1
|
Guo K, Merdes A. Mechanisms of cortical microtubule organization in epidermal keratinocytes. Cell Mol Life Sci 2025; 82:193. [PMID: 40325225 PMCID: PMC12052723 DOI: 10.1007/s00018-025-05714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/07/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
Microtubules in many differentiated cell types are reorganized from a radial, centrosome-bound array into a cell type-specific, non-centrosomal network. In epidermal keratinocytes, a subset of microtubules is organized from the cell cortex. These microtubules are anchored to desmosomes, with ninein serving as a linker protein. Details of this organization are poorly understood. We used immunofluorescence expansion microscopy to visualize directly the contact between cortical microtubules and desmosomes in murine skin tissue. Microtubule bound laterally to desmosomes, or with their ends at mixed polarity. Experiments including time-lapse microscopy of EB3-GFP, microtubule regrowth after depolymerization, and expression of ectopic ninein that was sequestered to the plasma membrane by a CAAX sequence motif, indicated that nucleation of microtubules doesn't occur at the cortex. Experimental severing of microtubules by spastin led to accumulation of microtubules next to ectopic, cortical ninein. Overall, our data suggest that microtubules accumulate by translocation from non-cortical sites towards sites of cortical ninein.
Collapse
Affiliation(s)
- Keying Guo
- Centre de Biologie Intégrative, CNRS &, Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andreas Merdes
- Centre de Biologie Intégrative, CNRS &, Université Toulouse III, 118 Route de Narbonne, 31062, Toulouse, France.
| |
Collapse
|
2
|
Ramírez-Cota R, Espino-Vazquez AN, Carolina Rodriguez-Vega T, Evelyn Macias-Díaz R, Alicia Callejas-Negrete O, Freitag M, Fischer R, Roberson RW, Mouriño-Pérez RR. The cytoplasmic microtubule array in Neurospora crassa depends on microtubule-organizing centers at spindle pole bodies and microtubule +end-depending pseudo-MTOCs at septa. Fungal Genet Biol 2022; 162:103729. [DOI: 10.1016/j.fgb.2022.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
|
3
|
Lera-Ramirez M, Nédélec FJ, Tran PT. Microtubule rescue at midzone edges promotes overlap stability and prevents spindle collapse during anaphase B. eLife 2022; 11:72630. [PMID: 35293864 PMCID: PMC9018073 DOI: 10.7554/elife.72630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/15/2022] [Indexed: 11/14/2022] Open
Abstract
During anaphase B, molecular motors slide interpolar microtubules to elongate the mitotic spindle, contributing to the separation of chromosomes. However, sliding of antiparallel microtubules reduces their overlap, which may lead to spindle breakage, unless microtubules grow to compensate sliding. How sliding and growth are coordinated is still poorly understood. In this study, we have used the fission yeast S. pombe to measure microtubule dynamics during anaphase B. We report that the coordination of microtubule growth and sliding relies on promoting rescues at the midzone edges. This makes microtubules stable from pole to midzone, while their distal parts including the plus ends alternate between assembly and disassembly. Consequently, the midzone keeps a constant length throughout anaphase, enabling sustained sliding without the need for a precise regulation of microtubule growth speed. Additionally, we found that in S. pombe, which undergoes closed mitosis, microtubule growth speed decreases when the nuclear membrane wraps around the spindle midzone.
Collapse
|
4
|
Schweizer N, Haren L, Dutto I, Viais R, Lacasa C, Merdes A, Lüders J. Sub-centrosomal mapping identifies augmin-γTuRC as part of a centriole-stabilizing scaffold. Nat Commun 2021; 12:6042. [PMID: 34654813 PMCID: PMC8519919 DOI: 10.1038/s41467-021-26252-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Ilaria Dutto
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Ricardo Viais
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Cristina Lacasa
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062, Toulouse, France
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), 08028, Barcelona, Spain.
| |
Collapse
|
5
|
|
6
|
Haren L, Farache D, Emorine L, Merdes A. A stable core of GCPs 4, 5 and 6 promotes the assembly of γ-tubulin ring complexes. J Cell Sci 2020; 133:jcs.244368. [DOI: 10.1242/jcs.244368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/26/2020] [Indexed: 12/28/2022] Open
Abstract
γ-tubulin is a major protein involved in the nucleation of microtubules in all eukaryotes. It forms two different complexes with proteins of the GCP family (gamma-tubulin complex proteins): γ-tubulin small complexes (γTuSCs), containing γ-tubulin and GCPs 2 and 3, and γ-tubulin ring complexes (γTuRCs), containing multiple γTuSCs, in addition to GCPs 4, 5, and 6. Whereas the structure and assembly properties of γTuSCs have been intensively studied, little is known about the assembly of γTuRCs, and about the specific roles of GCPs 4, 5, and 6. Here, we demonstrate that two copies of GCP4 and one copy each of GCP5 and GCP6 form a salt-resistant sub-complex within the γTuRC that assembles independently of the presence of γTuSCs. Incubation of this sub-complex with cytoplasmic extracts containing γTuSCs leads to the reconstitution of γTuRCs that are competent to nucleate microtubules. In addition, we investigate sequence extensions and insertions that are specifically found at the amino-terminus of GCP6, and between the GCP6 grip1 and grip2 motifs, and we demonstrate that these are involved in the assembly or stabilization of the γTuRC.
Collapse
Affiliation(s)
- Laurence Haren
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Dorian Farache
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Laurent Emorine
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS-Université Toulouse III, 31062 Toulouse, France
| |
Collapse
|
7
|
Gao X, Schmid M, Zhang Y, Fukuda S, Takeshita N, Fischer R. The spindle pole body of Aspergillus nidulans is asymmetrical and contains changing numbers of γ-tubulin complexes. J Cell Sci 2019; 132:jcs.234799. [PMID: 31740532 DOI: 10.1242/jcs.234799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Centrosomes are important microtubule-organizing centers (MTOCs) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) are found in many cell types. Their composition and structure are only poorly understood. Here, we analyzed nuclear MTOCs (spindle-pole bodies, SPBs) and septal MTOCs in Aspergillus nidulans They both contain γ-tubulin along with members of the family of γ-tubulin complex proteins (GCPs). Our data suggest that SPBs consist of γ-tubulin small complexes (γ-TuSCs) at the outer plaque, and larger γ-tubulin ring complexes (γ-TuRC) at the inner plaque. We show that the MztA protein, an ortholog of the human MOZART protein (also known as MZT1), interacted with the inner plaque receptor PcpA (the homolog of fission yeast Pcp1) at SPBs, while no interaction nor colocalization was detected between MztA and the outer plaque receptor ApsB (fission yeast Mto1). Septal MTOCs consist of γ-TuRCs including MztA but are anchored through AspB and Spa18 (fission yeast Mto2). MztA is not essential for viability, although abnormal spindles were observed frequently in cells lacking MztA. Quantitative PALM imaging revealed unexpected dynamics of the protein composition of SPBs, with changing numbers of γ-tubulin complexes over time during interphase and constant numbers during mitosis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Xiaolei Gao
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Marjorie Schmid
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Ying Zhang
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| | - Sayumi Fukuda
- Tsukuba University, Faculty of Life and Environmental Sciences, Tsukuba 305-8572, Japan
| | - Norio Takeshita
- Tsukuba University, Faculty of Life and Environmental Sciences, Tsukuba 305-8572, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology (KIT) - South Campus, Institute for Applied Biosciences, Dept. of Microbiology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany
| |
Collapse
|
8
|
Lecland N, Hsu CY, Chemin C, Merdes A, Bierkamp C. Epidermal development requires ninein for spindle orientation and cortical microtubule organization. Life Sci Alliance 2019; 2:2/2/e201900373. [PMID: 30923192 PMCID: PMC6441496 DOI: 10.26508/lsa.201900373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the epidermis, ninein affects spindle orientation of progenitor cells, as well as cortical microtubule organization, desmosome assembly, and lamellar body secretion in differentiating cells. In mammalian skin, ninein localizes to the centrosomes of progenitor cells and relocates to the cell cortex upon differentiation of keratinocytes, where cortical arrays of microtubules are formed. To examine the function of ninein in skin development, we use epidermis-specific and constitutive ninein-knockout mice to demonstrate that ninein is necessary for maintaining regular protein levels of the differentiation markers filaggrin and involucrin, for the formation of desmosomes, for the secretion of lamellar bodies, and for the formation of the epidermal barrier. Ninein-deficient mice are viable but develop a thinner skin with partly impaired epidermal barrier. We propose two underlying mechanisms: first, ninein contributes to spindle orientation during the division of progenitor cells, whereas its absence leads to misoriented cell divisions, altering the pool of progenitor cells. Second, ninein is required for the cortical organization of microtubules in differentiating keratinocytes, and for the cortical re-localization of microtubule-organizing proteins, and may thus affect any mechanisms that depend on localized microtubule-dependent transport.
Collapse
Affiliation(s)
- Nicolas Lecland
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Chiung-Yueh Hsu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Cécile Chemin
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Christiane Bierkamp
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| |
Collapse
|
9
|
Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA. γ-Tubulin⁻γ-Tubulin Interactions as the Basis for the Formation of a Meshwork. Int J Mol Sci 2018; 19:ijms19103245. [PMID: 30347727 PMCID: PMC6214090 DOI: 10.3390/ijms19103245] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/14/2022] Open
Abstract
In cytoplasm, protein γ-tubulin joins with various γ-tubulin complex proteins (GCPs) to form a heterotetramer γ-tubulin small complex (γ-TuSC) that can grow into a ring-shaped structure called the γ-tubulin ring complex (γ-TuRC). Both γ-TuSC and γ-TuRC are required for microtubule nucleation. Recent knowledge on γ-tubulin with regard to its cellular functions beyond participation in its creation of microtubules suggests that this protein forms a cellular meshwork. The present review summarizes the recognized functions of γ-tubulin and aims to unite the current views on this protein.
Collapse
Affiliation(s)
- Catalina Ana Rosselló
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Lisa Lindström
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Greta Eklund
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Matthieu Corvaisier
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Maria Alvarado Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| |
Collapse
|
10
|
Rogne M, Svaerd O, Madsen-Østerbye J, Hashim A, Tjønnfjord GE, Staerk J. Cytokinesis arrest and multiple centrosomes in B cell chronic lymphocytic leukaemia. J Cell Mol Med 2018. [PMID: 29516674 PMCID: PMC5908127 DOI: 10.1111/jcmm.13579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokinesis failure leads to the emergence of tetraploid cells and multiple centrosomes. Chronic lymphocytic leukaemia (CLL) is the most common haematological malignancy in adults and is characterized by clonal B cell expansion. Here, we show that a significant number of peripheral blood CLL cells are arrested in cytokinesis and that this event occurred after nuclear envelope reformation and before cytoplasmic abscission. mRNA expression data showed that several genes known to be crucial for cell cycle regulation, checkpoint and centromere function, such as ING4, ING5, CDKN1A and CDK4, were significantly dysregulated in CLL samples. Our results demonstrate that CLL cells exhibit difficulties in completing mitosis, which is different from but may, at least in part, explain the previously reported accumulation of CLL cells in G0/1.
Collapse
Affiliation(s)
- Marie Rogne
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Oksana Svaerd
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Julia Madsen-Østerbye
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Adnan Hashim
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway
| | - Geir E Tjønnfjord
- Department of Haematology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Judith Staerk
- Centre for Molecular Medicine Norway, Nordic European Molecular Laboratory Partnership, University of Oslo, Oslo, Norway.,Department of Haematology, Oslo University Hospital, Oslo, Norway.,Norwegian Center for Stem Cell Research, Department of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
DDX3 localizes to the centrosome and prevents multipolar mitosis by epigenetically and translationally modulating p53 expression. Sci Rep 2017; 7:9411. [PMID: 28842590 PMCID: PMC5573351 DOI: 10.1038/s41598-017-09779-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
The DEAD-box RNA helicase DDX3 plays divergent roles in tumorigenesis, however, its function in mitosis is unclear. Immunofluorescence indicated that DDX3 localized to centrosome throughout the cell cycle and colocalized with centrosome-associated p53 during mitosis in HCT116 and U2OS cells. DDX3 depletion promoted chromosome misalignment, segregation defects and multipolar mitosis, eventually leading to G2/M delay and cell death. DDX3 prevented multipolar mitosis by inactivation and coalescence of supernumerary centrosomes. DDX3 silencing suppressed Ser15 phosphorylation of p53 which is required for p53 centrosomal localization. Additionally, knockout of p53 dramatically diminished the association of DDX3 with centrosome, which was rescued by overexpression of the centrosomal targeting-defective p53 S15A mutant, indicating that centrosomal localization of DDX3 is p53 dependent but not through centrosomal location of p53. Furthermore, DDX3 knockdown suppressed p53 transcription through activation of DNA methyltransferases (DNMTs) along with hypermethylation of p53 promoter and promoting the binding of repressive histone marks to p53 promoter. Moreover, DDX3 modulated p53 mRNA translation. Taken together, our study suggests that DDX3 regulates epigenetic transcriptional and translational activation of p53 and colocalizes with p53 at centrosome during mitosis to ensure proper mitotic progression and genome stability, which supports the tumor-suppressive role of DDX3.
Collapse
|
12
|
Farache D, Jauneau A, Chemin C, Chartrain M, Rémy MH, Merdes A, Haren L. Functional Analysis of γ-Tubulin Complex Proteins Indicates Specific Lateral Association via Their N-terminal Domains. J Biol Chem 2016; 291:23112-23125. [PMID: 27660388 DOI: 10.1074/jbc.m116.744862] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Indexed: 11/06/2022] Open
Abstract
Microtubules are nucleated from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). Small complexes (γTuSCs) comprise two molecules of γ-tubulin bound to the C-terminal domains of GCP2 and GCP3. γTuSCs associate laterally into helical structures, providing a structural template for microtubule nucleation. In most eukaryotes γTuSCs associate with additional GCPs (4, 5, and 6) to form the core of the so-called γ-tubulin ring complex (γTuRC). GCPs 2-6 constitute a family of homologous proteins. Previous structural analysis and modeling of GCPs suggest that all family members can potentially integrate into the helical structure. Here we provide experimental evidence for this model. Using chimeric proteins in which the N- and C-terminal domains of different GCPs are swapped, we show that the N-terminal domains define the functional identity of GCPs, whereas the C-terminal domains are exchangeable. FLIM-FRET experiments indicate that GCP4 and GCP5 associate laterally within the complex, and their interaction is mediated by their N-terminal domains as previously shown for γTuSCs. Our results suggest that all GCPs are incorporated into the helix via lateral interactions between their N-terminal domains, whereas the C-terminal domains mediate longitudinal interactions with γ-tubulin. Moreover, we show that binding to γ-tubulin is not essential for integrating into the helical complex.
Collapse
Affiliation(s)
- Dorian Farache
- From the Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and
| | - Alain Jauneau
- Plateforme Imagerie-Microscopie, FR 3450 Pôle de Biotechnologie Végétale, 31326 Castanet-Tolosan, France
| | - Cécile Chemin
- From the Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and
| | - Marine Chartrain
- From the Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and
| | - Marie-Hélène Rémy
- From the Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and
| | - Andreas Merdes
- From the Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and
| | - Laurence Haren
- From the Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France and
| |
Collapse
|
13
|
The γ-tubulin-specific inhibitor gatastatin reveals temporal requirements of microtubule nucleation during the cell cycle. Nat Commun 2015; 6:8722. [PMID: 26503935 PMCID: PMC4640066 DOI: 10.1038/ncomms9722] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022] Open
Abstract
Inhibitors of microtubule (MT) assembly or dynamics that target α/β-tubulin are widely exploited in cancer therapy and biological research. However, specific inhibitors of the MT nucleator γ-tubulin that would allow testing temporal functions of γ-tubulin during the cell cycle are yet to be identified. By evolving β-tubulin-binding drugs we now find that the glaziovianin A derivative gatastatin is a γ-tubulin-specific inhibitor. Gatastatin decreased interphase MT dynamics of human cells without affecting MT number. Gatastatin inhibited assembly of the mitotic spindle in prometaphase. Addition of gatastatin to preformed metaphase spindles altered MT dynamics, reduced the number of growing MTs and shortened spindle length. Furthermore, gatastatin prolonged anaphase duration by affecting anaphase spindle structure, indicating the continuous requirement of MT nucleation during mitosis. Thus, gatastatin facilitates the dissection of the role of γ-tubulin during the cell cycle and reveals the sustained role of γ-tubulin. Current microtubule inhibitors target α/β-tubulin, but no specific inhibitor of γ-tubulin has been developed. Here the authors present gatastatin as a γ-tubulin inhibitor and use it to probe the role of γ-tubulin during the cell cycle.
Collapse
|
14
|
Kettle E, Page SL, Morgan GP, Malladi CS, Wong CL, Boadle RA, Marsh BJ, Robinson PJ, Chircop M. A Cholesterol-Dependent Endocytic Mechanism Generates Midbody Tubules During Cytokinesis. Traffic 2015; 16:1174-92. [DOI: 10.1111/tra.12328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Emma Kettle
- Children's Medical Research Institute; The University of Sydney; 214 Hawkesbury Road Westmead NSW 2145 Australia
| | - Scott L. Page
- Children's Medical Research Institute; The University of Sydney; 214 Hawkesbury Road Westmead NSW 2145 Australia
| | - Garry P. Morgan
- Institute for Molecular Biosciences, Queensland Bioscience Precinct; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Chandra S. Malladi
- Department of Molecular Physiology, School of Medicine; University of Western Sydney; Penrith NSW 2751 Australia
| | - Chin L. Wong
- Children's Medical Research Institute; The University of Sydney; 214 Hawkesbury Road Westmead NSW 2145 Australia
| | - Ross A. Boadle
- Westmead Millennium Institute for Medical Research; 176 Hawkesbury Road Westmead NSW 2145 Australia
| | - Brad J. Marsh
- Institute for Molecular Biosciences, Queensland Bioscience Precinct; The University of Queensland; Brisbane Queensland 4072 Australia
| | - Phillip J. Robinson
- Children's Medical Research Institute; The University of Sydney; 214 Hawkesbury Road Westmead NSW 2145 Australia
| | - Megan Chircop
- Children's Medical Research Institute; The University of Sydney; 214 Hawkesbury Road Westmead NSW 2145 Australia
| |
Collapse
|
15
|
Lian ATY, Hains PG, Sarcevic B, Robinson PJ, Chircop M. IQGAP1 is associated with nuclear envelope reformation and completion of abscission. Cell Cycle 2015; 14:2058-74. [PMID: 25928398 DOI: 10.1080/15384101.2015.1044168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The final stage of mitosis is cytokinesis, which results in 2 independent daughter cells. Cytokinesis has 2 phases: membrane ingression followed by membrane abscission. IQGAP1 is a scaffold protein that interacts with proteins implicated in mitosis, including F-actin, myosin and CaM. IQGAP1 in yeast recruits actin and myosin II filaments to the contractile ring for membrane ingression. In contrast, we show that mammalian IQGAP1 is not required for ingression, but coordinates nuclear pore complex (NPC) reassembly and completion of abscission. Depletion of IQGAP1 disrupts Nup98 and mAb414 nuclear envelope localization and delays abscission timing. IQGAP1 phosphorylation increases 15-fold upon mitotic entry at S86, S330 and T1434, with the latter site being targeted by CDK2/Cyclin A and CDK1/Cyclin A/B in vitro. Expressing the phospho-deficient mutant IQGAP1-S330A impairs NPC reassembly in cells undergoing abscission. Thus, mammalian IQGAP1 functions later in mitosis than its yeast counterpart to regulate nuclear pore assembly in a S330 phosphorylation-dependent manner during the abscission phase of cytokinesis.
Collapse
Affiliation(s)
- Audrey T Y Lian
- a Children's Medical Research Institute; The University of Sydney ; Westmead , New South Wales , Australia
| | | | | | | | | |
Collapse
|
16
|
Katsetos CD, Reginato MJ, Baas PW, D'Agostino L, Legido A, Tuszyn Ski JA, Dráberová E, Dráber P. Emerging microtubule targets in glioma therapy. Semin Pediatr Neurol 2015; 22:49-72. [PMID: 25976261 DOI: 10.1016/j.spen.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Major advances in the genomics and epigenomics of diffuse gliomas and glioblastoma to date have not been translated into effective therapy, necessitating pursuit of alternative treatment approaches for these therapeutically challenging tumors. Current knowledge of microtubules in cancer and the development of new microtubule-based treatment strategies for high-grade gliomas are the topic in this review article. Discussed are cellular, molecular, and pharmacologic aspects of the microtubule cytoskeleton underlying mitosis and interactions with other cellular partners involved in cell cycle progression, directional cell migration, and tumor invasion. Special focus is placed on (1) the aberrant overexpression of βIII-tubulin, a survival factor associated with hypoxic tumor microenvironment and dynamic instability of microtubules; (2) the ectopic overexpression of γ-tubulin, which in addition to its conventional role as a microtubule-nucleating protein has recently emerged as a transcription factor interacting with oncogenes and kinases; (3) the microtubule-severing ATPase spastin and its emerging role in cell motility of glioblastoma cells; and (4) the modulating role of posttranslational modifications of tubulin in the context of interaction of microtubules with motor proteins. Specific antineoplastic strategies discussed include downregulation of targeted molecules aimed at achieving a sensitization effect on currently used mainstay therapies. The potential role of new classes of tubulin-binding agents and ATPase inhibitors is also examined. Understanding the cellular and molecular mechanisms underpinning the distinct behaviors of microtubules in glioma tumorigenesis and drug resistance is key to the discovery of novel molecular targets that will fundamentally change the prognostic outlook of patients with diffuse high-grade gliomas.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA.
| | - Mauricio J Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA
| | - Peter W Baas
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Luca D'Agostino
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Agustin Legido
- Department of Pediatrics, Drexel University College of Medicine, Section of Neurology and Pediatric Neuro-oncology Program, St Christopher's Hospital for Children, Philadelphia, PA
| | - Jack A Tuszyn Ski
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada; Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
17
|
Ferreira JG, Pereira AL, Maiato H. Microtubule plus-end tracking proteins and their roles in cell division. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:59-140. [PMID: 24529722 DOI: 10.1016/b978-0-12-800255-1.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cellular components that are required for a variety of essential processes such as cell motility, mitosis, and intracellular transport. This is possible because of the inherent dynamic properties of microtubules. Many of these properties are tightly regulated by a number of microtubule plus-end-binding proteins or +TIPs. These proteins recognize the distal end of microtubules and are thus in the right context to control microtubule dynamics. In this review, we address how microtubule dynamics are regulated by different +TIP families, focusing on how functionally diverse +TIPs spatially and temporally regulate microtubule dynamics during animal cell division.
Collapse
Affiliation(s)
- Jorge G Ferreira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal
| | - Ana L Pereira
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| | - Helder Maiato
- Chromosome Instability & Dynamics Laboratory, Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal; Cell Division Unit, Department of Experimental Biology, University of Porto, Porto, Portugal.
| |
Collapse
|
18
|
Chircop M. Rho GTPases as regulators of mitosis and cytokinesis in mammalian cells. Small GTPases 2014; 5:29770. [PMID: 24988197 DOI: 10.4161/sgtp.29770] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rho GTPases regulate a diverse range of cellular functions primarily through their ability to modulate microtubule dynamics and the actin-myosin cytoskeleton. Both of these cytoskeletal structures are crucial for a mitotic cell division. Specifically, their assembly and disassembly is tightly regulated in a temporal manner to ensure that each mitotic stage occurs in the correct sequential order and not prematurely until the previous stage is completed. Thus, it is not surprising that the Rho GTPases, RhoA, and Cdc42, have reported roles in several stages of mitosis: cell cortex stiffening during cell rounding, mitotic spindle formation, and bi-orient attachment of the spindle microtubules to the kinetochore and during cytokinesis play multiple roles in establishing the division plane, assembly, and activation of the contractile ring, membrane ingression, and abscission. Here, I review the molecular mechanisms regulating the spatial and temporal activation of RhoA and Cdc42 during mitosis, and how this is critical for mitotic progression and completion.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute; The University of Sydney; Westmead, Australia
| |
Collapse
|
19
|
Dai H, Ye M, Peng M, Zhou W, Bai H, Xiao X, Ma B, Zhou J, Tang S, Yao S, Cao Y, Qin Z, Liu J, Tan W. Aptamer TY04 inhibits the growth of multiple myeloma cells via cell cycle arrest. Tumour Biol 2014; 35:7561-8. [PMID: 24792887 DOI: 10.1007/s13277-014-1920-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/01/2014] [Indexed: 11/25/2022] Open
Abstract
The aptamer TY04 is a single-stranded DNA. However, its biological function has not been elucidated. Here, we found that TY04 specifically bound to multiple myeloma cells MM.1S, and some membrane proteins on the surface of MM.1S cells constituted the target molecules of TY04. TY04 inhibited the growth of multiple myeloma cell lines, induced cell cycle arrest in mitosis, and resulted in a significant accumulation of binucleated cells. Following TY04 treatment, a concomitant increase in CDK1 and cyclin B1 expression occurred. In addition, TY04 treatment also resulted in a significant downregulation of γ-tubulin. Considering the unique advantages of aptamers, TY04 shows great potential as a drug candidate to treat multiple myeloma.
Collapse
Affiliation(s)
- Hongjuan Dai
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, 410078, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bouissou A, Vérollet C, de Forges H, Haren L, Bellaïche Y, Perez F, Merdes A, Raynaud-Messina B. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning. EMBO J 2014; 33:114-28. [PMID: 24421324 DOI: 10.1002/embj.201385967] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs.
Collapse
Affiliation(s)
- Anaïs Bouissou
- Centre Biologie du Développement, UMR 5547 CNRS-UPS Toulouse 3, Toulouse Cedex 04, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nachbar J, Lázaro-Diéguez F, Prekeris R, Cohen D, Müsch A. KIFC3 promotes mitotic progression and integrity of the central spindle in cytokinesis. Cell Cycle 2013; 13:426-33. [PMID: 24275865 DOI: 10.4161/cc.27266] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Kinesin-14 motor proteins play a variety of roles during metaphase and anaphase. However, it is not known whether members of this family of motors also participate in the dramatic changes in mitotic spindle organization during the transition from telophase to cytokinesis. We have identified the minus-end-directed motor, KIFC3, as an important contributor to central bridge morphology at this stage. KIFC3's unique motor-dependent localization at the central bridge allows it to congress microtubules, promoting efficient progress through cytokinesis. Conversely, when KIFC3 function is perturbed, abscission is delayed, and the central bridge is both widened and extended. Examination of KIFC3 on growing microtubules in interphase indicates that it caps microtubules released from the centrosome, both in the region of the centrosome and in the cell periphery. In line with other kinesin-14 family members, KIFC3 may guide free microtubules to their destination at the bridge and/or may slide and crosslink central bridge microtubules in order to stage the cells for abscission.
Collapse
Affiliation(s)
- Jeannette Nachbar
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| | - Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| | | | - David Cohen
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| | - Anne Müsch
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; New York, NY USA
| |
Collapse
|
22
|
Abnormal centrosome and spindle morphology in a patient with autosomal recessive primary microcephaly type 2 due to compound heterozygous WDR62 gene mutation. Orphanet J Rare Dis 2013; 8:178. [PMID: 24228726 PMCID: PMC4225825 DOI: 10.1186/1750-1172-8-178] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 11/19/2022] Open
Abstract
Background Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disease with severe microcephaly at birth due to a pronounced reduction in brain volume and intellectual disability. Biallelic mutations in the WD repeat-containing protein 62 gene WDR62 are the genetic cause of MCPH2. However, the exact underlying pathomechanism of MCPH2 remains to be clarified. Methods/results We characterized the clinical, radiological, and cellular features that add to the human MCPH2 phenotype. Exome sequencing followed by Sanger sequencing in a German family with two affected daughters with primary microcephaly revealed in the index patient the compound heterozygous mutations c.1313G>A (p.R438H) / c.2864-2867delACAG (p.D955Afs*112) of WDR62, the second of which is novel. Radiological examination displayed small frontal lobes, corpus callosum hypoplasia, simplified hippocampal gyration, and cerebellar hypoplasia. We investigated the cellular phenotype in patient-derived lymphoblastoid cells and compared it with that of healthy female controls. WDR62 expression in the patient’s immortalized lymphocytes was deranged, and mitotic spindle defects as well as abnormal centrosomal protein localization were apparent. Conclusion We propose that a disruption of centrosome integrity and/or spindle organization may play an important role in the development of microcephaly in MCPH2.
Collapse
|
23
|
Lee KY, Davies T, Mishima M. Cytokinesis microtubule organisers at a glance. J Cell Sci 2013; 125:3495-500. [PMID: 22991411 DOI: 10.1242/jcs.094672] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Kian-Yong Lee
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
24
|
Remy MH, Merdes A, Gregory-Pauron L. Assembly of Gamma-Tubulin Ring Complexes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:511-30. [DOI: 10.1016/b978-0-12-386931-9.00019-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Ma MPC, Chircop M. SNX9, SNX18 and SNX33 are required for progression through and completion of mitosis. J Cell Sci 2012; 125:4372-82. [PMID: 22718350 DOI: 10.1242/jcs.105981] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mitosis involves considerable membrane remodelling and vesicular trafficking to generate two independent cells. Consequently, endocytosis and endocytic proteins are required for efficient mitotic progression and completion. Several endocytic proteins also participate in mitosis in an endocytosis-independent manner. Here, we report that the sorting nexin 9 (SNX9) subfamily members - SNX9, SNX18 and SNX33 - are required for progression and completion of mitosis. Depletion of any one of these proteins using siRNA induces multinucleation, an indicator of cytokinesis failure, as well as an accumulation of cytokinetic cells. Time-lapse microscopy on siRNA-treated cells revealed a role for SNX9 subfamily members in progression through the ingression and abscission stages of cytokinesis. Depletion of these three proteins disrupted MRLC(S19) localization during ingression and recruitment of Rab11-positive recycling endosomes to the intracellular bridge between nascent daughter cells. SNX9 depletion also disrupted the localization of Golgi during cytokinesis. Endocytosis of transferrin was blocked during cytokinesis by depletion of the SNX9 subfamily members, suggesting that these proteins participate in cytokinesis in an endocytosis-dependent manner. In contrast, depletion of SNX9 did not block transferrin uptake during metaphase but did delay chromosome alignment and segregation, suggesting that SNX9 plays an additional non-endocytic role at early mitotic stages. We conclude that SNX9 subfamily members are required for mitosis through both endocytosis-dependent and -independent processes.
Collapse
Affiliation(s)
- Maggie P C Ma
- Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | | |
Collapse
|
26
|
Centrosomes in the zebrafish (Danio rerio): a review including the related basal body. Cilia 2012; 1:9. [PMID: 23351173 PMCID: PMC3555702 DOI: 10.1186/2046-2530-1-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 06/07/2012] [Indexed: 12/15/2022] Open
Abstract
Ever since Edouard Van Beneden and Theodor Boveri first formally described the centrosome in the late 1800s, it has captivated cell biologists. The name clearly indicated its central importance to cell functioning, even to these early investigators. We now know of its role as a major microtubule-organizing center (MTOC) and of its dynamic roles in cell division, vesicle trafficking and for its relative, the basal body, ciliogenesis. While centrosomes are found in most animal cells, notably it is absent in most oocytes and higher plant cells. Nevertheless, it appears that critical components of the centrosome act as MTOCs in these cells as well. The zebrafish has emerged as an exciting and promising new model organism, primarily due to the pioneering efforts of George Streisinger to use zebrafish in genetic studies and due to Christiane Nusslein-Volhard, Wolfgang Driever and their teams of collaborators, who applied forward genetics to elicit a large number of mutant lines. The transparency and rapid external development of the embryo allow for experiments not easily done in other vertebrates. The ease of producing transgenic lines, often with the use of fluorescent reporters, and gene knockdowns with antisense morpholinos further contributes to the appeal of the model as an experimental system. The added advantage of high-throughput screening of small-molecule libraries, as well as the ease of mass rearing together with low cost, makes the zebrafish a true frontrunner as a model vertebrate organism. The zebrafish has a body plan shared by all vertebrates, including humans. This conservation of body plan provides added significance to the existing lines of zebrafish as human disease models and adds an impetus to the ongoing efforts to develop new models. In this review, the current state of knowledge about the centrosome in the zebrafish model is explored. Also, studies on the related basal body in zebrafish and their relationship to ciliogenesis are reviewed.
Collapse
|
27
|
Hořejší B, Vinopal S, Sládková V, Dráberová E, Sulimenko V, Sulimenko T, Vosecká V, Philimonenko A, Hozák P, Katsetos CD, Dráber P. Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J Cell Physiol 2011; 227:367-82. [PMID: 21465471 DOI: 10.1002/jcp.22772] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
γ-Tubulin is assumed to be a typical cytosolic protein necessary for nucleation of microtubules from microtubule organizing centers. Using immunolocalization and cell fractionation techniques in combination with siRNAi and expression of FLAG-tagged constructs, we have obtained evidence that γ-tubulin is also present in nucleoli of mammalian interphase cells of diverse cellular origins. Immunoelectron microscopy has revealed γ-tubulin localization outside fibrillar centers where transcription of ribosomal DNA takes place. γ-Tubulin was associated with nucleolar remnants after nuclear envelope breakdown and could be translocated to nucleoli during mitosis. Pretreatment of cells with leptomycin B did not affect the distribution of nuclear γ-tubulin, making it unlikely that rapid active transport via nuclear pores participates in the transport of γ-tubulin into the nucleus. This finding was confirmed by heterokaryon assay and time-lapse imaging of photoconvertible protein Dendra2 tagged to γ-tubulin. Immunoprecipitation from nuclear extracts combined with mass spectrometry revealed an association of γ-tubulin with tumor suppressor protein C53 located at multiple subcellular compartments including nucleoli. The notion of an interaction between γ-tubulin and C53 was corroborated by pull-down and co-immunoprecipitation experiments. Overexpression of γ-tubulin antagonized the inhibitory effect of C53 on DNA damage G(2) /M checkpoint activation. The combined results indicate that aside from its known role in microtubule nucleation, γ-tubulin may also have nuclear-specific function(s).
Collapse
Affiliation(s)
- Barbora Hořejší
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hubert T, Vandekerckhove J, Gettemans J. Cdk1 and BRCA1 target γ-tubulin to microtubule domains. Biochem Biophys Res Commun 2011; 414:240-5. [PMID: 21951856 DOI: 10.1016/j.bbrc.2011.09.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/13/2011] [Indexed: 01/01/2023]
Abstract
DNA damage is a critical event that requires an appropriate cellular response. This is mediated by checkpoint proteins such as Cdk1 that controls S/G2 and G2/M transition. Cdk1 is required for BRCA1 transport to DNA damage sites inside the nucleus where BRCA1 functions as a scaffold to initiate a signaling cascade. BRCA1 is a multifunctional protein that also ubiquitinates γ-tubulin and, consequently, inhibits microtubule nucleation at the centrosome. Here, we report that γ-tubulin also localizes at confined areas in the microtubule network. Nocodazole-mediated microtubule depolymeration results in disappearance of this γ-tubulin fraction, while microtubule stabilization by taxol preserves this structure. Surprisingly, overexpression of Cdk1 or BRCA1 greatly expands the γ-tubulin coating of microtubules, suggesting that the microtubule-bound γ-tubulin is involved in DNA damage response. This is in accordance with numerous reports of microtubule-associated DNA damage proteins, such as p53, that are transported to the nucleus when DNA damage occurs. γ-Tubulin itself has been reported to form complexes with DNA repair proteins in the nucleus.
Collapse
Affiliation(s)
- Thomas Hubert
- Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium
| | | | | |
Collapse
|
29
|
Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nat Struct Mol Biol 2011; 18:915-9. [PMID: 21725292 DOI: 10.1038/nsmb.2083] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 05/03/2011] [Indexed: 11/08/2022]
Abstract
Microtubule nucleation in all eukaryotes involves γ-tubulin small complexes (γTuSCs) that comprise two molecules of γ-tubulin bound to γ-tubulin complex proteins (GCPs) GCP2 and GCP3. In many eukaryotes, multiple γTuSCs associate with GCP4, GCP5 and GCP6 into large γ-tubulin ring complexes (γTuRCs). Recent cryo-EM studies indicate that a scaffold similar to γTuRCs is formed by lateral association of γTuSCs, with the C-terminal regions of GCP2 and GCP3 binding γ-tubulin molecules. However, the exact role of GCPs in microtubule nucleation remains unknown. Here we report the crystal structure of human GCP4 and show that its C-terminal domain binds directly to γ-tubulin. The human GCP4 structure is the prototype for all GCPs, as it can be precisely positioned within the γTuSC envelope, revealing the nature of protein-protein interactions and conformational changes regulating nucleation activity.
Collapse
|
30
|
Yan J, Jin S, Li J, Zhan Q. Aurora B interaction of centrosomal Nlp regulates cytokinesis. J Biol Chem 2010; 285:40230-9. [PMID: 20864540 PMCID: PMC3001004 DOI: 10.1074/jbc.m110.140541] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/22/2010] [Indexed: 11/06/2022] Open
Abstract
Cytokinesis is a fundamental cellular process, which ensures equal abscission and fosters diploid progenies. Aberrant cytokinesis may result in genomic instability and cell transformation. However, the underlying regulatory machinery of cytokinesis is largely undefined. Here, we demonstrate that Nlp (Ninein-like protein), a recently identified BRCA1-associated centrosomal protein that is required for centrosomes maturation at interphase and spindle formation in mitosis, also contributes to the accomplishment of cytokinesis. Through immunofluorescent analysis, Nlp is found to localize at midbody during cytokinesis. Depletion of endogenous Nlp triggers aborted division and subsequently leads to multinucleated phenotypes. Nlp can be recruited by Aurora B to the midbody apparatus via their physical association at the late stage of mitosis. Disruption of their interaction induces aborted cytokinesis. Importantly, Nlp is characterized as a novel substrate of Aurora B and can be phosphorylated by Aurora B. The specific phosphorylation sites are mapped at Ser-185, Ser-448, and Ser-585. The phosphorylation at Ser-448 and Ser-585 is likely required for Nlp association with Aurora B and localization at midbody. Meanwhile, the phosphorylation at Ser-185 is vital to Nlp protein stability. Disruptions of these phosphorylation sites abolish cytokinesis and lead to chromosomal instability. Collectively, these observations demonstrate that regulation of Nlp by Aurora B is critical for the completion of cytokinesis, providing novel insights into understanding the machinery of cell cycle progression.
Collapse
Affiliation(s)
- Jie Yan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Shunqian Jin
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
- the Department of Radiation Oncology, Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Jia Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| | - Qimin Zhan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China and
| |
Collapse
|
31
|
Chircop M, Malladi CS, Lian AT, Page SL, Zavortink M, Gordon CP, McCluskey A, Robinson PJ. Calcineurin activity is required for the completion of cytokinesis. Cell Mol Life Sci 2010; 67:3725-37. [PMID: 20496096 PMCID: PMC11115608 DOI: 10.1007/s00018-010-0401-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 04/08/2010] [Accepted: 05/04/2010] [Indexed: 11/27/2022]
Abstract
Successful completion of cytokinesis requires the spatio-temporal regulation of protein phosphorylation and the coordinated activity of protein kinases and phosphatases. Many mitotic protein kinases are well characterized while mitotic phosphatases are largely unknown. Here, we show that the Ca(2+)- and calmodulin-dependent phosphatase, calcineurin (CaN), is required for cytokinesis in mammalian cells, functioning specifically at the abscission stage. CaN inhibitors induce multinucleation in HeLa cells and prolong the time cells spend connected via an extended intracellular bridge. Upon Ca(2+) influx during cytokinesis, CaN is activated, targeting a set of proteins for dephosphorylation, including dynamin II (dynII). At the intracellular bridge, phospho-dynII and CaN are co-localized to dual flanking midbody rings (FMRs) that reside on either side of the central midbody ring. CaN activity and disassembly of the FMRs coincide with abscission. Thus, CaN activity at the midbody plays a key role in regulating the completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Megan Chircop
- Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Uehara R, Goshima G. Functional central spindle assembly requires de novo microtubule generation in the interchromosomal region during anaphase. ACTA ACUST UNITED AC 2010; 191:259-67. [PMID: 20937700 PMCID: PMC2958471 DOI: 10.1083/jcb.201004150] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The augmin protein complex nucleates noncentrosomal microtubules during anaphase to promote completion of cell division. The central spindle forms between segregating chromosomes during anaphase and is required for cytokinesis. Although anaphase-specific bundling and stabilization of interpolar microtubules (MTs) contribute to formation of the central spindle, it remains largely unknown how these MTs are prepared. Using live imaging of MT plus ends and an MT depolymerization and regrowth assay, we show that de novo MT generation in the interchromosomal region during anaphase is important for central spindle formation in human cells. Generation of interchromosomal MTs and subsequent formation of the central spindle occur independently of preanaphase MTs or centrosomal MT nucleation but require augmin, a protein complex implicated in nucleation of noncentrosomal MTs during preanaphase. MTs generated in a hepatoma up-regulated protein (HURP)–dependent manner during anaphase also contribute to central spindle formation redundantly with preanaphase MTs. Based on these results, a new model for central spindle assembly is proposed.
Collapse
Affiliation(s)
- Ryota Uehara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | |
Collapse
|
33
|
Guizetti J, Gerlich DW. Cytokinetic abscission in animal cells. Semin Cell Dev Biol 2010; 21:909-16. [PMID: 20708087 DOI: 10.1016/j.semcdb.2010.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 05/27/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cytokinesis leads to the separation of dividing cells, which in animal cells involves the contraction of an actin-myosin ring and subsequent fission during abscission. Abscission requires a series of dynamic events, including midbody-targeted vesicle secretion, specialization of plasma membrane domains, disassembly of midbody-associated microtubule bundles and plasma membrane fission. A large number of molecular factors required for abscission have been identified through localization, loss-of-function and proteomics studies, but their coordinate function in abscission is still poorly understood. Here, we review the structural elements and molecular factors known to contribute to abscission, and discuss their potential role in the context of proposed models for the abscission mechanism.
Collapse
Affiliation(s)
- Julien Guizetti
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Zurich, Switzerland
| | | |
Collapse
|
34
|
Abstract
Membranous compartments of neurons such as axons, dendrites and modified primary cilia are defining features of neuronal phenotype. This is unlike organelles deep to the plasma membrane, which are for the most part generic and not related directly to morphological, neurochemical or functional specializations. However, here we use multi-label immunohistochemistry combined with confocal and electron microscopy to identify a very large (∼6 microns in diameter), entirely intracellular neuronal organelle which occurs singly in a ubiquitous but neurochemically distinct and morphologically simple subset of sympathetic ganglion neurons. Although usually toroidal, it also occurs as twists or rods depending on its intracellular position: tori are most often perinuclear whereas rods are often found in axons. These ‘loukoumasomes’ (doughnut-like bodies) bind a monoclonal antibody raised against beta-III-tubulin (SDL.3D10), although their inability to bind other beta-III-tubulin monoclonal antibodies indicate that the responsible antigen is not known. Position-morphology relationships within neurons and their expression of non-muscle heavy chain myosin suggest a dynamic structure. They associate with nematosomes, enigmatic nucleolus-like organelles present in many neural and non-neural tissues, which we now show to be composed of filamentous actin. Loukoumasomes also separately interact with mother centrioles forming the basal body of primary cilia. They express gamma tubulin, a microtubule nucleator which localizes to non-neuronal centrosomes, and cenexin, a mother centriole-associated protein required for ciliogenesis. These data reveal a hitherto undescribed organelle, and depict it as an intracellular transport machine, shuttling material between the primary cilium, the nematosome, and the axon.
Collapse
|
35
|
Cai S, Weaver LN, Ems-McClung SC, Walczak CE. Proper organization of microtubule minus ends is needed for midzone stability and cytokinesis. Curr Biol 2010; 20:880-5. [PMID: 20434340 PMCID: PMC2869383 DOI: 10.1016/j.cub.2010.03.067] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/18/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
Abstract
Successful cytokinesis is critical for maintaining genome stability and requires the assembly of a robust central spindle to specify the cleavage furrow position, to prevent separated chromosomes from coming back together, and to contribute to midbody abscission. A proper central spindle is assembled and maintained by a number of microtubule-associated and molecular motor proteins that sort microtubules into bundles with their plus ends overlapping at the center. The mechanisms by which different factors organize the central spindle microtubules remain unclear. We found that perturbation of the minus-end-directed Kinesin-14 HSET increased the frequency of polyploid cells, which resulted from a failure in cytokinesis. In addition, HSET knockdown resulted in severe midzone microtubule organization, most notably at microtubule minus ends, as well as mislocalization of several midbody-associated proteins. Biochemical analysis showed that both human HSET and Xenopus XCTK2 cofractionated with the gamma-tubulin ring complexes on sucrose gradients and that XCTK2 associated with gamma-tubulin and Xgrip109 by immunoprecipitation. Our data reveal the novel finding that a minus-end-directed motor contributes to the organization and stability of the central spindle, which is needed for proper cytokinesis.
Collapse
Affiliation(s)
- Shang Cai
- Biochemistry Program, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
36
|
Caracciolo V, D'Agostino L, Dráberová E, Sládková V, Crozier-Fitzgerald C, Agamanolis DP, de Chadarévian JP, Legido A, Giordano A, Dráber P, Katsetos CD. Differential expression and cellular distribution of gamma-tubulin and betaIII-tubulin in medulloblastomas and human medulloblastoma cell lines. J Cell Physiol 2010; 223:519-29. [PMID: 20162618 DOI: 10.1002/jcp.22077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In previous studies, we have shown overexpression and ectopic subcellular distribution of gamma-tubulin and betaIII-tubulin in human glioblastomas and glioblastoma cell lines (Katsetos et al., 2006, J Neuropathol Exp Neurol 65:455-467; Katsetos et al., 2007, Neurochem Res 32:1387-1398). Here we determined the expression of gamma-tubulin in surgically excised medulloblastomas (n = 20) and in the human medulloblastoma cell lines D283 Med and DAOY. In clinical tissue samples, the immunohistochemical distribution of gamma-tubulin labeling was pervasive and inversely related to neuritogenesis. Overexpression of gamma-tubulin was widespread in poorly differentiated, proliferating tumor cells but was significantly diminished in quiescent differentiating tumor cells undergoing neuritogenesis, highlighted by betaIII-tubulin immunolabeling. By quantitative real-time PCR, gamma-tubulin transcripts for TUBG1, TUBG2, and TUBB3 genes were detected in both cell lines but expression was less prominent when compared with the human glioblastoma cell lines. Immunoblotting revealed comparable amounts of gamma-tubulin and betaIII-tubulin in different phases of cell cycle; however, a larger amount of gamma-tubulin was detected in D283 Med when compared with DAOY cells. Interphase D283 Med cells exhibited predominantly diffuse cytoplasmic gamma-tubulin localization, in addition to the expected centrosome-associated distribution. Robust betaIII-tubulin immunoreactivity was detected in mitotic spindles of DAOY cells. Our data indicate that overexpression of gamma-tubulin may be linked to phenotypic dedifferentiation (anaplasia) and tumor progression in medulloblastomas and may potentially serve as a promising tumor marker.
Collapse
Affiliation(s)
- Valentina Caracciolo
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
Affiliation(s)
| | - Randall W. King
- Corresponding Author Department of Cell Biology Harvard Medical School 240 Longwood Ave, Boston MA 02115
| |
Collapse
|
38
|
Kong Z, Hotta T, Lee YRJ, Horio T, Liu B. The {gamma}-tubulin complex protein GCP4 is required for organizing functional microtubule arrays in Arabidopsis thaliana. THE PLANT CELL 2010; 22:191-204. [PMID: 20118227 PMCID: PMC2828712 DOI: 10.1105/tpc.109.071191] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 12/19/2009] [Accepted: 01/13/2010] [Indexed: 05/18/2023]
Abstract
Microtubule (MT) nucleation and organization depend on the evolutionarily conserved protein gamma -tubulin, which forms a complex with GCP2-GCP6 (GCP for gamma -Tubulin Complex Protein). To date, it is still unclear how GCP4-GCP6 (the non-core GCPs) may be involved in acentrosomal MT nucleation in plant cells. We found that GCP4 was associated with gamma -tubulin in vivo in Arabidopsis thaliana. When GCP4 expression was repressed by an artificial microRNA, transgenic plants exhibited phenotypes of dwarfism and reduced organ size. In mitotic cells, it was observed that the gamma -tubulin signal associated with the mitotic spindle, and the phragmoplast was depleted when GCP4 was downregulated. Consequently, MTs failed to converge at unified spindle poles, and the bipolar phragmoplast MT array frequently had discrete bundles with extended minus ends, resulting in failed cytokinesis as reflected by cell wall stubs in leaf epidermal cells. In addition, cortical MTs in swollen guard cells and pavement cells of the leaf epidermis became hyperparallel and bundled, which was likely caused by frequent MT nucleation with shallow angles on the wall of extant MTs. Therefore, our results support the notion that GCP4 is an indispensable component for the function of gamma -tubulin in MT nucleation and organization in plant cells.
Collapse
Affiliation(s)
- Zhaosheng Kong
- Department of Plant Biology, University of California, Davis, California 95616
| | - Takashi Hotta
- Department of Plant Biology, University of California, Davis, California 95616
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, California 95616
| | - Tetsuya Horio
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Bo Liu
- Department of Plant Biology, University of California, Davis, California 95616
- Address correspondence to
| |
Collapse
|
39
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
40
|
Hiwatashi Y, Obara M, Sato Y, Fujita T, Murata T, Hasebe M. Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. THE PLANT CELL 2008; 20:3094-106. [PMID: 19028965 PMCID: PMC2613662 DOI: 10.1105/tpc.108.061705] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 10/23/2008] [Accepted: 11/08/2008] [Indexed: 05/18/2023]
Abstract
Microtubules form arrays with parallel and antiparallel bundles and function in various cellular processes, including subcellular transport and cell division. The antiparallel bundles in phragmoplasts, plant-unique microtubule arrays, are mostly unexplored and potentially offer new cellular insights. Here, we report that the Physcomitrella patens kinesins KINID1a and KINID1b (for kinesin for interdigitated microtubules 1a and 1b), which are specific to land plants and orthologous to Arabidopsis thaliana PAKRP2, are novel factors indispensable for the generation of interdigitated antiparallel microtubules in the phragmoplasts of the moss P. patens. KINID1a and KINID1b are predominantly localized to the putative interdigitated parts of antiparallel microtubules. This interdigitation disappeared in double-deletion mutants of both genes, indicating that both KINID1a and 1b are indispensable for interdigitation of the antiparallel microtubule array. Furthermore, cell plates formed by these phragmoplasts did not reach the plasma membrane in approximately 20% of the mutant cells examined. We observed that in the double-deletion mutant lines, chloroplasts remained between the plasma membrane and the expanding margins of the cell plate, while chloroplasts were absent from the margins of the cell plates in the wild type. This suggests that the kinesins, the antiparallel microtubule bundles with interdigitation, or both are necessary for proper progression of cell wall expansion.
Collapse
Affiliation(s)
- Yuji Hiwatashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Changes of γ-tubulin expression and distribution in the zebrafish (Danio rerio) ovary, oocyte and embryo. Gene Expr Patterns 2008; 8:237-47. [DOI: 10.1016/j.gep.2007.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/18/2007] [Accepted: 12/20/2007] [Indexed: 11/22/2022]
|
42
|
Matsuda Y, Sahara K, Yasukochi Y, Yamashiki N. Detection of gamma-tubulin in spermatogonial cells of Bombyx mori (Lepidoptera) and Chortophaga viridifasciata (Orthoptera). Zoolog Sci 2008; 24:781-6. [PMID: 18217484 DOI: 10.2108/zsj.24.781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We detected a putative gamma-tubulin gene in silico and detected BACs containing the gene from a Bombyx mori BAC library. BAC-FISH mapping revealed that the gene is located on chromosome 5. To observe the distribution of gamma-tubulin, we employed antibodies against mammalian gamma-tubulin peptides. Western blot analysis disclosed a band very similar in size to gamma-tubulin protein in other species (approximately 48 kDa). In mitotic metaphase of B. mori spermatogonial cells, gamma-tubulin is exclusively localized in the spindle poles, where the centrosomes occur. We applied the same system to the grasshopper Chortophaga viridifasciata, as a representative of insect orders in which the gamma-tubulin distribution had not previously been studied. Gamma-tubulin was also found in the spindle poles during metaphase of spermatogonial cells in the grasshopper.
Collapse
Affiliation(s)
- Yumi Matsuda
- Laboratory of Developmental Biology, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | | | | | | |
Collapse
|
43
|
Didier C, Merdes A, Gairin JE, Jabrane-Ferrat N. Inhibition of proteasome activity impairs centrosome-dependent microtubule nucleation and organization. Mol Biol Cell 2007; 19:1220-9. [PMID: 18094058 DOI: 10.1091/mbc.e06-12-1140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Centrosomes are dynamic organelles that consist of a pair of cylindrical centrioles, surrounded by pericentriolar material. The pericentriolar material contains factors that are involved in microtubule nucleation and organization, and its recruitment varies during the cell cycle. We report here that proteasome inhibition in HeLa cells induces the accumulation of several proteins at the pericentriolar material, including gamma-tubulin, GCP4, NEDD1, ninein, pericentrin, dynactin, and PCM-1. The effect of proteasome inhibition on centrosome proteins does not require intact microtubules and is reversed after removal of proteasome inhibitors. This accrual of centrosome proteins is paralleled by accumulation of ubiquitin in the same area and increased polyubiquitylation of nonsoluble gamma-tubulin. Cells that have accumulated centrosome proteins in response to proteasome inhibition are impaired in microtubule aster formation. Our data point toward a role of the proteasome in the turnover of centrosome proteins, to maintain proper centrosome function.
Collapse
Affiliation(s)
- Christine Didier
- Institut de Sciences et Technologies du Médicament de Toulouse, Unité Mixte de Recherche 2587 Centre National de la Recherche Scientifique-Pierre Fabre, 31400 Toulouse, France
| | | | | | | |
Collapse
|
44
|
Vérollet C, Colombié N, Daubon T, Bourbon HM, Wright M, Raynaud-Messina B. Drosophila melanogaster gamma-TuRC is dispensable for targeting gamma-tubulin to the centrosome and microtubule nucleation. ACTA ACUST UNITED AC 2006; 172:517-28. [PMID: 16476773 PMCID: PMC2063672 DOI: 10.1083/jcb.200511071] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In metazoans, γ-tubulin acts within two main complexes, γ-tubulin small complexes (γ-TuSCs) and γ-tubulin ring complexes (γ-TuRCs). In higher eukaryotes, it is assumed that microtubule nucleation at the centrosome depends on γ-TuRCs, but the role of γ-TuRC components remains undefined. For the first time, we analyzed the function of all four γ-TuRC–specific subunits in Drosophila melanogaster: Dgrip75, Dgrip128, Dgrip163, and Dgp71WD. Grip-motif proteins, but not Dgp71WD, appear to be required for γ-TuRC assembly. Individual depletion of γ-TuRC components, in cultured cells and in vivo, induces mitotic delay and abnormal spindles. Surprisingly, γ-TuSCs are recruited to the centrosomes. These defects are less severe than those resulting from the inhibition of γ-TuSC components and do not appear critical for viability. Simultaneous cosilencing of all γ-TuRC proteins leads to stronger phenotypes and partial recruitment of γ-TuSC. In conclusion, γ-TuRCs are required for assembly of fully functional spindles, but we suggest that γ-TuSC could be targeted to the centrosomes, which is where basic microtubule assembly activities are maintained.
Collapse
Affiliation(s)
- Christel Vérollet
- Centre de Recherche en Pharmacologie, Santé, UMR 2587, Centre National de la Recherche Scientifique-Pierre Fabre, Institut de Sciences et Technologies du Médicament de Toulouse, 31432 Toulouse, Cedex 4, France
| | | | | | | | | | | |
Collapse
|
45
|
Jiang N, Wang X, Jhanwar-Uniyal M, Darzynkiewicz Z, Dai W. Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J Biol Chem 2006; 281:10577-82. [PMID: 16478733 DOI: 10.1074/jbc.m513156200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polo-like kinase 3 (Plk3), an immediate early response gene product, plays an important role in the regulation of mitosis, DNA damage checkpoint activation, and Golgi dynamics. Similar to other members of the Plk family, Plk3 has a conserved kinase domain at the N terminus and a Polo box domain consisting of two Polo boxes at the C terminus. In this study, we demonstrate that the Polo box domain of Plk3 is sufficient for subcellular localization of this kinase to the centrosomes, the spindle poles, and the midbody when ectopically expressed in HeLa and U2OS cells. Both Polo boxes are required for the subcellular localization. Overexpression of the Polo box domain, not the kinase domain, of Plk3 causes significant cell cycle arrest and cytokinesis defects, eventually leading to mitotic catastrophe/apoptosis. Interestingly, the Polo box domain of Plk3 is more potent in inhibiting cell proliferation and inducing apoptosis than that of Plk1, suggesting that this domain can provide an additional structural basis for discovery of new anticancer drugs given the current emphasis on Plk1 as a therapeutic target.
Collapse
Affiliation(s)
- Ning Jiang
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Basic Science Building, Valhalla, NY 10595, USA
| | | | | | | | | |
Collapse
|
46
|
Haren L, Remy MH, Bazin I, Callebaut I, Wright M, Merdes A. NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. ACTA ACUST UNITED AC 2006; 172:505-15. [PMID: 16461362 PMCID: PMC2063671 DOI: 10.1083/jcb.200510028] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The centrosome is the major microtubule organizing structure in somatic cells. Centrosomal microtubule nucleation depends on the protein γ-tubulin. In mammals, γ-tubulin associates with additional proteins into a large complex, the γ-tubulin ring complex (γTuRC). We characterize NEDD1, a centrosomal protein that associates with γTuRCs. We show that the majority of γTuRCs assemble even after NEDD1 depletion but require NEDD1 for centrosomal targeting. In contrast, NEDD1 can target to the centrosome in the absence of γ-tubulin. NEDD1-depleted cells show defects in centrosomal microtubule nucleation and form aberrant mitotic spindles with poorly separated poles. Similar spindle defects are obtained by overexpression of a fusion protein of GFP tagged to the carboxy-terminal half of NEDD1, which mediates binding to γTuRCs. Further, we show that depletion of NEDD1 inhibits centriole duplication, as does depletion of γ-tubulin. Our data suggest that centriole duplication requires NEDD1-dependent recruitment of γ-tubulin to the centrosome.
Collapse
Affiliation(s)
- Laurence Haren
- Institut de Sciences et Technologies du Médicament de Toulouse, Centre National de la Recherche Scientifique/Pierre Fabre, 31400 Toulouse, France
| | | | | | | | | | | |
Collapse
|
47
|
Sigala B, Edwards M, Puri T, Tsaneva IR. Relocalization of human chromatin remodeling cofactor TIP48 in mitosis. Exp Cell Res 2005; 310:357-69. [PMID: 16157330 DOI: 10.1016/j.yexcr.2005.07.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 07/23/2005] [Accepted: 07/29/2005] [Indexed: 11/19/2022]
Abstract
TIP48 is a highly conserved eukaryotic AAA+ protein which is an essential cofactor for several complexes involved in chromatin acetylation and remodeling, transcriptional and developmental regulation and nucleolar organization and trafficking. We show that TIP48 abundance in HeLa cells did not change during the cell cycle, nor did its distribution in various biochemical fractions. However, we observed distinct changes in the subcellular localization of TIP48 during M phase using immunofluorescence microscopy. Our studies demonstrate that in interphase cells TIP48 was found mainly in the nucleus and exhibited a distinct localization in the nuclear periphery. As the cells entered mitosis, TIP48 was excluded from the condensing chromosomes but showed association with the mitotic apparatus. During anaphase, some TIP48 was detected in the centrosome colocalizing with tubulin but the strongest staining appeared in the mitotic equator associated with the midzone central spindle. Accumulation of TIP48 in the midzone and the midbody was observed in late telophase and cytokinesis. This redeployment of TIP48 during anaphase and cytokinesis was independent of microtubule assembly. The relocation of endogenous TIP48 to the midzone/midbody under physiological conditions suggests a novel and distinct function for TIP48 in mitosis and possible involvement in the exit of mitosis.
Collapse
Affiliation(s)
- Barbara Sigala
- Department of Biochemistry and Molecular Biology, University College London, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
48
|
Lesca C, Germanier M, Raynaud-Messina B, Pichereaux C, Etievant C, Emond S, Burlet-Schiltz O, Monsarrat B, Wright M, Defais M. DNA damage induce gamma-tubulin-RAD51 nuclear complexes in mammalian cells. Oncogene 2005; 24:5165-72. [PMID: 15897881 DOI: 10.1038/sj.onc.1208723] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rad51 protein plays an essential role in recombination repair of DNA double-strand breaks and DNA crosslinking adducts. It is part of complexes which can vary with the stage of the cell cycle and the nature of the DNA lesions. During a search for Rad51-associated proteins in CHO nuclear extracts of S-phase cells by mass spectrometry of proteins immunoprecipitated with Rad51 antibodies, we identified a centrosomal protein, gamma-tubulin. This association was confirmed by the reverse immunoprecipitation with gamma-tubulin antibodies. Both proteins copurified from HeLa cells nuclear extracts following a tandem affinity purification of double-tagged Rad51. Immunofluorescence analysis showed colocalization of both Rad51 and gamma-tubulin in discrete foci in mammalian cell nuclei. The number of colocalized foci and their overlapping area increased in the presence of DNA damage produced by genotoxic treatments either during S phase or in exponentially growing cells. These variations did not result from an overall stress because microtubule cytoskeleton poisons devoid of direct interactions with DNA, such as taxol or colcemid, did not lead to an increase of this association. The recruitment of Rad51 and gamma-tubulin in the same nuclear complex suggests a link between DNA recombination repair and the centrosome function during the cell cycle.
Collapse
Affiliation(s)
- Claire Lesca
- IPBS, UMR 5089, CNRS Université Paul Sabatier, 205 Route de Narbonne, 31077 Toulouse Cedex 4, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Maiato H, Sampaio P, Sunkel CE. Microtubule-associated proteins and their essential roles during mitosis. ACTA ACUST UNITED AC 2005; 241:53-153. [PMID: 15548419 DOI: 10.1016/s0074-7696(04)41002-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microtubules play essential roles during mitosis, including chromosome capture, congression, and segregation. In addition, microtubules are also required for successful cytokinesis. At the heart of these processes is the ability of microtubules to do work, a property that derives from their intrinsic dynamic behavior. However, if microtubule dynamics were not properly regulated, it is certain that microtubules alone could not accomplish any of these tasks. In vivo, the regulation of microtubule dynamics is the responsibility of microtubule-associated proteins. Among these, we can distinguish several classes according to their function: (1) promotion and stabilization of microtubule polymerization, (2) destabilization or severance of microtubules, (3) functioning as linkers between various structures, or (4) motility-related functions. Here we discuss how the various properties of microtubule-associated proteins can be used to assemble an efficient mitotic apparatus capable of ensuring the bona fide transmission of the genetic information in animal cells.
Collapse
Affiliation(s)
- Hélder Maiato
- Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal
| | | | | |
Collapse
|
50
|
Alsop GB, Zhang D. Microtubules continuously dictate distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes. J Cell Sci 2004; 117:1591-602. [PMID: 15020685 DOI: 10.1242/jcs.01007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We systematically examined the impact of microtubules on distribution of actin filaments and positioning of cell cleavage using micromanipulation to progressively alter the symmetric distribution of spindle microtubules in grasshopper spermatocytes. The initial microtubule asymmetry was induced by placing a single chromosome at one spindle pole using a microneedle, which facilitates regional assembly of spindle microtubules. We augmented chromosome-induced microtubule asymmetry by further removing the aster from the achromosomal pole, producing unichromosome-bearing monopolar spindles. We created the highest spindle asymmetry by cutting early anaphase cells in two, each containing a full set of segregating chromosomes in a half-spindle. We demonstrate that the location of the spindle midzone, distribution of actin filaments, and position of cell cleavage depend on the amount of microtubule asymmetry generated, shifting up to 48.6+/-3.8% away from the spindle equator in cut cells. The positional shift is dynamic, changing incessantly as spindle microtubules reorganize during cytokinesis. These results suggest that microtubules continuously dictate the distribution of actin filaments and positioning of cell cleavage in grasshopper spermatocytes.
Collapse
Affiliation(s)
- G Bradley Alsop
- Department of Zoology/Center for Gene Research and Biotechnology, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|