ, UK
| | - N Maimari
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.,Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK
| | - T Pogglioli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - C Tomlinson
- Department of Surgery &Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - J Lees
- Department Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - I Zalivina
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - A Wheeler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - A Alberts
- Van Andel Institute, Grand Rapids, Michigan 49503, USA
| | - A Russo
- Computing Department, Imperial College London, London SW7 2AZ, UK
| | - V M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Coopman P, Djiane A. Adherens Junction and E-Cadherin complex regulation by epithelial polarity. Cell Mol Life Sci 2016; 73:3535-53. [PMID: 27151512 PMCID: PMC11108514 DOI: 10.1007/s00018-016-2260-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
Abstract
E-Cadherin-based Adherens Junctions (AJs) are a defining feature of all epithelial sheets. Through the homophilic association of E-Cadherin molecules expressed on neighboring cells, they ensure intercellular adhesion amongst epithelial cells, and regulate many key aspects of epithelial biology. While their adhesive role requires these structures to remain stable, AJs are also extremely plastic. This plasticity allows for the adaptation of the cell to its changing environment: changes in neighbors after cell division, cell death, or cell movement, and changes in cell shape during differentiation. In this review we focus on the recent advances highlighting the critical role of the apico-basal polarity machinery, and in particular of the Par3/Bazooka scaffold, in the regulation and remodeling of AJs. We propose that by regulating key phosphorylation events on the core E-Cadherin complex components, Par3 and epithelial polarity promote meta-stable protein complexes governing the correct formation, localization, and functioning of AJ.
Collapse
Affiliation(s)
- Peter Coopman
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France
- IRCM, INSERM U1194, Montpellier, F-34298, France
- Université de Montpellier, Montpellier, F-34090, France
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France
| | - Alexandre Djiane
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, F-34298, France.
- IRCM, INSERM U1194, Montpellier, F-34298, France.
- Université de Montpellier, Montpellier, F-34090, France.
- Institut régional du Cancer de Montpellier, Montpellier, F-34298, France.
| |
Collapse
|
19
|
Mino A, Troeger A, Brendel C, Cantor A, Harris C, Ciuculescu MF, Williams DA. RhoH participates in a multi-protein complex with the zinc finger protein kaiso that regulates both cytoskeletal structures and chemokine-induced T cells. Small GTPases 2016; 9:260-273. [PMID: 27574848 DOI: 10.1080/21541248.2016.1220780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
RhoH is a haematopoietic -specific, GTPase-deficient Rho GTPase that plays an essential role in T lymphocyte development and haematopoietic cell migration. RhoH is known to interact with ZAP70 in T cell receptor (TCR) signaling and antagonize Rac GTPase activity. To further elucidate the molecular mechanisms of RhoH in T cell function, we carried out in vivo biotinylation and mass spectrometry analysis to identify new RhoH-interacting proteins in Jurkat T cells. We indentified Kaiso by streptavidin capture and confirmed the interaction with RhoH by co-immunoprecipitation. Kaiso is a 95 kDa dual-specific Broad complex, Trantrak, Bric-a-brac/Pox virus, Zinc finger (POZ-ZF) transcription factor that has been shown to regulate both gene expression and p120 catenin-associated cell-cell adhesions. We further showed that RhoH, Kaiso and p120 catenin all co-localize at chemokine-induced actin-containing cell protrusion sites. Using RhoH knockdown we demonstrated that Kaiso localization depends on RhoH function. Similar to the effect of RhoH deficiency, Kaiso down-regulation led to altered cell migration and actin-polymerization in chemokine stimulated Jurkat cells. Interestingly, RhoH and Kaiso also co-localized to the nucleus in a time-dependent fashion after chemokine stimulation and with T cell receptor activation where RhoH is required for Kaiso localization. Based on these results and previous studies, we propose that extracellular microenvironment signals regulate RhoH and Kaiso to modulate actin-cytoskeleton structure and transcriptional activity during T cell migration.
Collapse
Affiliation(s)
- Akihisa Mino
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Anja Troeger
- b Department of Pediatric Hematology , Oncology and Stem Cell Transplantation, University Hospital Regensburg , Regensburg , Germany
| | - Christian Brendel
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Alan Cantor
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Chad Harris
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - Marioara F Ciuculescu
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| | - David A Williams
- a Division of Hematology/Oncology, Boston Children's Hospital and the Dana-Farber Cancer Institute, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
20
|
Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer. Cancers (Basel) 2016; 8:cancers8090080. [PMID: 27589803 PMCID: PMC5040982 DOI: 10.3390/cancers8090080] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The importance of canonical and non-canonical Wnt signal transduction cascades in embryonic development and tissue homeostasis is well recognized. The aberrant activation of these pathways in the adult leads to abnormal cellular behaviors, and tumor progression is frequently a consequence. Here we discuss recent findings and analogies between Wnt signaling in developmental processes and tumor progression, with a particular focus on cell motility and matrix invasion and highlight the roles of the ARF (ADP-Ribosylation Factor) and Rho-family small GTP-binding proteins. Wnt-regulated signal transduction from cell surface receptors, signaling endosomes and/or extracellular vesicles has the potential to profoundly influence cell movement, matrix degradation and paracrine signaling in both development and disease.
Collapse
|
21
|
Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling. Oncogene 2016; 36:429-438. [PMID: 27321178 DOI: 10.1038/onc.2016.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 03/18/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 co-receptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ɛ, γ and GSK3. Among these, activation of CK1ɛ, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ɛ is activated by the PP2A/PR61ɛ phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ɛ with Frizzled-bound PR61ɛ regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ɛ and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands.
Collapse
|
22
|
Razanadrakoto L, Cormier F, Laurienté V, Dondi E, Gardano L, Katzav S, Guittat L, Varin-Blank N. Mutation of Vav1 adaptor region reveals a new oncogenic activation. Oncotarget 2016; 6:2524-37. [PMID: 25426554 PMCID: PMC4385868 DOI: 10.18632/oncotarget.2629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/23/2015] [Indexed: 11/25/2022] Open
Abstract
Vav family members function as remarkable scaffold proteins that exhibit both GDP/GTP exchange activity for Rho/Rac GTPases and numerous protein-protein interactions via three adaptor Src-homology domains. The exchange activity is under the unique regulation by phosphorylation of tyrosine residues hidden by intra-molecular interactions. Deletion of the autoinhibitory N-terminal region results in an oncogenic protein, onco-Vav, leading to a potent activation of Rac GTPases whereas the proto-oncogene barely leads to transformation. Substitution of conserved residues of the SH2-SH3 adaptor region in onco-Vav reverses oncogenicity. While a unique substitution D797N did not affect transformation induced by onco-Vav, we demonstrate that this single substitution leads to transformation in the Vav1 proto-oncogene highlighting the pivotal role of the adaptor region. Moreover, we identified the cell junction protein β-catenin as a new Vav1 interacting partner. We show that the oncogenicity of activated Vav1 proto-oncogene is associated with a non-degradative phosphorylation of β-catenin at residues important for its functions and its redistribution along the cell membrane in fibroblasts. In addition, a similar interaction is evidenced in epithelial lung cancer cells expressing ectopically Vav1. In these cells, Vav1 is also involved in the modulation of β-catenin phosphorylation. Altogether, our data highlight that only a single mutation in the proto-oncogene Vav1 enhances tumorigenicity.
Collapse
Affiliation(s)
- Lyra Razanadrakoto
- INSERM, UMR 978, Bobigny, France.,PRES SPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| | - Françoise Cormier
- INSERM, UMR 1016, Institut Cochin, Paris, France.,CNRS, UMR 8104, Paris, France.,PRES SPC, Université Paris Descartes, Paris, France
| | - Vanessa Laurienté
- INSERM, UMR 978, Bobigny, France.,PRES SPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| | - Elisabetta Dondi
- INSERM, UMR 978, Bobigny, France.,PRES SPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| | - Laura Gardano
- INSERM, UMR 978, Bobigny, France.,PRES SPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| | - Shulamit Katzav
- The Hebrew University/ Hadassah Medical School, Jerusalem, Israel
| | - Lionel Guittat
- INSERM, UMR 978, Bobigny, France.,PRES SPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| | - Nadine Varin-Blank
- INSERM, UMR 978, Bobigny, France.,PRES SPC, Labex Inflamex, Université Paris 13, UFR SMBH, Bobigny, France
| |
Collapse
|
23
|
Jamieson C, Lui C, Brocardo MG, Martino-Echarri E, Henderson BR. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci 2015; 128:3933-46. [PMID: 26403202 PMCID: PMC4657330 DOI: 10.1242/jcs.167742] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 09/17/2015] [Indexed: 12/29/2022] Open
Abstract
β-Catenin transduces the Wnt signaling pathway and its nuclear accumulation leads to gene transactivation and cancer. Rac1 GTPase is known to stimulate β-catenin-dependent transcription of Wnt target genes and we confirmed this activity. Here we tested the recent hypothesis that Rac1 augments Wnt signaling by enhancing β-catenin nuclear import; however, we found that silencing/inhibition or up-regulation of Rac1 had no influence on nuclear accumulation of β-catenin. To better define the role of Rac1, we employed proximity ligation assays (PLA) and discovered that a significant pool of Rac1-β-catenin protein complexes redistribute from the plasma membrane to the nucleus upon Wnt or Rac1 activation. More importantly, active Rac1 was shown to stimulate the formation of nuclear β-catenin-lymphoid enhancer factor 1 (LEF-1) complexes. This regulation required Rac1-dependent phosphorylation of β-catenin at specific serines, which when mutated (S191A and S605A) reduced β-catenin binding to LEF-1 by up to 50%, as revealed by PLA and immunoprecipitation experiments. We propose that Rac1-mediated phosphorylation of β-catenin stimulates Wnt-dependent gene transactivation by enhancing β-catenin-LEF-1 complex assembly, providing new insight into the mechanism of cross-talk between Rac1 and canonical Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cara Jamieson
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Christina Lui
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Mariana G Brocardo
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Estefania Martino-Echarri
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| | - Beric R Henderson
- Center for Cancer Research, The Westmead Millennium Institute for Medical Research, The University of Sydney, Westmead, New South Wales 2145, Australia
| |
Collapse
|
24
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
25
|
Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R. Cadherin Switch during EMT in Neural Crest Cells Leads to Contact Inhibition of Locomotion via Repolarization of Forces. Dev Cell 2015; 34:421-34. [PMID: 26235046 PMCID: PMC4552721 DOI: 10.1016/j.devcel.2015.06.012] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/07/2015] [Accepted: 06/11/2015] [Indexed: 11/25/2022]
Abstract
Contact inhibition of locomotion (CIL) is the process through which cells move away from each other after cell-cell contact, and it contributes to malignant invasion and developmental migration. Various cell types exhibit CIL, whereas others remain in contact after collision and may form stable junctions. To investigate what determines this differential behavior, we study neural crest cells, a migratory stem cell population whose invasiveness has been likened to cancer metastasis. By comparing pre-migratory and migratory neural crest cells, we show that the switch from E- to N-cadherin during EMT is essential for acquisition of CIL behavior. Loss of E-cadherin leads to repolarization of protrusions, via p120 and Rac1, resulting in a redistribution of forces from intercellular tension to cell-matrix adhesions, which break down the cadherin junction. These data provide insight into the balance of physical forces that contributes to CIL in cells in vivo. Neural crest cells acquire contact inhibition of locomotion (CIL) during EMT An E- to N-cadherin switch controls CIL E-cadherin represses CIL by controlling Rac1-dependent protrusions via p120 During CIL, forces are redistributed from intercellular junctions to cell matrix
Collapse
Affiliation(s)
- Elena Scarpa
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | - András Szabó
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne Bibonne
- Centre de Biologie du Développement-UMR5547, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse 31400, France
| | - Eric Theveneau
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK; Centre de Biologie du Développement-UMR5547, Centre National de la Recherche Scientifique and Université Paul Sabatier, Toulouse 31400, France
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, Kings College London, London SE11UL, UK
| | - Roberto Mayor
- Cell and Developmental Biology Department, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
26
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
27
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
28
|
Takahashi K, Matafonov A, Sumarriva K, Ito H, Lauhan C, Zemel D, Tsuboi N, Chen J, Reynolds A, Takahashi T. CD148 tyrosine phosphatase promotes cadherin cell adhesion. PLoS One 2014; 9:e112753. [PMID: 25386896 PMCID: PMC4227875 DOI: 10.1371/journal.pone.0112753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/14/2014] [Indexed: 01/06/2023] Open
Abstract
CD148 is a transmembrane tyrosine phosphatase that is expressed at cell junctions. Recent studies have shown that CD148 associates with the cadherin/catenin complex and p120 catenin (p120) may serve as a substrate. However, the role of CD148 in cadherin cell-cell adhesion remains unknown. Therefore, here we addressed this issue using a series of stable cells and cell-based assays. Wild-type (WT) and catalytically inactive (CS) CD148 were introduced to A431D (lacking classical cadherins), A431D/E-cadherin WT (expressing wild-type E-cadherin), and A431D/E-cadherin 764AAA (expressing p120-uncoupled E-cadherin mutant) cells. The effects of CD148 in cadherin adhesion were assessed by Ca2+ switch and cell aggregation assays. Phosphorylation of E-cadherin/catenin complex and Rho family GTPase activities were also examined. Although CD148 introduction did not alter the expression levels and complex formation of E-cadherin, p120, and β-catenin, CD148 WT, but not CS, promoted cadherin contacts and strengthened cell-cell adhesion in A431D/E-cadherin WT cells. This effect was accompanied by an increase in Rac1, but not RhoA and Cdc42, activity and largely diminished by Rac1 inhibition. Further, we demonstrate that CD148 reduces the tyrosine phosphorylation of p120 and β-catenin; causes the dephosphorylation of Y529 suppressive tyrosine residue in Src, a well-known CD148 site, increasing Src activity and enhancing the phosphorylation of Y228 (a Src kinase site) in p120, in E-cadherin contacts. Consistent with these findings, CD148 dephosphorylated both p120 and β-catenin in vitro. The shRNA-mediated CD148 knockdown in A431 cells showed opposite effects. CD148 showed no effects in A431D and A431D/E-cadherin 764AAA cells. In aggregate, these findings provide the first evidence that CD148 promotes E-cadherin adhesion by regulating Rac1 activity concomitant with modulation of p120, β-catenin, and Src tyrosine phosphorylation. This effect requires E-cadherin and p120 association.
Collapse
Affiliation(s)
- Keiko Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Anton Matafonov
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Katherine Sumarriva
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Hideyuki Ito
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Colette Lauhan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Dana Zemel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Nobuo Tsuboi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Jin Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Takamune Takahashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
29
|
Quiros M, Nusrat A. RhoGTPases, actomyosin signaling and regulation of the epithelial Apical Junctional Complex. Semin Cell Dev Biol 2014; 36:194-203. [PMID: 25223584 DOI: 10.1016/j.semcdb.2014.09.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 12/22/2022]
Abstract
Epithelial cells form regulated and selective barriers between distinct tissue compartments. The Apical Junctional Complex (AJC) consisting of the tight junction (TJ) and adherens junction (AJ) control epithelial homeostasis, paracellular permeability and barrier properties. The AJC is composed of mutliprotein complexes consisting of transmembrane proteins that affiliate with an underlying perijunctional F-actin myosin ring through cytoplasmic scaffold proteins. AJC protein associations with the apical actin-myosin cytoskeleton are tightly controlled by a number of signaling proteins including the Rho family of GTPases that orchestrate junctional biology, epithelial homeostasis and barrier function. This review highlights the vital relationship of Rho GTPases and AJCs in controlling the epithelial barrier. The pathophysiologic relationship of Rho GTPases, AJC, apical actomyosin cytoskeleton and epithelial barrier function is discussed.
Collapse
Affiliation(s)
- Miguel Quiros
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Asma Nusrat
- Epithelial Pathobiology and Mucosal Inflammation Research Unit, Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Cruciat CM. Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31:46-55. [PMID: 25200911 DOI: 10.1016/j.ceb.2014.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Casein kinase 1 (CK1) members play a critical and evolutionary conserved role in Wnt/β-catenin signaling. They phosphorylate several pathway components and exert a dual function, acting as both Wnt activators and Wnt inhibitors. Recent discoveries suggest that CK1 members act in a coordinated manner to regulate early responses to Wnt and notably that their enzymatic activity is regulated. Here, I provide a brief update of CK1 function and regulation in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Vinyoles M, Del Valle-Pérez B, Curto J, Viñas-Castells R, Alba-Castellón L, García de Herreros A, Duñach M. Multivesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6. Mol Cell 2014; 53:444-57. [PMID: 24412065 DOI: 10.1016/j.molcel.2013.12.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
Abstract
The Wnt canonical ligands elicit the activation of β-catenin transcriptional activity, a response dependent on, but not limited to, β-catenin stabilization through the inhibition of GSK3 activity. Two mechanisms have been proposed for this inhibition, one dependent on the binding and subsequent block of GSK3 to LRP5/6 Wnt coreceptor and another one on its sequestration into multivesicular bodies (MVBs). Here we report that internalization of the GSK3-containing Wnt-signalosome complex into MVBs is dependent on the dissociation of p120-catenin/cadherin from this complex. Disruption of cadherin-LRP5/6 interaction is controlled by cadherin phosphorylation and requires the previous separation of p120-catenin; thus, p120-catenin and cadherin mutants unable to dissociate from the complex block GSK3 sequestration into MVBs. These mutants substantially inhibit, but do not completely prevent, the β-catenin upregulation caused by Wnt3a. These results, besides elucidating how GSK3 is sequestered into MVBs, support this mechanism as cause of β-catenin stabilization by Wnt.
Collapse
Affiliation(s)
- Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Rosa Viñas-Castells
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Lorena Alba-Castellón
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), E-08003 Barcelona, Spain; Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
32
|
Espejo R, Jeng Y, Paulucci-Holthauzen A, Rengifo-Cam W, Honkus K, Anastasiadis PZ, Sastry SK. PTP-PEST targets a novel tyrosine site in p120 catenin to control epithelial cell motility and Rho GTPase activity. J Cell Sci 2013; 127:497-508. [PMID: 24284071 PMCID: PMC4007762 DOI: 10.1242/jcs.120154] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tyrosine phosphorylation is implicated in regulating the adherens junction protein, p120 catenin (p120), however, the mechanisms are not well defined. Here, we show, using substrate trapping, that p120 is a direct target of the protein tyrosine phosphatase, PTP-PEST, in epithelial cells. Stable shRNA knockdown of PTP-PEST in colon carcinoma cells results in an increased cytosolic pool of p120 concomitant with its enhanced tyrosine phosphorylation and decreased association with E-cadherin. Consistent with this, PTP-PEST knockdown cells exhibit increased motility, enhanced Rac1 and decreased RhoA activity on a collagen substrate. Furthermore, p120 localization is enhanced at actin-rich protrusions and lamellipodia and has an increased association with the guanine nucleotide exchange factor, VAV2, and cortactin. Exchange factor activity of VAV2 is enhanced by PTP-PEST knockdown whereas overexpression of a VAV2 C-terminal domain or DH domain mutant blocks cell motility. Analysis of point mutations identified tyrosine 335 in the N-terminal domain of p120 as the site of PTP-PEST dephosphorylation. A Y335F mutant of p120 failed to induce the 'p120 phenotype', interact with VAV2, stimulate cell motility or activate Rac1. Together, these data suggest that PTP-PEST affects epithelial cell motility by controlling the distribution and phosphorylation of p120 and its availability to control Rho GTPase activity.
Collapse
Affiliation(s)
- Rosario Espejo
- Sealy Center for Cancer Biology and UTMB Comprehensive Cancer Center, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Peglion F, Etienne-Manneville S. p120catenin alteration in cancer and its role in tumour invasion. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130015. [PMID: 24062585 DOI: 10.1098/rstb.2013.0015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Since its discovery in 1989 as a substrate of the Src oncogene, p120catenin has been revealed as an important player in cancer initiation and tumour dissemination. p120catenin regulates a wide range of cellular processes such as cell-cell adhesion, cell polarity and cell proliferation and plays a pivotal role in morphogenesis, inflammation and innate immunity. The pleiotropic effects of p120catenin rely on its interactions with numerous partners such as classical cadherins at the plasma membrane, Rho-GTPases and microtubules in the cytosol and transcriptional modulators in the nucleus. Alterations of p120catenin in cancer not only concern its expression level but also its intracellular localization and can lead to both pro-invasive and anti-invasive effects. This review focuses on the p120catenin-mediated pathways involved in cell migration and invasion and discusses the potential consequences of major cancer-related p120catenin alterations with respect to tumour spread.
Collapse
Affiliation(s)
- Florent Peglion
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur - CNRS URA 2582, , 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | | |
Collapse
|