1
|
Oliete-Calvo P, Serrano-Quílez J, Nuño-Cabanes C, Pérez-Martínez ME, Soares LM, Dichtl B, Buratowski S, Pérez-Ortín JE, Rodríguez-Navarro S. A role for Mog1 in H2Bub1 and H3K4me3 regulation affecting RNAPII transcription and mRNA export. EMBO Rep 2018; 19:embr.201845992. [PMID: 30249596 DOI: 10.15252/embr.201845992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022] Open
Abstract
Monoubiquitination of histone H2B (to H2Bub1) is required for downstream events including histone H3 methylation, transcription, and mRNA export. The mechanisms and players regulating these events have not yet been completely delineated. Here, we show that the conserved Ran-binding protein Mog1 is required to sustain normal levels of H2Bub1 and H3K4me3 in Saccharomyces cerevisiae Mog1 is needed for gene body recruitment of Rad6, Bre1, and Rtf1 that are involved in H2B ubiquitination and genetically interacts with these factors. We provide evidence that the absence of MOG1 impacts on cellular processes such as transcription, DNA replication, and mRNA export, which are linked to H2Bub1. Importantly, the mRNA export defect in mog1Δ strains is exacerbated by the absence of factors that decrease H2Bub1 levels. Consistent with a role in sustaining H2Bub and H3K4me3 levels, Mog1 co-precipitates with components that participate in these modifications such as Bre1, Rtf1, and the COMPASS-associated factors Shg1 and Sdc1. These results reveal a novel role for Mog1 in H2B ubiquitination, transcription, and mRNA biogenesis.
Collapse
Affiliation(s)
- Paula Oliete-Calvo
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Joan Serrano-Quílez
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carme Nuño-Cabanes
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - María E Pérez-Martínez
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Luis M Soares
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Bernhard Dichtl
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Centre for Cellular and Molecular Biology, Deakin University, Geelong, Vic., Australia
| | - Stephen Buratowski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Facultad de Biología, Universitat de València, Burjassot, Spain
| | - Susana Rodríguez-Navarro
- Gene expression and mRNA Metabolism Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain .,Gene expression and mRNA Metabolism Laboratory, Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
2
|
Aoki K, Niki H. Release of condensin from mitotic chromosomes requires the Ran-GTP gradient in the reorganized nucleus. Biol Open 2017; 6:1614-1628. [PMID: 28954740 PMCID: PMC5703609 DOI: 10.1242/bio.027193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After mitosis, nuclear reorganization occurs together with decondensation of mitotic chromosomes and reformation of the nuclear envelope, thereby restoring the Ran-GTP gradient between the nucleus and cytoplasm. The Ran-GTP gradient is dependent on Pim1/RCC1. Interestingly, a defect in Pim1/RCC1 in Schizosaccharomyces pombe causes postmitotic condensation of chromatin, namely hypercondensation, suggesting a relationship between the Ran-GTP gradient and chromosome decondensation. However, how Ran-GTP interacts with chromosome decondensation is unresolved. To examine this interaction, we used Schizosaccharomyces japonicus, which is known to undergo partial breakdown of the nuclear membrane during mitosis. We found that Pim1/RCC1 was localized on nuclear pores, but this localization failed in a temperature-sensitive mutant of Pim1/RCC1. The mutant cells exhibited hypercondensed chromatin after mitosis due to prolonged association of condensin on the chromosomes. Conceivably, a condensin-dephosphorylation defect might cause hypercondensed chromatin, since chromosomal localization of condensin is dependent on phosphorylation by cyclin-dependent kinase (CDK). Indeed, CDK-phospho-mimic mutation of condensin alone caused untimely condensin localization, resulting in hypercondensed chromatin. Together, these results suggest that dephosphorylation of CDK sites of condensin might require the Ran-GTP gradient produced by nuclear pore-localized Pim1/RCC1. Summary: A mutant of Pim1/RCC1 caused hypercondensed chromatin after mitosis due to prolonged association of condensin on chromosomes, suggesting that dephosphorylation of CDK sites of condensin might require Ran-GTP after mitosis.
Collapse
Affiliation(s)
- Keita Aoki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
3
|
Xu P, Cai W. RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3277-87. [PMID: 24790113 PMCID: PMC4071843 DOI: 10.1093/jxb/eru178] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Of the diverse abiotic stresses, low temperature is one of the major limiting factors that lead to a series of morphological, physiological, biochemical, and molecular changes in plants. Ran, an evolutionarily conserved small G-protein family, has been shown to be essential for the nuclear translocation of proteins. It also mediates the regulation of cell cycle progression in mammalian cells. However, little is known about Ran function in rice (Oryza sativa). We report here that Ran gene OsRAN1 is essential for the molecular improvement of rice for cold tolerance. Ran also affects plant morphogenesis in transgenic Arabidopsis thaliana. OsRAN1 is ubiquitously expressed in rice tissues with the highest expression in the spike. The levels of mRNA encoding OsRAN1 were greatly increased by cold and indoleacetic acid treatment rather than by addition of salt and polyethylene glycol. Further, OsRAN1 overexpression in Arabidopsis increased tiller number, and altered root development. OsRAN1 overexpression in rice improves cold tolerance. The levels of cellular free Pro and sugar levels were highly increased in transgenic plants under cold stress. Under cold stress, OsRAN1 maintained cell division and cell cycle progression, and also promoted the formation of an intact nuclear envelope. The results suggest that OsRAN1 protein plays an important role in the regulation of cellular mitosis and the auxin signalling pathway.
Collapse
Affiliation(s)
- Peipei Xu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Weiming Cai
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Graduate School of Chinese Academy of Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
4
|
Wu F, Liu Y, Zhu Z, Huang H, Ding B, Wu J, Shi Y. The 1.9Å crystal structure of Prp20p from Saccharomyces cerevisiae and its binding properties to Gsp1p and histones. J Struct Biol 2011; 174:213-22. [DOI: 10.1016/j.jsb.2010.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 12/01/2022]
|
5
|
Van de Vosse DW, Wan Y, Wozniak RW, Aitchison JD. Role of the nuclear envelope in genome organization and gene expression. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:147-66. [PMID: 21305702 PMCID: PMC3050641 DOI: 10.1002/wsbm.101] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although often depicted as a static structure upon which proteinaceous factors bind to control gene expression, the genome is actually highly mobile and capable of exploring the complex domain architecture of the nucleus, which in turn controls genome maintenance and gene expression. Numerous genes relocate from the nuclear periphery to the nuclear interior upon activation and are hypothesized to interact with pre-assembled sites of transcription. In contrast to the nuclear interior, the nuclear periphery is widely regarded as transcriptionally silent. This is reflected by the preferential association of heterochromatin with the nuclear envelope (NE). However, some activated genes are recruited to the nuclear periphery through interactions with nuclear pore complexes (NPCs), and NPC components are capable of preventing the spread of silent chromatin into adjacent regions of active chromatin, leading to the speculation that NPCs may facilitate the transition of chromatin between transcriptional states. Thus, the NE might better be considered as a discontinuous platform that promotes both gene activation and repression. As such, it is perhaps not surprising that many disease states are frequently associated with alterations in the NE. Here, we review the effects of the NE and its constituents on chromatin organization and gene expression.
Collapse
Affiliation(s)
| | - Yakun Wan
- Institute for Systems Biology, Seattle, Washington, 98103-8904, USA
| | - Richard W. Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - John D. Aitchison
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
- Institute for Systems Biology, Seattle, Washington, 98103-8904, USA
| |
Collapse
|
6
|
Patel SS, Rexach MF. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 2007; 7:121-31. [PMID: 17897934 DOI: 10.1074/mcp.m700407-mcp200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A highly sensitive, equilibrium-based binding assay termed "Bead Halo" was used here to identify and characterize interactions involving components of the nucleocytoplasmic transport machinery in eukaryotes. Bead Halo uncovered novel interactions between the importin Kap95 and the nucleoporins (nups) Nic96, Pom34, Gle1, Ndc1, Nup84, and Seh1, which likely occur during nuclear pore complex biogenesis. Bead Halo was also used to characterize the molecular determinants for binding between Kap95 and the family of nups that feature multiple phenylalanine-glycine motifs (FG nups). Binding was sensitive to the number of FG motifs present and to amino acid (AA) residues immediately flanking the FG motifs. Also, binding was reduced but not abolished when phenylalanine residues in all FG motifs were replaced by tyrosine or tryptophan. These results suggest flexibility in the binding pockets of Kap95 and synergism in binding FG motifs. The hypothesis that Nup53 and Nup59 bind directly to membranes through a C-terminal amphipathic alpha helix and to DNA via an RNA recognition motif domain was also tested and validated using Bead Halo. The results support a role for these nups in nuclear pore membrane biogenesis and in gene expression. Finally, Bead Halo detected binding of the nups Gle1, Nup60, and Nsp1 to phospholipid bilayers. This may reflect the known interaction between Gle1 and phosphoinositides and suggests similar interactions for Nup60 and Nsp1. As the Bead Halo assay detected molecular interactions in cell lysates, as well as between purified components, it can be adapted for large-scale proteomic studies using automated robotics and microscopy.
Collapse
Affiliation(s)
- Samir S Patel
- Department of Molecular, Cell, & Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
7
|
Clément M, Deshaies F, de Repentigny L, Belhumeur P. The nuclear GTPase Gsp1p can affect proper telomeric function through the Sir4 protein inSaccharomyces cerevisiae. Mol Microbiol 2006; 62:453-68. [PMID: 16956377 DOI: 10.1111/j.1365-2958.2006.05374.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The small Ras-like GTPase Ran/Gsp1p is a highly conserved nuclear protein required for the nucleocytoplasmic trafficking of macromolecules. Recent findings suggest that the Ran/Gsp1p pathway may have additional roles in several aspects of nuclear structure and function, including spindle assembly, nuclear envelope formation, nuclear pore complex assembly and RNA processing. Here, we provide evidence that Gsp1p can regulate telomeric function in Saccharomyces cerevisiae. We show that overexpression of PRP20, encoding the Gsp1p GDP/GTP nuclear exchange factor, specifically weakens telomeric silencing without detectably affecting nucleocytoplasmic transport. In addition to this silencing defect, we show that Rap1p and Sir3p delocalize from their normal telomeric foci. Interestingly, Gsp1p was found to interact genetically and physically with the telomeric component Sir4p. Taken together, these results suggest that the GSP1 pathway could regulate proper telomeric function in yeast through Sir4p.
Collapse
Affiliation(s)
- Martin Clément
- Département de microbiologie et immunologie, Université de Montréal, C P 6128, succ. Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
8
|
Madrid AS, Weis K. Nuclear transport is becoming crystal clear. Chromosoma 2006; 115:98-109. [PMID: 16421734 DOI: 10.1007/s00412-005-0043-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 12/02/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Alexis S Madrid
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
9
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
10
|
Abstract
Ran regulates nuclear import and export pathways by coordinating the assembly and disassembly of transport complexes. These transport reactions are linked to the GTPase cycle and subcellular distribution of Ran. Mog1 is an evolutionarily conserved nuclear protein that binds RanGTP and stimulates guanine nucleotide release, suggesting Mog1 regulates the nuclear transport functions of Ran. In the present study, we have characterized the nuclear import pathway of Mog1, and we have defined the domain in Mog1 that stimulates GTP release from Ran. In permeabilized cells, nuclear import of Mog1 is independent of exogenously added factors, and is inhibited by wheat germ agglutinin, indicating that translocation of Mog1 involves physical interactions with the nuclear pore complex. In contrast to RanGEF, which is restricted to the nucleus, Mog1 shuttles between the nucleus and the cytoplasm. Single-point mutations in acidic residues of Mog1 (Asp25, Asp34, Glu37) dramatically reduce GTP release and Ran binding activity, whereas mutation of a single basic residue (Arg30) renders Mog1 hyperactive for GTP release. These mutations map within a conserved, solvent-exposed loop in Mog1 that is functionally similar to the beta-wedge used by RanGEF to promote nucleotide release from Ran. These data suggest that Mog1 and RanGEF use similar mechanisms to facilitate guanine nucleotide release from Ran.
Collapse
Affiliation(s)
- S M Steggerda
- Center for Cell Signaling, Department of Biochemistry and Molecular Genetics, and Cell and Molecular Biology Program, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
11
|
Nishijima H, Seki T, Nishitani H, Nishimoto T. Premature chromatin condensation caused by loss of RCC1. PROGRESS IN CELL CYCLE RESEARCH 2000; 4:145-56. [PMID: 10740822 DOI: 10.1007/978-1-4615-4253-7_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hamster rcc1 mutant, tsBN2, prematurely enter mitosis during S phase. RCC1 is a guanine nucleotide exchanging factor for a small G protein Ran and localised on the chromatin, whereas RanGTPase activating protein is in the cytoplasm. Consistently, Ran shuttles between the nucleus and the cytoplasm, carrying out nucleus-cytosol exchange of macromolecules, which regulates the cell cycle. The finding that loss of RCC1 which disturbs nuclear protein export due to loss of RanGTP, abrogates the check point control suggests that RCC1 senses the status of the chromatin, such as replication, and couples it to the cell cycle progression through Ran.
Collapse
Affiliation(s)
- H Nishijima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
12
|
Zhang C, Clarke PR. Chromatin-independent nuclear envelope assembly induced by Ran GTPase in Xenopus egg extracts. Science 2000; 288:1429-32. [PMID: 10827954 DOI: 10.1126/science.288.5470.1429] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The nuclear envelope (NE) forms a controlled boundary between the cytoplasm and the nucleus of eukaryotic cells. To facilitate investigation of mechanisms controlling NE assembly, we developed a cell-free system made from Xenopus laevis eggs to study the process in the absence of chromatin. NEs incorporating nuclear pores were assembled around beads coated with the guanosine triphosphatase Ran, forming pseudo-nuclei that actively imported nuclear proteins. NE assembly required the cycling of guanine nucleotides on Ran and was promoted by RCC1, a nucleotide exchange factor recruited to beads by Ran-guanosine diphosphate (Ran-GDP). Thus, concentration of Ran-GDP followed by generation of Ran-GTP is sufficient to induce NE assembly.
Collapse
Affiliation(s)
- C Zhang
- Biomedical Research Centre, University of Dundee, Level 5, Ninewells Hospital and Medical School, Dundee DD1 9SY, Scotland, UK.
| | | |
Collapse
|
13
|
Dasso M. The role of the Ran GTPase pathway in cell cycle control and interphase nuclear functions. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:163-72. [PMID: 9552361 DOI: 10.1007/978-1-4615-1809-9_13] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ran is a small, highly abundant, nuclear GTPase. Mutants in Ran and in proteins that interact with it disrupt the normal checkpoint control of mitosis with respect to the completion of DNA synthesis. Ran and other components of this pathway are also required for numerous nuclear functions such as RNA export, protein import, RNA processing and DNA replication. It will be important to understand how these facets of Ran's activities are linked and how they promote correct control of the cell cycle. This review examines recent progress in discovering other components of the Ran GTPase pathway and considers how this pathway may be required for the control of the cell cycle.
Collapse
Affiliation(s)
- M Dasso
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, MD 20892-5430, USA
| |
Collapse
|
14
|
Matynia A, Mueller U, Ong N, Demeter J, Granger AL, Hinata K, Sazer S. Isolation and characterization of fission yeast sns mutants defective at the mitosis-to-interphase transition. Genetics 1998; 148:1799-811. [PMID: 9560394 PMCID: PMC1460064 DOI: 10.1093/genetics/148.4.1799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
pim1-d1ts was previously identified in a visual screen for fission yeast mutants unable to complete the mitosis-to-interphase transition. pim1+ encodes the guanine nucleotide exchange factor (GEF) for the spi1 GTPase. Perturbations of this GTPase system by either mutation or overproduction of its regulatory proteins cause cells to arrest with postmitotic condensed chromosomes, an unreplicated genome, and a wide medial septum. The septation phenotype of pim1-d1ts was used as the basis for a more extensive screen for this novel class of sns (septated, not in S-phase) mutants. Seventeen mutants representing 14 complementation groups were isolated. Three strains, sns-A3, sns-A5, and sns-A6, representing two different alleles, are mutated in the pim1+ gene. Of the 13 non-pim1ts sns complementation groups, 11 showed genetic interactions with the spi1 GTPase system. The genes mutated in 10 sns strains were synthetically lethal with pim1-d1, and six sns strains were hypersensitive to overexpression of one or more of the known components of the spil GTPase system. Epistasis analysis places the action of the genes mutated in nine of these strains downstream of pim1+ and the action of one gene upstream of pim1+. Three strains, sns-A2, sns-B1, and sns-B9, showed genetic interaction with the spil GTPase system in every test performed. sns-B1 and sns-B9 are likely to identify downstream targets, whereas sns-A2 is likely to identify upstream regulators of the spi1 GTPase system that are required for the mitosis-to-interphase transition.
Collapse
Affiliation(s)
- A Matynia
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Taura T, Schlenstedt G, Silver PA. Yrb2p is a nuclear protein that interacts with Prp20p, a yeast Rcc1 homologue. J Biol Chem 1997; 272:31877-84. [PMID: 9395535 DOI: 10.1074/jbc.272.50.31877] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A conserved family of Ran binding proteins (RBPs) has been defined by their ability to bind to the Ran GTPase and the presence of a common region of approximately 100 amino acids (the Ran binding domain). The yeast Saccharomyces cerevisiae genome predicts only three proteins with canonical Ran binding domains. Mutation of one of these, YRB1, results in defects in transport of macromolecules across the nuclear envelope (Schlenstedt, G., Wong, D. H., Koepp, D. M., and Silver, P. A. (1995) EMBO J. 14, 5367-5378). The second one, encoded by YRB2, is a 327-amino acid protein with a Ran binding domain at its C terminus and an internal cluster of FXFG and FG repeats conserved in nucleoporins. Yrb2p is located inside the nucleus, and this localization relies on the N terminus. Results of both genetic and biochemical analyses show interactions of Yrb2p with the Ran nucleotide exchanger Prp20p/Rcc1. Yrb2p binding to Gsp1p (yeast Ran) as well as to a novel 150-kDa GTP-binding protein is also detected. The Ran binding domain of Yrb2p is essential for function and for its association with Prp20p and the GTP-binding proteins. Taken together, we suggest that Yrb2p may play a role in the Ran GTPase cycle distinct from nuclear transport.
Collapse
Affiliation(s)
- T Taura
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and the Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
16
|
Avis JM, Clarke PR. Ran, a GTPase involved in nuclear processes: its regulators and effectors. J Cell Sci 1996; 109 ( Pt 10):2423-7. [PMID: 8923203 DOI: 10.1242/jcs.109.10.2423] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ran is a small GTPase that has been implicated in a variety of nuclear processes, including the maintainance of nuclear structure, protein import, mRNA processing and export, and cell cycle regulation. There has been significant progress in determining the role of Ran in nuclear protein import. However, it has been unclear whether this role is sufficient to account for the diverse effects of disrupting Ran functions. Recently, several proteins have been identified that bind specifically to Ran and are, therefore, possible effectors. Other experiments using dominant mutants of Ran that block its GTP/GDP cycle have suggested that Ran may have multiple roles. Here, these results are summarised and discussed with respect to the action of Ran.
Collapse
Affiliation(s)
- J M Avis
- School of Biological Sciences, University of Manchester, UK
| | | |
Collapse
|
17
|
Nakashima N, Hayashi N, Noguchi E, Nishimoto T. Putative GTPase Gtr1p genetically interacts with the RanGTPase cycle in Saccharomyces cerevisiae. J Cell Sci 1996; 109 ( Pt 9):2311-8. [PMID: 8886981 DOI: 10.1242/jcs.109.9.2311] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to identify a protein interacting with RCC1, a guanine nucleotide-exchange factor for the nuclear GTPase Ran, we isolated a series of cold-sensitive suppressors of mtr1-2, a temperature-sensitive mutant of the Saccharomyces cerevisiae RCC1 homologue. One of the isolated suppressor mutants was mutated in the putative GTPase Gtr1p, being designated as gtr1-11. It also suppressed other alleles of mtr1-2, srm1-1 and prp20-1 in contrast to overexpression of the S. cerevisiae Ran/TC4 homologue Gsp1p, previously reported to suppress prp20-1, but not mtr1-2 or srm1-1. Furthermore, gtr1-11 suppressed the rna1-1, temperature-sensitive mutant of the Gsp1p GTPase-activating protein, but not the srp1-31, temperature-sensitive mutant of the S. cerevisiae importin alpha homologue. mtr1-2, srm1-1 and prp20-1 were also suppressed by overexpression of the mutated Gtr1p, Gtr1-11p. In summary, Gtr1p that was localized in the cytoplasm by immunofluoresence staining was suggested to function as a negative regulator for the Ran/TC4 GTPase cycle.
Collapse
Affiliation(s)
- N Nakashima
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
18
|
Abstract
Ran is one of the most abundant and best conserved of the small GTP binding and hydrolyzing proteins of eukaryotes. It is located predominantly in cell nuclei. Ran is a member of the Ras family of GTPases, which includes the Ras and Ras-like proteins that regulate cell growth and division, the Rho and Rac proteins that regulate cytoskeletal organization and the Rab proteins that regulate vesicular sorting. Ran differs most obviously from other members of the Ras family in both its nuclear localization, and its lack of sites required for post-translational lipid modification. Ran is, however, similar to other Ras family members in requiring a specific guanine nucleotide exchange factor (GEF) and a specific GTPase activating protein (GAP) as stimulators of overall GTPase activity. In this review, the multiple cellular functions of Ran are evaluated with respect to its known biochemistry and molecular interactions.
Collapse
Affiliation(s)
- M G Rush
- Department of Biochemistry, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
19
|
Hayashi N, Yokoyama N, Seki T, Azuma Y, Ohba T, Nishimoto T. RanBP1, a Ras-like nuclear G protein binding to Ran/TC4, inhibits RCC1 via Ran/TC4. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:661-9. [PMID: 7616957 DOI: 10.1007/bf00290397] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A human protein that is 92% identical and 97% homologous at the amino acid level to RanBP1 from mouse was identified by the two-hybrid method, using two types of target cDNAs fused to sequences encoding the GAL4 DNA-binding domain. The target cDNAs encoded the human Ran/TC4 and human RCC1 proteins, respectively. An in vitro binding experiment showed that RanBP1 binds to RCC1 with the aid of Ran. Partially purified, GST-fused RanBP1 inhibited RCC1-stimulated guanine nucleotide release from Ran in vitro. Consistent with this in vitro finding, overproduction of human RanBP1 was detrimental to growth of tsBN2, a temperature-sensitive BHK21 hamster cell line defective in the RCC1 gene, and inhibited the growth of the Saccharomyces cerevisiae rcc1 mutants prp20, mtr1 and srm1. The specific effect of RanBP1 on rcc1- cells was confirmed by the finding that overproduction of RanBP1 induces significant levels of expression of a FUS1-lacZ gene and an increase in mating efficiencies in a ste3, pheromone receptor-deficient yeast mutant. This phenotype is similar to the srm1, a mutant isolated as a suppressor that restores mating to receptorless mutants. These findings indicate that RanBP1 negatively regulates RCC1.
Collapse
Affiliation(s)
- N Hayashi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Saitoh H, Dasso M. The RCC1 protein interacts with Ran, RanBP1, hsc70, and a 340-kDa protein in Xenopus extracts. J Biol Chem 1995; 270:10658-63. [PMID: 7738003 DOI: 10.1074/jbc.270.18.10658] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
RCC1 is an abundant, highly conserved, chromatin-associated protein whose function is necessary for the preservation of a properly ordered cell cycle. RCC1 is also necessary for numerous nuclear processes, including nuclear transport and RNA metabolism; and it functions enzymatically as a guanine nucleotide exchange factor for a small, ras-related GTPase called Ran. Studies in several organisms suggest that RCC1 may be part of a large complex containing multiple proteins. There is also evidence that RCC1 associates with chromatin through other proteins and that the binding of the complex to chromatin varies within the cell cycle. In order to characterize this putative complex, we have identified a number of other proteins as candidate components of the complex by their association with a GST-RCC1 fusion protein. Three of these proteins have previously been identified (Ran, RanBP1, and hsc70). The fourth protein is novel and has a molecular mass of 340 kDa. In this report, we discuss a preliminary characterization of the interactions between these proteins.
Collapse
Affiliation(s)
- H Saitoh
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-5430, USA
| | | |
Collapse
|
21
|
Bischoff FR, Krebber H, Smirnova E, Dong W, Ponstingl H. Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1. EMBO J 1995; 14:705-15. [PMID: 7882974 PMCID: PMC398135 DOI: 10.1002/j.1460-2075.1995.tb07049.x] [Citation(s) in RCA: 277] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
RCC1 (the regulator of chromosome condensation) stimulates guanine nucleotide dissociation on the Ras-related nuclear protein Ran. Both polypeptides are components of a regulatory pathway that has been implicated in regulating DNA replication, onset of and exit from mitosis, mRNA processing and transport, and import of proteins into the nucleus. In a search for further members of the RCC1-Ran signal pathway, we have identified proteins of 23, 45 and 300 kDa which tightly bind to Ran-GTP but not Ran-GDP. The purified soluble 23 kDa Ran binding protein RanBP1 does not activate RanGTPase, but increases GTP hydrolysis induced by the RanGTPase-activating protein RanGAP1 by an order of magnitude. In the absence of RanGAP, it strongly inhibits RCC1-induced exchange of Ran-bound GTP. In addition, it forms a stable complex with nucleotide-free RCC1-Ran. With these properties, it differs markedly from guanine diphosphate dissociation inhibitors which preferentially prevent the exchange of protein-bound GDP and in some cases were shown to inhibit GAP-induced GTP hydrolysis. RanBP1 is the first member of a new class of proteins regulating the binding and hydrolysis of GTP by Ras-related proteins.
Collapse
Affiliation(s)
- F R Bischoff
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Heidelberg
| | | | | | | | | |
Collapse
|
22
|
Dasso M, Seki T, Azuma Y, Ohba T, Nishimoto T. A mutant form of the Ran/TC4 protein disrupts nuclear function in Xenopus laevis egg extracts by inhibiting the RCC1 protein, a regulator of chromosome condensation. EMBO J 1994; 13:5732-44. [PMID: 7988569 PMCID: PMC395539 DOI: 10.1002/j.1460-2075.1994.tb06911.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Ran protein is a small GTPase that has been implicated in a large number of nuclear processes including transport. RNA processing and cell cycle checkpoint control. A similar spectrum of nuclear activities has been shown to require RCC1, the guanine nucleotide exchange factor (GEF) for Ran. We have used the Xenopus laevis egg extract system and in vitro assays of purified proteins to examine how Ran or RCC1 could be involved in these numerous processes. In these studies, we employed mutant Ran proteins to perturb nuclear assembly and function. The addition of a bacterially expressed mutant form of Ran (T24N-Ran), which was predicted to be primarily in the GDP-bound state, profoundly disrupted nuclear assembly and DNA replication in extracts. We further examined the molecular mechanism by which T24N-Ran disrupts normal nuclear activity and found that T24N-Ran binds tightly to the RCC1 protein within the extract, resulting in its inactivation as a GEF. The capacity of T24N-Ran-blocked interphase extracts to assemble nuclei from de-membranated sperm chromatin and to replicate their DNA could be restored by supplementing the extract with excess RCC1 and thereby providing excess GEF activity. Conversely, nuclear assembly and DNA replication were both rescued in extracts lacking RCC1 by the addition of high levels of wild-type GTP-bound Ran protein, indicating that RCC1 does not have an essential function beyond its role as a GEF in interphase Xenopus extracts.
Collapse
Affiliation(s)
- M Dasso
- Laboratory of Molecular Embryology, NICHD, National Institutes of Health, Bethesda, MD 20892-5430
| | | | | | | | | |
Collapse
|
23
|
Lee A, Clark KL, Fleischmann M, Aebi M, Clark MW. Site-directed mutagenesis of the yeast PRP20/SRM1 gene reveals distinct activity domains in the protein product. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:32-44. [PMID: 7845357 DOI: 10.1007/bf00279748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Prp20/Srm1, a homolog of the mammalian protein RCC1 in Saccharomyces cerevisiae, binds to double-stranded DNA (dsDNA) through a multicomponent complex in vitro. This dsDNA-binding capability of the Prp20 complex has been shown to be cell-cycle dependent; affinity for dsDNA is lost during DNA replication. By analyzing a number of temperature sensitive (ts) prp20 alleles produced in vivo and in vitro, as well as site-directed mutations in highly conserved positions in the imperfect repeats that make up the protein, we have determined a relationship between the residues at these positions, cell viability, and the dsDNA-binding abilities of the Prp20 complex. These data reveal that the essential residues for Prp20 function are located mainly in the second and the third repeats at the amino-terminus and the last two repeats, the seventh and eighth, at the carboxyl-terminus of Prp20. Carboxyl-terminal mutations in Prp20 differ from amino-terminal mutations in showing loss of dsDNA binding: their conditional lethal phenotype and the loss of dsDNA binding affinity are both suppressible by overproduction of Gsp1, a GTP-binding constituent of the Prp20 complex, homologous to the mammalian protein TC4/Ran. Although wild-type Prp20 does not bind to dsDNA on its own, two mutations in conserved residues were found that caused the isolated protein to bind dsDNA. These data imply that, in situ, the other components of the Prp20 complex regulate the conformation of Prp20 and thus its affinity for dsDNA. Gsp1 not only influences the dsDNA-binding ability of Prp20 but it also regulates other essential function(s) of the Prp20 complex. Overproduction of Gsp1 also suppresses the lethality of two conditional mutations in the penultimate carboxyl-terminal repeat of Prp20, even though these mutations do not eliminate the dsDNA binding activity of the Prp20 complex. Other site-directed mutants reveal that internal and carboxyl-terminal regions of Prp20 that lack homology to RCC1 are dispensable for dsDNA binding and growth.
Collapse
Affiliation(s)
- A Lee
- Biology Department, McGill University, Montreal, Canada
| | | | | | | | | |
Collapse
|