1
|
Fita-Torró J, Garrido-Huarte JL, López-Gil L, Michel AH, Kornmann B, Pascual-Ahuir A, Proft M. Inhibition of mitochondrial protein import and proteostasis by a pro-apoptotic lipid. eLife 2025; 13:RP93621. [PMID: 40445107 PMCID: PMC12124835 DOI: 10.7554/elife.93621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025] Open
Abstract
Mitochondria-mediated cell death is critically regulated by bioactive lipids derived from sphingolipid metabolism. The lipid aldehyde trans-2-hexadecenal (t-2-hex) induces mitochondrial dysfunction from yeast to humans. Here, we apply unbiased transcriptomic, functional genomics, and chemoproteomic approaches in the yeast model to uncover the principal mechanisms and biological targets underlying this lipid-induced mitochondrial inhibition. We find that loss of Hfd1 fatty aldehyde dehydrogenase function efficiently sensitizes cells for t-2-hex inhibition and apoptotic cell death. Excess of t-2-hex causes a profound transcriptomic response with characteristic hallmarks of impaired mitochondrial protein import, like activation of mitochondrial and cytosolic chaperones or proteasomal function and severe repression of translation. We confirm that t-2-hex stress induces rapid accumulation of mitochondrial pre-proteins and protein aggregates and subsequent activation of Hsf1- and Rpn4-dependent gene expression. By saturated transposon mutagenesis, we find that t-2-hex tolerance requires an efficient heat shock response and specific mitochondrial and ER functions and that mutations in ribosome, protein, and amino acid biogenesis are beneficial upon t-2-hex stress. We further show that genetic and pharmacological inhibition of protein translation causes t-2-hex resistance, indicating that loss of proteostasis is the predominant consequence of the pro-apoptotic lipid. Several TOM subunits, including the central Tom40 channel, are lipidated by t-2-hex in vitro and mutation of accessory subunits Tom20 or Tom70 confers t-2-hex tolerance. Moreover, the Hfd1 gene dose determines the strength of t-2-hex mediated inhibition of mitochondrial protein import, and Hfd1 co-purifies with Tom70. Our results indicate that the transport of mitochondrial precursor proteins through the outer mitochondrial membrane is sensitively inhibited by the pro-apoptotic lipid and thus represents a hotspot for pro- and anti-apoptotic signaling.
Collapse
Affiliation(s)
- Josep Fita-Torró
- Department of Metabolism, Inflammation and Aging, Instituto de Biomedicina de Valencia IBV-CSIC; Valencia Biomedical Research Foundation Centro de Investigación Príncipe Felipe (CIPF) – Associated Unit to the Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - José Luis Garrido-Huarte
- Department of Metabolism, Inflammation and Aging, Instituto de Biomedicina de Valencia IBV-CSIC; Valencia Biomedical Research Foundation Centro de Investigación Príncipe Felipe (CIPF) – Associated Unit to the Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Lucía López-Gil
- Department of Metabolism, Inflammation and Aging, Instituto de Biomedicina de Valencia IBV-CSIC; Valencia Biomedical Research Foundation Centro de Investigación Príncipe Felipe (CIPF) – Associated Unit to the Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| | - Agnès H Michel
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Benoit Kornmann
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Amparo Pascual-Ahuir
- Grupo de Ingeniería Biomolecular y Biosensores, Centro de Investigación e Innovación en Bioingeniería Ci2B, Universitat Politècnica de València, Ciudad Politécnica de la InnovaciónValenciaSpain
| | - Markus Proft
- Department of Metabolism, Inflammation and Aging, Instituto de Biomedicina de Valencia IBV-CSIC; Valencia Biomedical Research Foundation Centro de Investigación Príncipe Felipe (CIPF) – Associated Unit to the Instituto de Biomedicina de Valencia IBV-CSICValenciaSpain
| |
Collapse
|
2
|
Adebambo TH, Medina-Flores F, Zhang S, Lerit DA. Arsenic impairs Drosophila neural stem cell mitotic progression and sleep behavior in a tauopathy model. G3 (BETHESDA, MD.) 2025; 15:jkaf049. [PMID: 40192438 PMCID: PMC12060243 DOI: 10.1093/g3journal/jkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 04/25/2025]
Abstract
Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.
Collapse
Affiliation(s)
- Temitope H Adebambo
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Fernanda Medina-Flores
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Shirley Zhang
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
Lee J, Tatebayashi K, Levin DE. Acetic acid-induced stress granules function as scaffolding complexes for Hog1 activation by Pbs2. J Cell Biol 2025; 224:e202409072. [PMID: 40067148 PMCID: PMC11895697 DOI: 10.1083/jcb.202409072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 03/15/2025] Open
Abstract
Stress-activated protein kinases (SAPKs) respond to a wide variety of stressors. In most cases, the pathways through which specific stress signals are transmitted to the SAPK are not known. We show that the yeast SAPK Hog1 is activated by acetic acid through an intracellular mechanism that does not involve stimulation of the high osmolarity glycerol (HOG) signaling pathway beyond its basal level. Rather, acetic acid treatment drives the formation of stress granules, which function as a scaffold to bring Hog1 together with Pbs2, its immediately upstream activating kinase, in a stable assembly that leverages the basal activity of Pbs2 to phosphorylate Hog1. Deletion analysis of stress granule components revealed that the assembly is critical for both the acetic acid-induced activation of Hog1 and its association with Pbs2. Activated Hog1 remains associated with stress granules, which may have implications for its targeting.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Kazuo Tatebayashi
- Laboratory of Molecular Genetics, Frontier Research Unit, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - David E. Levin
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Lorentzon E, Lee J, Masaryk J, Keuenhof K, Karlsson N, Galipaud C, Madsen R, Höög JL, Levin DE, Tamás MJ. Direct binding of arsenicals to nuclear transport factors disrupts nucleocytoplasmic transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632748. [PMID: 39868121 PMCID: PMC11761705 DOI: 10.1101/2025.01.13.632748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Human exposure to arsenicals is associated with devastating diseases such as cancer and neurodegeneration. At the same time, arsenic-based drugs are used as therapeutic agents. The ability of arsenic to directly bind to proteins is correlated with its toxic and therapeutic effects highlighting the importance of elucidating arsenic-protein interactions. In this study, we took a proteomic approach and identified 174 proteins that bind to arsenic in Saccharomyces cerevisiae. Proteins involved in nucleocytoplasmic transport were markedly enriched among the arsenic-binding proteins, and we demonstrate that arsenic-binding to nuclear import factors results in their relocation from the nuclear envelope and subsequent aggregation in the cytosol. Similarly, nuclear pore proteins that make up the nuclear pore complex mislocalized and aggregated in arsenic-exposed cells. Consequently, arsenic was shown to inhibit nuclear protein import and export. We propose a model in which arsenic-binding to nuclear transport factors leads to their mislocalization and aggregation, which disrupts nucleocytoplasmic transport and causes arsenic sensitivity.
Collapse
Affiliation(s)
- Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Jongmin Lee
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jakub Masaryk
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Nora Karlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Charlotte Galipaud
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Rebecca Madsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - Johanna L. Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| | - David E. Levin
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, S-405 30 Göteborg, Sweden
| |
Collapse
|
5
|
Adebambo TH, Flores MFM, Zhang SL, Lerit DA. Arsenic impairs Drosophila neural stem cell mitotic progression and sleep behavior in a tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606375. [PMID: 39149321 PMCID: PMC11326188 DOI: 10.1101/2024.08.05.606375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Despite established exposure limits, arsenic remains the most significant environmental risk factor detrimental to human health and is associated with carcinogenesis and neurotoxicity. Arsenic compromises neurodevelopment, and it is associated with peripheral neuropathy in adults. Exposure to heavy metals, such as arsenic, may also increase the risk of neurodegenerative disorders. Nevertheless, the molecular mechanisms underlying arsenic-induced neurotoxicity remain poorly understood. Elucidating how arsenic contributes to neurotoxicity may mitigate some of the risks associated with chronic sublethal exposure and inform future interventions. In this study, we examine the effects of arsenic exposure on Drosophila larval neurodevelopment and adult neurologic function. Consistent with prior work, we identify significant developmental delays and heightened mortality in response to arsenic. Within the developing larval brain, we identify a dose-dependent increase in brain volume. This aberrant brain growth is coupled with impaired mitotic progression of the neural stem cells (NSCs), progenitors of the neurons and glia of the central nervous system. Live imaging of cycling NSCs reveals significant delays in cell cycle progression upon arsenic treatment, leading to genomic instability. In adults, chronic arsenic exposure reduces neurologic function, such as locomotion. Finally, we show arsenic selectively impairs circadian rhythms in a humanized tauopathy model. These findings inform mechanisms of arsenic neurotoxicity and reveal sex-specific and genetic vulnerabilities to sublethal exposure.
Collapse
Affiliation(s)
- Temitope H. Adebambo
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | | | - Shirley L. Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
| | - Dorothy A. Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322
- Winship Cancer Institute, Emory University, Atlanta GA 30322
| |
Collapse
|
6
|
Demircan N, Ozgur R, Turkan I, Uzilday B. Heavy metal toxicity leads to accumulation of insoluble proteins and induces endoplasmic reticulum stress-specific unfolded protein response in Arabidopsis thaliana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53206-53218. [PMID: 39180659 DOI: 10.1007/s11356-024-34780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Unfolded protein accumulation in the endoplasmic reticulum (ER) triggers ER stress, leading to a unique transcriptomic response called unfolded protein response (UPR). While ER stress is linked to various environmental stresses, its role in plant responses to heavy metal toxicity remains unclear. This study aimed to elucidate if heavy metals Fe, Zn, Cu, and As induce ER stress in plants. For this purpose, Arabidopsis thaliana seedlings were treated with Fe (200, 400 µM), Zn (500, 700 µM), Cu (25, 50 µM), and As (250, 500 µM) for 7 days, which resulted in 50-70% decrease in plant growth. All treatments increased insoluble protein levels, indicating unfolded protein accumulation, with the highest induction observed for 50 µM Cu treatment (fivefold). Expressions of genes involved in the perception and signaling of ER stress (IRE1, bZIP28, bZIP60, bZIP17) indicate that Zn toxicity specifically induces bZIP28 but not the IRE1 branch of UPR. All metals except Fe also induced genes associated with protein folding in the ER (BIP1, BIP3, and CNX) and ER-associated protein degradation (ERAD) (HRD1). This finding indicates Zn, Cu, and As but not Fe cause ER stress in plants. Furthermore, increased expression of ER oxidoreductase 1 (ERO1) suggests that metal toxicity also disrupts oxidative protein folding in the ER lumen. This study enhances our understanding of the intricate interplay between essential nutrients, metal toxicity, protein folding machinery, and ER stress, demonstrating that heavy metal toxicity has an ER stress component in plants alongside its established effects on energy metabolism, membrane integrity, and oxidative stress.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, 35100, Bornova, İzmir, Turkey
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, 35100, Bornova, İzmir, Turkey.
| |
Collapse
|
7
|
Cornejo FA, Muñoz-Villagrán C, Luraschi RA, Sandoval-Díaz MP, Cancino CA, Pugin B, Morales EH, Piotrowski JS, Sandoval JM, Vásquez CC, Arenas FA. Soft-metal(loid)s induce protein aggregation in Escherichia coli. Front Microbiol 2023; 14:1281058. [PMID: 38075883 PMCID: PMC10699150 DOI: 10.3389/fmicb.2023.1281058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/01/2023] [Indexed: 10/08/2024] Open
Abstract
Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.
Collapse
Affiliation(s)
- Fabián A. Cornejo
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Claudia Muñoz-Villagrán
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Roberto A. Luraschi
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - María P. Sandoval-Díaz
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Camila A. Cancino
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Benoit Pugin
- Laboratory of Food Biotechnology, Department of Health Sciences and Technology, ETH, Zürich, Switzerland
| | | | | | | | - Claudio C. Vásquez
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe A. Arenas
- Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Isik E, Balkan Ç, Karl V, Karakaya HÇ, Hua S, Rauch S, Tamás MJ, Koc A. Identification of novel arsenic resistance genes in yeast. Microbiologyopen 2022; 11:e1284. [PMID: 35765185 PMCID: PMC9055376 DOI: 10.1002/mbo3.1284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Arsenic is a toxic metalloid that affects human health by causing numerous diseases and by being used in the treatment of acute promyelocytic leukemia. Saccharomyces cerevisiae (budding yeast) has been extensively utilized to elucidate the molecular mechanisms underlying arsenic toxicity and resistance in eukaryotes. In this study, we applied a genomic DNA overexpression strategy to identify yeast genes that provide arsenic resistance in wild-type and arsenic-sensitive S. cerevisiae cells. In addition to known arsenic-related genes, our genetic screen revealed novel genes, including PHO86, VBA3, UGP1, and TUL1, whose overexpression conferred resistance. To gain insights into possible resistance mechanisms, we addressed the contribution of these genes to cell growth, intracellular arsenic, and protein aggregation during arsenate exposure. Overexpression of PHO86 resulted in higher cellular arsenic levels but no additional effect on protein aggregation, indicating that these cells efficiently protect their intracellular environment. VBA3 overexpression caused resistance despite higher intracellular arsenic and protein aggregation levels. Overexpression of UGP1 led to lower intracellular arsenic and protein aggregation levels while TUL1 overexpression had no impact on intracellular arsenic or protein aggregation levels. Thus, the identified genes appear to confer arsenic resistance through distinct mechanisms but the molecular details remain to be elucidated.
Collapse
Affiliation(s)
- Esin Isik
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Çiğdem Balkan
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
| | - Vivien Karl
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | | | - Sansan Hua
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil EngineeringChalmers University of TechnologyGothenburgSweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ahmet Koc
- Department of Molecular Biology and GeneticsIzmir Institute of TechnologyIzmirTurkey
- Department of Genetics, School of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|
9
|
Mukherjee S, Chatterjee N, Sircar A, Maikap S, Singh A, Acharyya S, Paul S. A Comparative Analysis of Heavy Metal Effects on Medicinal Plants. Appl Biochem Biotechnol 2022; 195:2483-2518. [PMID: 35488955 DOI: 10.1007/s12010-022-03938-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Popularity of herbal drugs has always been in high demand, but recently it has been increasing all over the world, especially in India, because of the lower range of adverse health effects as compared to synthetic or man-made drugs. Not only this but their cost-effectiveness and easy availability to the poor people and the masses, particularly in developing countries, are major causes for their demand. But there lies a huge problem during the process of plant collection that affects their medicinal properties to certain degrees. This is caused by heavy metal toxicity in soil in different locations of the Indian subcontinent. This was correlated with their potential to cause health damage. Exposure of humans to heavy metals includes diverse pathways from food to water to consumption and inhalation of polluted air to permanent damage to exposed skin and even by occupational exposure at workplaces. As we can understand, the main mechanisms of heavy metal toxicity include the production of free radicals to affect the host by oxidative stress, damaging biological molecules such as enzymes, proteins, lipids, and even nucleic acids and finally damaging DNA which is the fastest way to carcinogenesis and in addition, neurotoxicity. Therefore, in this paper, we have researched how the plants/herbs are affected due to heavy metal deposition in their habitat and how it can lead to serious clinical complications.
Collapse
Affiliation(s)
- Susmita Mukherjee
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Nivedita Chatterjee
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Asmeeta Sircar
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Shimantika Maikap
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Abhilasha Singh
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Sudeshna Acharyya
- Department of Biotechnology, University of Engineering and Management, Kolkata, India
| | - Sonali Paul
- Department of Biotechnology, University of Engineering and Management, Kolkata, India.
| |
Collapse
|
10
|
Fatima S, Arshad F, Amani S. Arsenite Induced Conformational Changes and Aggregation in Human
Serum Albumin (HSA) and its Prevention by Naringin. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210423131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Heavy metals and metalloids like arsenic, cadmium, mercury acts as denaturing
agent for biomolecules. They interfere with protein’s physiological activity by forming a
complex with the protein’s side chain or removing the essential metal ions from metalloproteins
and replacing them. Protein aggregation is an extensive phenomenon in a cell and is linked with
various pathological conditions.
Aim:
In this study, we aim to prove that proteins are highly susceptible to arsenite toxicity by
arsenite-induced protein aggregation; and that naringin reduces the aggregation effect.
Methods:
Several biophysical techniques were employed to study the protein aggregation due to
arsenite and its prevention by naringin.
Results:
Through our experiments, the results showed that aggregation induced by arsenite was reduced
in the presence of naringin at twice the concentration of arsenite.
Conclusion:
In conclusion, our study showed that naringin plays a protective role during HSA aggregation
due to arsenite.
Collapse
Affiliation(s)
- Shamila Fatima
- Department of Biochemistry, Aligarh Muslim University, Uttar Pradesh, India
| | - Fareeha Arshad
- Department of Biochemistry, Aligarh Muslim University, Uttar Pradesh, India
| | - Samreen Amani
- Department of Biochemistry, Aligarh Muslim University, Uttar Pradesh, India
| |
Collapse
|
11
|
Ahn MY, Seo DH, Kim WT. PUB22 and PUB23 U-box E3 ubiquitin ligases negatively regulate 26S proteasome activity under proteotoxic stress conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:625-631. [PMID: 34964269 DOI: 10.1111/jipb.13209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
The mechanism regulating proteasomal activity under proteotoxic stress conditions remains unclear. Here, we showed that arsenite-induced proteotoxic stress resulted in upregulation of Arabidopsis homologous PUB22 and PUB23 U-box E3 ubiquitin ligases and that pub22pub23 double mutants displayed arsenite-insensitive seed germination and root growth phenotypes. PUB22/PUB23 downregulated 26S proteasome activity by promoting the dissociation of the 19S regulatory particle from the holo-proteasome complex, resulting in intracellular accumulation of UbG76V -GFP, an artificial substrate of the proteasome complex, and insoluble poly-ubiquitinated proteins. These results suggest that PUB22/PUB23 play a critical role in arsenite-induced proteotoxic stress response via negative regulation of 26S proteasome integrity.
Collapse
Affiliation(s)
- Min Yong Ahn
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Dong Hye Seo
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology, Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
12
|
Singh A, Kandi AR, Jayaprakashappa D, Thuery G, Purohit DJ, Huelsmeier J, Singh R, Pothapragada SS, Ramaswami M, Bakthavachalu B. The transcriptional response to oxidative stress is independent of stress-granule formation. Mol Biol Cell 2022; 33:ar25. [PMID: 34985933 PMCID: PMC9250384 DOI: 10.1091/mbc.e21-08-0418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
Cells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded protein and viral stress responses, whether and how SGs contribute to stress-induced transcription have not been rigorously examined. To address this, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Oxidative stress for 3 h predominantly resulted in induction or up-regulation of stress-responsive mRNAs whose levels peaked during recovery after stress cessation. The stress transcriptome is enriched in mRNAs coding for chaperones including HSP70s, small heat shock proteins, glutathione transferases, and several noncoding RNAs. Oxidative stress also induced cytoplasmic SGs that disassembled 3 h after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/Rasputin protein inhibited SG assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus SG assembly and stress-induced gene expression alterations appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.
Collapse
Affiliation(s)
- Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Arvind Reddy Kandi
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
| | | | - Guillaume Thuery
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Devam J Purohit
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Rashi Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | | | - Mani Ramaswami
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
- School of Basic Sciences, Indian Institute of Technology, Mandi 175005, India
| |
Collapse
|
13
|
Zhou X, Speer RM, Volk L, Hudson LG, Liu KJ. Arsenic co-carcinogenesis: Inhibition of DNA repair and interaction with zinc finger proteins. Semin Cancer Biol 2021; 76:86-98. [PMID: 33984503 PMCID: PMC8578584 DOI: 10.1016/j.semcancer.2021.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022]
Abstract
Arsenic is widely present in the environment and is associated with various population health risks including cancers. Arsenic exposure at environmentally relevant levels enhances the mutagenic effect of other carcinogens such as ultraviolet radiation. Investigation on the molecular mechanisms could inform the prevention and intervention strategies of arsenic carcinogenesis and co-carcinogenesis. Arsenic inhibition of DNA repair has been demonstrated to be an important mechanism, and certain DNA repair proteins have been identified to be extremely sensitive to arsenic exposure. This review will summarize the recent advances in understanding the mechanisms of arsenic carcinogenesis and co-carcinogenesis, including DNA damage induction and ROS generation, particularly how arsenic inhibits DNA repair through an integrated molecular mechanism which includes its interactions with sensitive zinc finger DNA repair proteins.
Collapse
Affiliation(s)
- Xixi Zhou
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Rachel M Speer
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Lindsay Volk
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
14
|
Lorentzon E, Horvath I, Kumar R, Rodrigues JI, Tamás MJ, Wittung-Stafshede P. Effects of the Toxic Metals Arsenite and Cadmium on α-Synuclein Aggregation In Vitro and in Cells. Int J Mol Sci 2021; 22:ijms222111455. [PMID: 34768886 PMCID: PMC8584132 DOI: 10.3390/ijms222111455] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson’s disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson’s disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson’s disease.
Collapse
Affiliation(s)
- Emma Lorentzon
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (E.L.); (J.I.R.)
| | - Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (I.H.); (R.K.)
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (I.H.); (R.K.)
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (E.L.); (J.I.R.)
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden; (E.L.); (J.I.R.)
- Correspondence: (M.J.T.); (P.W.-S.)
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; (I.H.); (R.K.)
- Correspondence: (M.J.T.); (P.W.-S.)
| |
Collapse
|
15
|
Thakur M, Rachamalla M, Niyogi S, Datusalia AK, Flora SJS. Molecular Mechanism of Arsenic-Induced Neurotoxicity including Neuronal Dysfunctions. Int J Mol Sci 2021; 22:10077. [PMID: 34576240 PMCID: PMC8471829 DOI: 10.3390/ijms221810077] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Arsenic is a key environmental toxicant having significant impacts on human health. Millions of people in developing countries such as Bangladesh, Mexico, Taiwan, and India are affected by arsenic contamination through groundwater. Environmental contamination of arsenic leads to leads to various types of cancers, coronary and neurological ailments in human. There are several sources of arsenic exposure such as drinking water, diet, wood preservatives, smoking, air and cosmetics, while, drinking water is the most explored route. Inorganic arsenic exhibits higher levels of toxicity compared its organic forms. Exposure to inorganic arsenic is known to cause major neurological effects such as cytotoxicity, chromosomal aberration, damage to cellular DNA and genotoxicity. On the other hand, long-term exposure to arsenic may cause neurobehavioral effects in the juvenile stage, which may have detrimental effects in the later stages of life. Thus, it is important to understand the toxicology and underlying molecular mechanism of arsenic which will help to mitigate its detrimental effects. The present review focuses on the epidemiology, and the toxic mechanisms responsible for arsenic induced neurobehavioral diseases, including strategies for its management from water, community and household premises. The review also provides a critical analysis of epigenetic and transgenerational modifications, mitochondrial oxidative stress, molecular mechanisms of arsenic-induced oxidative stress, and neuronal dysfunction.
Collapse
Affiliation(s)
- Manisha Thakur
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.R.); (S.N.)
- Toxicology Centre, Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| | - Swaran Jeet Singh Flora
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India; (M.T.); (A.K.D.)
| |
Collapse
|
16
|
Panagaki D, Croft JT, Keuenhof K, Larsson Berglund L, Andersson S, Kohler V, Büttner S, Tamás MJ, Nyström T, Neutze R, Höög JL. Nuclear envelope budding is a response to cellular stress. Proc Natl Acad Sci U S A 2021; 118:e2020997118. [PMID: 34290138 PMCID: PMC8325156 DOI: 10.1073/pnas.2020997118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nuclear envelope budding (NEB) is a recently discovered alternative pathway for nucleocytoplasmic communication distinct from the movement of material through the nuclear pore complex. Through quantitative electron microscopy and tomography, we demonstrate how NEB is evolutionarily conserved from early protists to human cells. In the yeast Saccharomyces cerevisiae, NEB events occur with higher frequency during heat shock, upon exposure to arsenite or hydrogen peroxide, and when the proteasome is inhibited. Yeast cells treated with azetidine-2-carboxylic acid, a proline analog that induces protein misfolding, display the most dramatic increase in NEB, suggesting a causal link to protein quality control. This link was further supported by both localization of ubiquitin and Hsp104 to protein aggregates and NEB events, and the evolution of these structures during heat shock. We hypothesize that NEB is part of normal cellular physiology in a vast range of species and that in S. cerevisiae NEB comprises a stress response aiding the transport of protein aggregates across the nuclear envelope.
Collapse
Affiliation(s)
- Dimitra Panagaki
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Jacob T Croft
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Katharina Keuenhof
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Lisa Larsson Berglund
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Verena Kohler
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Sabrina Büttner
- Department of Molecular Bioscienses, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Thomas Nyström
- Department of Microbiology and Immunology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden;
| |
Collapse
|
17
|
Alford BD, Tassoni-Tsuchida E, Khan D, Work JJ, Valiant G, Brandman O. ReporterSeq reveals genome-wide dynamic modulators of the heat shock response across diverse stressors. eLife 2021; 10:57376. [PMID: 34223816 PMCID: PMC8257254 DOI: 10.7554/elife.57376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding cellular stress response pathways is challenging because of the complexity of regulatory mechanisms and response dynamics, which can vary with both time and the type of stress. We developed a reverse genetic method called ReporterSeq to comprehensively identify genes regulating a stress-induced transcription factor under multiple conditions in a time-resolved manner. ReporterSeq links RNA-encoded barcode levels to pathway-specific output under genetic perturbations, allowing pooled pathway activity measurements via DNA sequencing alone and without cell enrichment or single-cell isolation. We used ReporterSeq to identify regulators of the heat shock response (HSR), a conserved, poorly understood transcriptional program that protects cells from proteotoxicity and is misregulated in disease. Genome-wide HSR regulation in budding yeast was assessed across 15 stress conditions, uncovering novel stress-specific, time-specific, and constitutive regulators. ReporterSeq can assess the genetic regulators of any transcriptional pathway with the scale of pooled genetic screens and the precision of pathway-specific readouts.
Collapse
Affiliation(s)
- Brian D Alford
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Eduardo Tassoni-Tsuchida
- Department of Biochemistry, Stanford University, Stanford, United States.,Department of Biology, Stanford University, Stanford, United States
| | - Danish Khan
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Jeremy J Work
- Department of Biochemistry, Stanford University, Stanford, United States
| | - Gregory Valiant
- Department of Computer Science, Stanford University, Stanford, United States
| | - Onn Brandman
- Department of Biochemistry, Stanford University, Stanford, United States
| |
Collapse
|
18
|
Andersson S, Romero A, Rodrigues JI, Hua S, Hao X, Jacobson T, Karl V, Becker N, Ashouri A, Rauch S, Nyström T, Liu B, Tamás MJ. Genome-wide imaging screen uncovers molecular determinants of arsenite-induced protein aggregation and toxicity. J Cell Sci 2021; 134:jcs258338. [PMID: 34085697 PMCID: PMC8214759 DOI: 10.1242/jcs.258338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The toxic metalloid arsenic causes widespread misfolding and aggregation of cellular proteins. How these protein aggregates are formed in vivo, the mechanisms by which they affect cells and how cells prevent their accumulation is not fully understood. To find components involved in these processes, we performed a genome-wide imaging screen and identified Saccharomyces cerevisiae deletion mutants with either enhanced or reduced protein aggregation levels during arsenite exposure. We show that many of the identified factors are crucial to safeguard protein homeostasis (proteostasis) and to protect cells against arsenite toxicity. The hits were enriched for various functions including protein biosynthesis and transcription, and dedicated follow-up experiments highlight the importance of accurate transcriptional and translational control for mitigating protein aggregation and toxicity during arsenite stress. Some of the hits are associated with pathological conditions, suggesting that arsenite-induced protein aggregation may affect disease processes. The broad network of cellular systems that impinge on proteostasis during arsenic stress identified in this current study provides a valuable resource and a framework for further elucidation of the mechanistic details of metalloid toxicity and pathogenesis. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Antonia Romero
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Joana Isabel Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sansan Hua
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Vivien Karl
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Nathalie Becker
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Thomas Nyström
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
- Institute of Biomedicine - Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| | - Markus J. Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden
| |
Collapse
|
19
|
Han JJW, Ho DV, Kim HM, Lee JY, Jeon YS, Chan JY. The deubiquitinating enzyme USP7 regulates the transcription factor Nrf1 by modulating its stability in response to toxic metal exposure. J Biol Chem 2021; 296:100732. [PMID: 33933455 PMCID: PMC8163974 DOI: 10.1016/j.jbc.2021.100732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The nuclear factor E2-related factor 1 (Nrf1) transcription factor performs a critical role in regulating cellular homeostasis as part of the cellular stress response and drives the expression of antioxidants and detoxification enzymes among many other functions. Ubiquitination plays an important role in controlling the abundance and thus nuclear accumulation of Nrf1 proteins, but the regulatory enzymes that act on Nrf1 are not fully defined. Here, we identified ubiquitin specific protease 7 (USP7), a deubiquitinating enzyme, as a novel regulator of Nrf1 activity. We found that USP7 interacts with Nrf1a and TCF11—the two long protein isoforms of Nrf1. Expression of wildtype USP7, but not its catalytically defective mutant, resulted in decreased ubiquitination of TCF11 and Nrf1a, leading to their increased stability and increased transactivation of reporter gene expression by TCF11 and Nrf1a. In contrast, knockdown or pharmacologic inhibition of USP7 dramatically increased ubiquitination of TCF11 and Nrf1a and reduction of their steady state levels. Loss of USP7 function attenuated the induction of Nrf1 protein expression in response to treatment with arsenic and other toxic metals, and inhibition of USP7 activity significantly sensitized cells to arsenic treatment. Collectively, these findings suggest that USP7 may act to modulate abundance of Nrf1 protein to induce gene expression in response to toxic metal exposure.
Collapse
Affiliation(s)
- John J W Han
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Daniel V Ho
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Hyun M Kim
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Jun Y Lee
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Yerin S Jeon
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA
| | - Jefferson Y Chan
- Department of Laboratory Medicine and Pathology, University of California, Irvine, D440 Medical Sciences, Irvine, California, USA.
| |
Collapse
|
20
|
Higgins R, Kabbaj MH, Sherwin D, Howell LA, Hatcher A, Tomko RJ, Wang Y. The Cdc48 Complex Alleviates the Cytotoxicity of Misfolded Proteins by Regulating Ubiquitin Homeostasis. Cell Rep 2021; 32:107898. [PMID: 32668237 DOI: 10.1016/j.celrep.2020.107898] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/04/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022] Open
Abstract
The accumulation of misfolded proteins is associated with multiple neurodegenerative disorders, but it remains poorly defined how this accumulation causes cytotoxicity. Here, we demonstrate that the Cdc48/p97 segregase machinery drives the clearance of ubiquitinated model misfolded protein Huntingtin (Htt103QP) and limits its aggregation. Nuclear ubiquitin ligase San1 acts upstream of Cdc48 to ubiquitinate Htt103QP. Unexpectedly, deletion of SAN1 and/or its cytosolic counterpart UBR1 rescues the toxicity associated with Cdc48 deficiency, suggesting that ubiquitin depletion, rather than compromised proteolysis of misfolded proteins, causes the growth defect in cells with Cdc48 deficiency. Indeed, Cdc48 deficiency leads to elevated protein ubiquitination levels and decreased free ubiquitin, which depends on San1/Ubr1. Furthermore, enhancing free ubiquitin levels rescues the toxicity in various Cdc48 pathway mutants and restores normal turnover of a known Cdc48-independent substrate. Our work highlights a previously unappreciated function for Cdc48 in ensuring the regeneration of monoubiquitin that is critical for normal cellular function.
Collapse
Affiliation(s)
- Ryan Higgins
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Marie-Helene Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Delaney Sherwin
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Lauren A Howell
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Alexa Hatcher
- College of Nursing, Florida State University, 600 West College Avenue, Tallahassee, FL 32306, USA
| | - Robert J Tomko
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
21
|
Schnell HM, Jochem M, Micoogullari Y, Riggs CL, Ivanov P, Welsch H, Ravindran R, Anderson P, Robinson LC, Tatchell K, Hanna J. Reg1 and Snf1 regulate stress-induced relocalization of protein phosphatase-1 to cytoplasmic granules. FEBS J 2021; 288:4833-4848. [PMID: 33682330 DOI: 10.1111/febs.15802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
The compartmentalization of cellular function is achieved largely through the existence of membrane-bound organelles. However, recent work suggests a novel mechanism of compartmentalization mediated by membraneless structures that have liquid droplet-like properties and arise through phase separation. Cytoplasmic stress granules (SGs) are the best characterized and are induced by various stressors including arsenite, heat shock, and glucose deprivation. Current models suggest that SGs play an important role in protein homeostasis by mediating reversible translation attenuation. Protein phosphatase-1 (PP1) is a central cellular regulator responsible for most serine/threonine dephosphorylation. Here, we show that upon arsenite stress, PP1's catalytic subunit Glc7 relocalizes to punctate cytoplasmic granules. This altered localization requires PP1's recently described maturation pathway mediated by the multifunctional ATPase Cdc48 and PP1's regulatory subunit Ypi1. Glc7 relocalization is mediated by its regulatory subunit Reg1 and its target Snf1, the AMP-dependent protein kinase. Surprisingly, Glc7 granules are highly specific to arsenite and appear distinct from canonical SGs. Arsenite induces potent translational inhibition, and translational recovery is strongly dependent on Glc7, but independent of Glc7's well-established role in regulating eIF2α. These results suggest a novel form of stress-induced cytoplasmic granule and a new mode of translational control by Glc7.
Collapse
Affiliation(s)
- Helena Maria Schnell
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Marco Jochem
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Yagmur Micoogullari
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Claire Louise Riggs
- Department of Rheumatology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Pavel Ivanov
- Department of Rheumatology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Hendrik Welsch
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Rini Ravindran
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paul Anderson
- Department of Rheumatology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Lucy Christina Robinson
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kelly Tatchell
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - John Hanna
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
22
|
Tolay N, Buchberger A. Comparative profiling of stress granule clearance reveals differential contributions of the ubiquitin system. Life Sci Alliance 2021; 4:4/5/e202000927. [PMID: 33687997 PMCID: PMC8008963 DOI: 10.26508/lsa.202000927] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 01/09/2023] Open
Abstract
This study shows that ubiquitin conjugates associate with various types of stress granules and that an active ubiquitin system is required for the efficient clearance of some types of stress granules. Stress granules (SGs) are cytoplasmic condensates containing untranslated mRNP complexes. They are induced by various proteotoxic conditions such as heat, oxidative, and osmotic stress. SGs are believed to protect mRNPs from degradation and to enable cells to rapidly resume translation when stress conditions subside. SG dynamics are controlled by various posttranslational modifications, but the role of the ubiquitin system has remained controversial. Here, we present a comparative analysis addressing the involvement of the ubiquitin system in SG clearance. Using high-resolution immunofluorescence microscopy, we found that ubiquitin associated to varying extent with SGs induced by heat, arsenite, H2O2, sorbitol, or combined puromycin and Hsp70 inhibitor treatment. SG-associated ubiquitin species included K48- and K63-linked conjugates, whereas free ubiquitin was not significantly enriched. Inhibition of the ubiquitin activating enzyme, deubiquitylating enzymes, the 26S proteasome and p97/VCP impaired the clearance of arsenite- and heat-induced SGs, whereas SGs induced by other stress conditions were little affected. Our data underline the differential involvement of the ubiquitin system in SG clearance, a process important to prevent the formation of disease-linked aberrant SGs.
Collapse
Affiliation(s)
- Nazife Tolay
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alexander Buchberger
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Cabrera M, Boronat S, Marte L, Vega M, Pérez P, Ayté J, Hidalgo E. Chaperone-Facilitated Aggregation of Thermo-Sensitive Proteins Shields Them from Degradation during Heat Stress. Cell Rep 2021; 30:2430-2443.e4. [PMID: 32075773 DOI: 10.1016/j.celrep.2020.01.077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022] Open
Abstract
Cells have developed protein quality-control strategies to manage the accumulation of misfolded substrates during heat stress. Using a soluble reporter of misfolding in fission yeast, Rho1.C17R-GFP, we demonstrate that upon mild heat shock, the reporter collapses in protein aggregate centers (PACs). They contain and/or require several chaperones, such as Hsp104, Hsp16, and the Hsp40/70 couple Mas5/Ssa2. Stress granules do not assemble at mild temperatures and, therefore, are not required for PAC formation; on the contrary, PACs may serve as nucleation centers for the assembly of stress granules. In contrast to the general belief, the dominant fate of these PACs is not degradation, and the aggregated reporter can be disassembled by chaperones and recovers native structure and activity. Using mass spectrometry, we show that thermo-unstable endogenous proteins form PACs as well. In conclusion, formation of PACs during heat shock is a chaperone-mediated adaptation strategy.
Collapse
Affiliation(s)
- Margarita Cabrera
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Luis Marte
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Montserrat Vega
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Pilar Pérez
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas, University of Salamanca, 37007 Salamanca, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, 08003 Barcelona, Spain.
| |
Collapse
|
24
|
The N-Terminal Tail of Histone H3 Regulates Copper Homeostasis in Saccharomyces cerevisiae. Mol Cell Biol 2021; 41:MCB.00210-20. [PMID: 33257505 DOI: 10.1128/mcb.00210-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/22/2020] [Indexed: 11/20/2022] Open
Abstract
Copper homeostasis is crucial for various cellular processes. The balance between nutritional and toxic copper levels is maintained through the regulation of its uptake, distribution, and detoxification via antagonistic actions of two transcription factors, Ace1 and Mac1. Ace1 responds to toxic copper levels by transcriptionally regulating detoxification genes CUP1 and CRS5 Cup1 metallothionein confers protection against toxic copper levels. CUP1 gene regulation is a multifactorial event requiring Ace1, TATA-binding protein (TBP), chromatin remodeler, acetyltransferase (Spt10), and histones. However, the role of histone H3 residues has not been fully elucidated. To investigate the role of the H3 tail in CUP1 transcriptional regulation, we screened the library of histone mutants in copper stress. We identified mutations in H3 (K23Q, K27R, K36Q, Δ5-16, Δ13-16, Δ13-28, Δ25-28, Δ28-31, and Δ29-32) that reduce CUP1 expression. We detected reduced Ace1 occupancy across the CUP1 promoter in K23Q, K36Q, Δ5-16, Δ13-28, Δ25-28, and Δ28-31 mutations correlating with the reduced CUP1 transcription. The majority of these mutations affect TBP occupancy at the CUP1 promoter, augmenting the CUP1 transcription defect. Additionally, some mutants displayed cytosolic protein aggregation upon copper stress. Altogether, our data establish previously unidentified residues of the H3 N-terminal tail and their modifications in CUP1 regulation.
Collapse
|
25
|
Devi S, Kumar V, Singh SK, Dubey AK, Kim JJ. Flavonoids: Potential Candidates for the Treatment of Neurodegenerative Disorders. Biomedicines 2021; 9:biomedicines9020099. [PMID: 33498503 PMCID: PMC7909525 DOI: 10.3390/biomedicines9020099] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD), are the most concerning disorders due to the lack of effective therapy and dramatic rise in affected cases. Although these disorders have diverse clinical manifestations, they all share a common cellular stress response. These cellular stress responses including neuroinflammation, oxidative stress, proteotoxicity, and endoplasmic reticulum (ER)-stress, which combats with stress conditions. Environmental stress/toxicity weakened the cellular stress response which results in cell damage. Small molecules, such as flavonoids, could reduce cellular stress and have gained much attention in recent years. Evidence has shown the potential use of flavonoids in several ways, such as antioxidants, anti-inflammatory, and anti-apoptotic, yet their mechanism is still elusive. This review provides an insight into the potential role of flavonoids against cellular stress response that prevent the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, India;
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.)
| | | | | | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
- Correspondence: (V.K.); (J.-J.K.); Tel.: +82-10-9668-3464 (J.-J.K.); Fax: +82-53-801-3464 (J.-J.K.)
| |
Collapse
|
26
|
Devi S, Karsauliya K, Srivastava T, Raj R, Kumar D, Priya S. Pesticide interactions induce alterations in secondary structure of malate dehydrogenase to cause destability and cytotoxicity. CHEMOSPHERE 2021; 263:128074. [PMID: 33297076 DOI: 10.1016/j.chemosphere.2020.128074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 06/12/2023]
Abstract
Environmental exposure to pesticides increases the risk of neurotoxicity and neurodegenerative diseases. The mechanism of pesticide-induced toxicity is attributed to the increased reactive oxygen species, mitochondrial dysfunction, inhibition of key cellular enzymes and accelerated pathogenic protein aggregation. The structural basis of pesticide-protein interaction is limited to pathogenic proteins such as α-synuclein, Tau and amyloid-beta. However, the effect of pesticides on metabolic proteins is still unexplored. Here, we used rotenone and chlorpyrifos to understand the interaction of these pesticides with a metabolic protein, malate dehydrogenase (MDH) and the consequent pesticide-induced cytotoxicity. We found that rotenone and chlorpyrifos strongly bind to MDH, interferes with protein folding and triggers alteration in its secondary structure. Both pesticides showed high binding affinities for MDH as observed by NMR and LCMS. Rotenone and chlorpyrifos induced structural alterations during MDH refolding resulting in the formation of cytotoxic conformers that generated oxidative stress and reduced cell viability. Our findings suggest that pesticides, in general, interact with proteins resulting in the formation of cytotoxic conformers that may have implications in neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Shweta Devi
- System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kajal Karsauliya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Pesticide Toxicology Laboratory & Regulatory Toxicology Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India
| | - Tulika Srivastava
- System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ritu Raj
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Smriti Priya
- System Toxicology and Health Risk Assessment Group, Vishvigyan Bhawan 31, Mahatma Gandhi Marg, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
27
|
Drobna Z. Activation of Lrrk2 and α-Synuclein in substantia nigra, striatum, and cerebellum after chronic exposure to arsenite. Toxicol Appl Pharmacol 2020; 408:115278. [DOI: 10.1016/j.taap.2020.115278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
|
28
|
Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Int J Mol Sci 2020; 21:ijms21218285. [PMID: 33167398 PMCID: PMC7663847 DOI: 10.3390/ijms21218285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
The structural effects of zinc replacement by xenobiotic metal ions have been widely studied in several eukaryotic and prokaryotic zinc-finger-containing proteins. The prokaryotic zinc finger, that presents a bigger βββαα domain with a larger hydrophobic core with respect to its eukaryotic counterpart, represents a valuable model protein to study metal ion interaction with metallo-proteins. Several studies have been conducted on Ros87, the DNA binding domain of the prokaryotic zinc finger Ros, and have demonstrated that the domain appears to structurally tolerate Ni(II), albeit with important structural perturbations, but not Pb(II) and Hg(II), and it is in vitro functional when the zinc ion is replaced by Cd(II). We have previously shown that Ros87 unfolding is a two-step process in which a zinc binding intermediate converts to the native structure thorough a delicate downhill folding transition. Here, we explore the folding/unfolding behaviour of Ros87 coordinated to Co(II), Ni(II) or Cd(II), by UV-Vis, CD, DSC and NMR techniques. Interestingly, we show how the substitution of the native metal ion results in complete different folding scenarios. We found a two-state unfolding mechanism for Cd-Ros87 whose metal affinity Kd is comparable to the one obtained for the native Zn-Ros87, and a more complex mechanism for Co-Ros87 and Ni-Ros87, that show higher Kd values. Our data outline the complex cross-correlation between the protein-metal ion equilibrium and the folding mechanism proposing such an interplay as a key factor in the proper metal ion selection by a specific metallo-protein.
Collapse
|
29
|
Abstract
Exposure to arsenic in contaminated drinking water is a worldwide public health problem that affects more than 200 million people. Protein quality control constitutes an evolutionarily conserved mechanism for promoting proper folding of proteins, refolding of misfolded proteins, and removal of aggregated proteins, thereby maintaining homeostasis of the proteome (i.e., proteostasis). Accumulating lines of evidence from epidemiological and laboratory studies revealed that chronic exposure to inorganic arsenic species can elicit proteinopathies that contribute to neurodegenerative disorders, cancer, and type II diabetes. Here, we review the effects of arsenic exposure on perturbing various elements of the proteostasis network, including mitochondrial homeostasis, molecular chaperones, inflammatory response, ubiquitin-proteasome system, autophagy, as well as asymmetric segregation and axonal transport of misfolded proteins. We also discuss arsenic-induced disruptions of post-translational modifications of proteins, for example, ubiquitination, and their implications in proteostasis. Together, studies in the past few decades support that disruption of protein quality control may constitute an important mechanism underlying the arsenic-induced toxicity.
Collapse
|
30
|
Tam LM, Jiang J, Wang P, Wang Y. Arsenite Binds to ZNF598 to Perturb Ribosome-Associated Protein Quality Control. Chem Res Toxicol 2020; 33:1644-1652. [PMID: 32324387 DOI: 10.1021/acs.chemrestox.9b00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arsenic pollution in drinking water is a widespread public health problem, and it affects approximately 200 million people in over 70 countries. Many human diseases, including neurodegenerative disorders, are engendered by the malfunction of proteins involved in important biological processes and are elicited by protein misfolding and/or loss of protein quality control during translation. Arsenic exposure results in proteotoxic stress, though the detailed molecular mechanisms remain poorly understood. Here, we showed that arsenite interacts with ZNF598 protein in cells and exposure of human skin fibroblasts to arsenite results in significant decreases in the ubiquitination levels of lysine residues 138 and 139 in RPS10 and lysine 8 in RPS20, which are regulatory post-translational modifications important in ribosome-associated protein quality control. Furthermore, the arsenite-elicited diminutions in ubiquitinations of RPS10 and RPS20 gave rise to augmented read-through of poly(adenosine)-containing stalling sequences, which was abolished in ZNF598 knockout cells. Together, our study revealed a novel mechanism underlying the arsenic-induced proteostatic stress in human cells.
Collapse
|
31
|
Sobh A, Loguinov A, Yazici GN, Zeidan RS, Tagmount A, Hejazi NS, Hubbard AE, Zhang L, Vulpe CD. Functional Profiling Identifies Determinants of Arsenic Trioxide Cellular Toxicity. Toxicol Sci 2020; 169:108-121. [PMID: 30815697 DOI: 10.1093/toxsci/kfz024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Arsenic exposure is a worldwide health concern associated with an increased risk of skin, lung, and bladder cancer but arsenic trioxide (AsIII) is also an effective chemotherapeutic agent. The current use of AsIII in chemotherapy is limited to acute promyelocytic leukemia (APL). However, AsIII was suggested as a potential therapy for other cancer types including chronic myeloid leukemia (CML), especially when combined with other drugs. Here, we carried out a genome-wide CRISPR-based approach to identify modulators of AsIII toxicity in K562, a human CML cell line. We found that disruption of KEAP1, the inhibitory partner of the key antioxidant transcription factor Nrf2, or TXNDC17, a thioredoxin-like protein, markedly increased AsIII tolerance. Loss of the water channel AQP3, the zinc transporter ZNT1 and its regulator MTF1 also enhanced tolerance to AsIII whereas loss of the multidrug resistance protein ABCC1 increased sensitivity to AsIII. Remarkably, disruption of any of multiple genes, EEFSEC, SECISBP2, SEPHS2, SEPSECS, and PSTK, encoding proteins involved in selenocysteine metabolism increased resistance to AsIII. Our data suggest a model in which an intracellular interaction between selenium and AsIII may impact intracellular AsIII levels and toxicity. Together this work revealed a suite of cellular components/processes which modulate the toxicity of AsIII in CML cells. Targeting such processes simultaneously with AsIII treatment could potentiate AsIII in CML therapy.
Collapse
Affiliation(s)
- Amin Sobh
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, Berkeley, California
| | - Alex Loguinov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gulce Naz Yazici
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Rola S Zeidan
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Abderrahmane Tagmount
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Nima S Hejazi
- Division of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California.,Center for Computational Biology, University of California, Berkeley, Berkeley, California
| | - Alan E Hubbard
- Division of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Chris D Vulpe
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida.,Department of Nutritional Sciences & Toxicology, Comparative Biochemistry Program, University of California, Berkeley, Berkeley, California
| |
Collapse
|
32
|
Rpn4 and proteasome-mediated yeast resistance to ethanol includes regulation of autophagy. Appl Microbiol Biotechnol 2020; 104:4027-4041. [PMID: 32157425 DOI: 10.1007/s00253-020-10518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/15/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022]
Abstract
Distilled spirits production using Saccharomyces cerevisiae requires understanding of the mechanisms of yeast cell response to alcohol stress. Reportedly, specific mutations in genes of the ubiquitin-proteasome system, e.g., RPN4, may result in strains exhibiting hyper-resistance to different alcohols. To study the Rpn4-dependent yeast response to short-term ethanol exposure, we performed a comparative analysis of the wild-type (WT) strain, strain with RPN4 gene deletion (rpn4-Δ), and a mutant strain with decreased proteasome activity and consequent Rpn4 accumulation due to PRE1 deregulation (YPL). The stress resistance tests demonstrated an increased sensitivity of mutant strains to ethanol compared with WT. Comparative proteomics analysis revealed significant differences in molecular responses to ethanol between these strains. GO analysis of proteins upregulated in WT showed enrichments represented by oxidative and heat responses, protein folding/unfolding, and protein degradation. Enrichment of at least one of these responses was not observed in the mutant strains. Moreover, activity of autophagy was not increased in the RPN4 deletion strain upon ethanol stress which agrees with changes in mRNA levels of ATG7 and PRB1 genes of the autophagy system. Activity of the autophagic system was clearly induced and accompanied with PRB1 overexpression in the YPL strain upon ethanol stress. We demonstrated that Rpn4 stabilization contributes to the PRB1 upregulation. CRISPR-Cas9-mediated repression of PACE-core Rpn4 binding sites in the PRB1 promoter inhibits PRB1 induction in the YPL strain upon ethanol treatment and results in YPL hypersensitivity to ethanol. Our data suggest that Rpn4 affects the autophagic system activity upon ethanol stress through the PRB1 regulation. These findings can be a basis for creating genetically modified yeast strains resistant to high levels of alcohol, being further used for fermentation in ethanol production.
Collapse
|
33
|
Thakre PK, Golla U, Biswas A, Tomar RS. Identification of Histone H3 and H4 Amino Acid Residues Important for the Regulation of Arsenite Stress Signaling in Saccharomyces cerevisiae. Chem Res Toxicol 2020; 33:817-833. [PMID: 32032493 DOI: 10.1021/acs.chemrestox.9b00471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arsenic is an environmental carcinogen that causes many diseases in humans, including cancers and organ failures, affecting millions of people in the world. Arsenic trioxide is a drug used for the treatment of acute promyelocytic leukemia (APL). In the present study, we screened the synthetic histone H3 and H4 library in the presence of arsenite to understand the role of histone residues in arsenic toxicity. We identified residues of histone H3 and H4 crucial for arsenite stress response. The residues H3T3, H3G90, H4K5, H4G13, and H4R95 are required for the activation of Hog1 kinase in response to arsenite exposure. We showed that a reduced level of Hog1 activation increases the intracellular arsenic content in these histone mutants through the Fps1 channel. We have also noticed the reduced expression of ACR3 exporter in the mutants. The growth defect of mutants caused by arsenite exposure was suppressed in hyperosmotic conditions, in a higher concentration of glucose, and upon deletion of the FPS1 gene. The arsenite sensitive histone mutants also showed a lack of H3K4 methylation and reduced H4K16 acetylation. Altogether, we have identified the key residues in histone H3 and H4 proteins important for the regulation of Hog1 signaling, Fps1 activity, and ACR3 expression during arsenite stress.
Collapse
Affiliation(s)
- Pilendra Kumar Thakre
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Upendarrao Golla
- Division of Hematology and Oncology, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ashis Biswas
- Environmental Geochemistry Laboratory, Department of Earth and Environmental Sciences (EES), Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
34
|
Widespread remodeling of proteome solubility in response to different protein homeostasis stresses. Proc Natl Acad Sci U S A 2020; 117:2422-2431. [PMID: 31964829 DOI: 10.1073/pnas.1912897117] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The accumulation of protein deposits in neurodegenerative diseases has been hypothesized to depend on a metastable subproteome vulnerable to aggregation. To investigate this phenomenon and the mechanisms that regulate it, we measured the solubility of the proteome in the mouse Neuro2a cell line under six different protein homeostasis stresses: 1) Huntington's disease proteotoxicity, 2) Hsp70, 3) Hsp90, 4) proteasome, 5) endoplasmic reticulum (ER)-mediated folding inhibition, and 6) oxidative stress. Overall, we found that about one-fifth of the proteome changed solubility with almost all of the increases in insolubility were counteracted by increases in solubility of other proteins. Each stress directed a highly specific pattern of change, which reflected the remodeling of protein complexes involved in adaptation to perturbation, most notably, stress granule (SG) proteins, which responded differently to different stresses. These results indicate that the protein homeostasis system is organized in a modular manner and aggregation patterns were not correlated with protein folding stability (ΔG). Instead, distinct cellular mechanisms regulate assembly patterns of multiple classes of protein complexes under different stress conditions.
Collapse
|
35
|
Zohn IE. Hsp90 and complex birth defects: A plausible mechanism for the interaction of genes and environment. Neurosci Lett 2020; 716:134680. [PMID: 31821846 DOI: 10.1016/j.neulet.2019.134680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
How genes and environment interact to cause birth defects is not well understood, but key to developing new strategies to modify risk. The threshold model has been proposed to represent this complex interaction. This model stipulates that while environmental exposure or genetic mutation alone may not result in a defect, factors in combination increase phenotypic variability resulting in more individuals crossing the disease threshold where birth defects manifest. Many environmental factors that contribute to birth defects induce widespread cellular stress and misfolding of proteins. Yet, the impact of the stress response on the threshold model is not typically considered in discephering the etiology of birth defects. This mini-review will explore a potential mechanism for gene-environment interactions co-opted from studies of evolution. This model stipulates that heat shock proteins that mediate the stress response induced by environmental factors can influence the number of individuals that cross disease thresholds resulting in increased incidence of birth defects. Studies in the field of evolutionary biology have demonstrated that heat shock proteins and Hsp90 in particular provide a link between environmental stress, genotype and phenotype. Hsp90 is a highly expressed molecular chaperone that assists a wide variety of protein clients with folding and conformational changes needed for proper function. Hsp90 also chaperones client proteins with potentially deleterious amino acid changes to suppress variation caused by genetic mutations. However, upon exposure to stress, Hsp90 abandons its normal physiological clients and is diverted to assist with the misfolded protein response. This can impact the activity of signaling pathways that involve Hsp90 clients as well as unmask suppressed protein variation, essentially creating complex traits in a single step. In this capacity Hsp90 acts as an evolutionary capacitor allowing stored variation to accumulate and then become expressed in times of stress. This mechanism provides a substrate which natural selection can act upon at the population level allowing survival of the species with selective pressure. However, at the level of the individual, this mechanism can result in simultaneous expression of deleterious variants as well as reduced activity of a variety of Hsp90 chaperoned pathways, potentially shifting phenotypic variability over the disease threshold resulting in birth defects.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, 20010, USA.
| |
Collapse
|
36
|
Park CK, Horton NC. Structures, functions, and mechanisms of filament forming enzymes: a renaissance of enzyme filamentation. Biophys Rev 2019; 11:927-994. [PMID: 31734826 PMCID: PMC6874960 DOI: 10.1007/s12551-019-00602-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI endonuclease system are also highlighted.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| | - Nancy C. Horton
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
37
|
Guerra-Moreno A, Prado MA, Ang J, Schnell HM, Micoogullari Y, Paulo JA, Finley D, Gygi SP, Hanna J. Thiol-based direct threat sensing by the stress-activated protein kinase Hog1. Sci Signal 2019; 12:12/609/eaaw4956. [PMID: 31772124 DOI: 10.1126/scisignal.aaw4956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The yeast stress-activated protein kinase Hog1 is best known for its role in mediating the response to osmotic stress, but it is also activated by various mechanistically distinct environmental stressors, including heat shock, endoplasmic reticulum stress, and arsenic. In the osmotic stress response, the signal is sensed upstream and relayed to Hog1 through a kinase cascade. Here, we identified a mode of Hog1 function whereby Hog1 senses arsenic through a direct physical interaction that requires three conserved cysteine residues located adjacent to the catalytic loop. These residues were essential for Hog1-mediated protection against arsenic, were dispensable for the response to osmotic stress, and promoted the nuclear localization of Hog1 upon exposure of cells to arsenic. Hog1 promoted arsenic detoxification by stimulating phosphorylation of the transcription factor Yap8, promoting Yap8 nuclear localization, and stimulating the transcription of the only known Yap8 targets, ARR2 and ARR3, both of which encode proteins that promote arsenic efflux. The related human kinases ERK1 and ERK2 also bound to arsenic in vitro, suggesting that this may be a conserved feature of some members of the mitogen-activated protein kinase (MAPK) family. These data provide a mechanistic basis for understanding how stress-activated kinases can sense distinct threats and perform highly specific adaptive responses.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Jessie Ang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Helena M Schnell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yagmur Micoogullari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
38
|
Panganiban RA, Park HR, Sun M, Shumyatcher M, Himes BE, Lu Q. Genome-wide CRISPR screen identifies suppressors of endoplasmic reticulum stress-induced apoptosis. Proc Natl Acad Sci U S A 2019; 116:13384-13393. [PMID: 31213543 PMCID: PMC6613086 DOI: 10.1073/pnas.1906275116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sensing misfolded proteins in the endoplasmic reticulum (ER), cells initiate the ER stress response and, when overwhelmed, undergo apoptosis. However, little is known about how cells prevent excessive ER stress response and cell death to restore homeostasis. Here, we report the identification and characterization of cellular suppressors of ER stress-induced apoptosis. Using a genome-wide CRISPR library, we screen for genes whose inactivation further increases ER stress-induced up-regulation of C/EBP homologous protein 10 (CHOP)-the transcription factor central to ER stress-associated apoptosis. Among the top validated hits are two interacting components of the polycomb repressive complex (L3MBTL2 [L(3)Mbt-Like 2] and MGA [MAX gene associated]), and microRNA-124-3 (miR-124-3). CRISPR knockout of these genes increases CHOP expression and sensitizes cells to apoptosis induced by multiple ER stressors, while overexpression confers the opposite effects. L3MBTL2 associates with the CHOP promoter in unstressed cells to repress CHOP induction but dissociates from the promoter in the presence of ER stress, whereas miR-124-3 directly targets the IRE1 branch of the ER stress pathway. Our study reveals distinct mechanisms that suppress ER stress-induced apoptosis and may lead to a better understanding of diseases whose pathogenesis is linked to overactive ER stress response.
Collapse
Affiliation(s)
- Ronald A Panganiban
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Hae-Ryung Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Maoyun Sun
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| | - Maya Shumyatcher
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Blanca E Himes
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115;
- Department of Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115
| |
Collapse
|
39
|
Han SW, Jung BK, Park SH, Ryu KY. Reversible Regulation of Polyubiquitin Gene UBC via Modified Inducible CRISPR/Cas9 System. Int J Mol Sci 2019; 20:ijms20133168. [PMID: 31261719 PMCID: PMC6651705 DOI: 10.3390/ijms20133168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin is required under both normal and stress conditions. Under stress conditions, upregulation of the polyubiquitin gene UBC is essential to meet the requirement of increased ubiquitin levels to confer stress resistance. However, UBC upregulation is usually observed only under stress conditions and not under normal conditions. Therefore, it has not been possible to upregulate UBC under normal conditions to study the effect of excess ubiquitin on cellular machinery. Recently, the CRISPR/Cas9 system has been widely used in biological research as a useful tool to study gene disruption effects. In this study, using an inducible CRISPR/Cas9 variant, a dCas9-VP64 fusion protein, combined with a single guide RNA (sgRNA) containing MS2 aptamer loops and MS2-p65-HSF1, we developed a system to increase the ubiquitin pool via upregulation of UBC. Although it is challenging to upregulate the expression of a gene that is already expressed at high levels, the significance of our system is that UBC upregulation can be induced in an efficient, reversible manner that is compatible with cellular processes, even under normal conditions. This system can be used to study ubiquitin pool dynamics and it will be a useful tool in identifying the role of ubiquitin under normal and stress conditions.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - So-Hyun Park
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 02504, Korea.
| |
Collapse
|
40
|
Matilda C, Mannully S, Viditha R, Shanthi C. Protein profiling of metal‐resistantBacillus cereusVITSH1. J Appl Microbiol 2019; 127:121-133. [DOI: 10.1111/jam.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/04/2023]
Affiliation(s)
- C.S. Matilda
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - S.T. Mannully
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - R.P. Viditha
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| | - C. Shanthi
- School of Bio Sciences and Technology Vellore Institute of Technology Vellore India
| |
Collapse
|
41
|
Jochem M, Ende L, Isasa M, Ang J, Schnell H, Guerra-Moreno A, Micoogullari Y, Bhanu M, Gygi SP, Hanna J. Targeted Degradation of Glucose Transporters Protects against Arsenic Toxicity. Mol Cell Biol 2019; 39:e00559-18. [PMID: 30886123 PMCID: PMC6497993 DOI: 10.1128/mcb.00559-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/12/2018] [Accepted: 03/12/2019] [Indexed: 12/29/2022] Open
Abstract
The abundance of cell surface glucose transporters must be precisely regulated to ensure optimal growth under constantly changing environmental conditions. We recently conducted a proteomic analysis of the cellular response to trivalent arsenic, a ubiquitous environmental toxin and carcinogen. A surprising finding was that a subset of glucose transporters was among the most downregulated proteins in the cell upon arsenic exposure. Here we show that this downregulation reflects targeted arsenic-dependent degradation of glucose transporters. Degradation occurs in the vacuole and requires the E2 ubiquitin ligase Ubc4, the E3 ubiquitin ligase Rsp5, and K63-linked ubiquitin chains. We used quantitative proteomic approaches to determine the ubiquitinated proteome after arsenic exposure, which helped us to identify the ubiquitination sites within these glucose transporters. A mutant lacking all seven major glucose transporters was highly resistant to arsenic, and expression of a degradation-resistant transporter restored arsenic sensitivity to this strain, suggesting that this pathway represents a protective cellular response. Previous work suggests that glucose transporters are major mediators of arsenic import, providing a potential rationale for this pathway. These results may have implications for the epidemiologic association between arsenic exposure and diabetes.
Collapse
Affiliation(s)
- Marco Jochem
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lukas Ende
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jessie Ang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Helena Schnell
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yagmur Micoogullari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meera Bhanu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Guerra-Moreno A, Ang J, Welsch H, Jochem M, Hanna J. Regulation of the unfolded protein response in yeast by oxidative stress. FEBS Lett 2019; 593:1080-1088. [PMID: 31002390 DOI: 10.1002/1873-3468.13389] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
In the unfolded protein response (UPR), Ire1 activates Hac1 to coordinate the transcription of hundreds of genes to mitigate ER stress. Recent work in Caenorhabditis elegans suggests that oxidative stress inhibits this canonical Ire1 signalling pathway, activating instead an antioxidant stress response. We sought to determine whether this novel mode of UPR function also existed in yeast, where Ire1 has been best characterized. We show that the yeast UPR is also subject to inhibition by oxidative stress. Inhibition is mediated by a single evolutionarily conserved cysteine, and affects both luminal and membrane pathways of Ire1 activation. In yeast, Ire1 appears dispensable for resistance to oxidative stress and, therefore, the physiological significance of this pathway remains to be demonstrated.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessie Ang
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hendrik Welsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marco Jochem
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Ford AE, Denicourt C, Morano KA. Thiol stress-dependent aggregation of the glycolytic enzyme triose phosphate isomerase in yeast and human cells. Mol Biol Cell 2019; 30:554-565. [PMID: 30601716 PMCID: PMC6589699 DOI: 10.1091/mbc.e18-10-0616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The eukaryotic cytosolic proteome is vulnerable to changes in proteostatic and redox balance caused by temperature, pH, oxidants, and xenobiotics. Cysteine-containing proteins are especially at risk, as the thiol side chain is subject to oxidation, adduction, and chelation by thiol-reactive compounds. The thiol-chelating heavy metal cadmium is a highly toxic environmental pollutant demonstrated to induce the heat shock response and recruit protein chaperones to sites of presumed protein aggregation in the budding yeast Saccharomyces cerevisiae. However, endogenous targets of cadmium toxicity responsible for these outcomes are largely unknown. Using fluorescent protein fusion to cytosolic proteins with known redox-active cysteines, we identified the yeast glycolytic enzyme triose phosphate isomerase as being aggregation-prone in response to cadmium and to glucose depletion in chronologically aging cultures. Cadmium-induced aggregation was limited to newly synthesized Tpi1 that was recruited to foci containing the disaggregase Hsp104 and the peroxiredoxin chaperone Tsa1. Misfolding of nascent Tpi1 in response to both cadmium and glucose-depletion stress required both cysteines, implying that thiol status in this protein directly influences folding. We also demonstrate that cadmium proteotoxicity is conserved between yeast and human cells, as HEK293 and HCT116 cell lines exhibit recruitment of the protein chaperone Hsp70 to visible foci. Moreover, human TPI, mutations in which cause a glycolytic deficiency syndrome, also forms aggregates in response to cadmium treatment, suggesting that this conserved enzyme is folding-labile and may be a useful endogenous model for investigating thiol-specific proteotoxicity.
Collapse
Affiliation(s)
- Amy E Ford
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030.,MD Anderson UT Health Graduate School of Biomedical Sciences, Houston, TX 77030
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, University of Texas McGovern Medical School at Houston, Houston, TX 77030
| | - Kevin A Morano
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School at Houston, Houston, TX 77030
| |
Collapse
|
44
|
Babele PK, Thakre PK, Kumawat R, Tomar RS. Zinc oxide nanoparticles induce toxicity by affecting cell wall integrity pathway, mitochondrial function and lipid homeostasis in Saccharomyces cerevisiae. CHEMOSPHERE 2018; 213:65-75. [PMID: 30212720 DOI: 10.1016/j.chemosphere.2018.09.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/29/2018] [Accepted: 09/04/2018] [Indexed: 05/27/2023]
Abstract
Growing numbers of nanotoxicity research demonstrating that mechanical damage and oxidative stress are potential modes of nanoparticles (NPs) induced toxicity. However, the underlying mechanisms by which NPs interact with the eukaryotic cell and affect their physiological and metabolic functions are not fully known. We investigated the toxic effects of zinc oxide nanoparticles (ZnO-NPs) on budding yeast, Saccharomyces cerevisiae and elucidated the underlying mechanism. We observed cell wall damage and accumulation of reactive oxygen species (ROS) leading to cell death upon ZnO-NPs exposure. We detected a significant change in the cellular distribution of lipid biosynthetic enzymes (Fas1 and Fas2). Furthermore, exposure of ZnO-NPs altered the architecture of endoplasmic reticulum (ER) and mitochondria as well as ER-mitochondria encounter structure (ERMES) complex causing cellular toxicity due to lipid disequilibrium and proteostasis. We also observed significant changes in heat shock and unfolded protein responses, monitored by Hsp104-GFP localization and cytosolic Hac1 splicing respectively. Moreover, we observed activation of MAP kinases of CWI (Mpk1) and HOG (Hog1) pathways upon exposure to ZnO-NPs. Transcript level analyses showed induction of chitin synthesis and redox homeostasis genes. Finally, we observed induction in lipid droplets (LDs) formation, distorted vacuolar morphology and induction of autophagy as monitored by localization of Atg8p. However, we did not observe any significant change in epigenetic marks, examined by western blotting. Altogether, we provide evidence that exposure of ZnO-NPs results in cell death by affecting cell wall integrity and ER homeostasis as well as accumulation of ROS and saturated free fatty acids.
Collapse
Affiliation(s)
- Piyoosh Kumar Babele
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Pilendra Kumar Thakre
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Ramesh Kumawat
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India.
| |
Collapse
|
45
|
Sanchez-Marinas M, Gimenez-Zaragoza D, Martin-Ramos E, Llanes J, Cansado J, Pujol MJ, Bachs O, Aligue R. Cmk2 kinase is essential for survival in arsenite by modulating translation together with RACK1 orthologue Cpc2 in Schizosaccharomyces pombe. Free Radic Biol Med 2018; 129:116-126. [PMID: 30236788 DOI: 10.1016/j.freeradbiomed.2018.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Different studies have demonstrated multiple effects of arsenite on human physiology. However, there are many open questions concerning the mechanism of response to arsenite. Schizosaccharomyces pombe activates the Sty1 MAPK pathway as a common response to several stress conditions. The specificity of the response is due to the activation of different transcription factors and specific targets such the Cmk2 MAPKAP kinase. We have previously shown that Cmk2 is phosphorylated and activated by the MAPK Sty1 in response to oxidative stress. Here, we report that Cmk2 kinase is specifically necessary to overcome the stress caused by metalloid agents, in particular arsenite. Deletion of cmk2 increases the protein level of various components of the MAPK pathway. Moreover, Cmk2 negatively regulates translation through the Cpc2 kinase: the RACK1 orthologue in fission yeast. RACK1 is a receptor for activated C-kinase. Interestingly, RACK1 is a constituent of the eukaryotic ribosome specifically localized in the head region of the 40 S subunit. Cmk2 controls arsenite response through Cpc2 and it does so through Cpc2 ribosomal function, as observed in genetic analysis using a Cpc2 mutant unable to bind to ribosome. These findings suggest a role for Cmk2 in regulating translation and facilitating adaptation to arsenite stress in the ribosome.
Collapse
Affiliation(s)
- Marta Sanchez-Marinas
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - David Gimenez-Zaragoza
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Edgar Martin-Ramos
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Julia Llanes
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain.
| |
Collapse
|
46
|
Wu CW, Lin PJ, Tsai JS, Lin CY, Lin LY. Arsenite-induced apoptosis can be attenuated via depletion of mTOR activity to restore autophagy. Toxicol Res (Camb) 2018; 8:101-111. [PMID: 30713663 DOI: 10.1039/c8tx00238j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Arsenic and its compounds are toxic environmental pollutants and known carcinogens. We investigated here the mechanism of arsenite-induced damage in renal cells. Treating human embryonic kidney cells (HEK293) with sodium arsenite reduces cell viability in a dose- and time-dependent manner. The decline of cell viability is due to apoptotic death since arsenite treatment reduces Akt activity and the Bcl2 level but increases caspase 3 activity and the cytochrome c level. These effects can be reverted by the addition of an apoptosis inhibitor. PTEN, the upstream negative regulator of Akt activity, was also reduced with arsenite treatment. Noticeably, PTEN markedly increased in the insoluble fraction of the cells, suggesting a cell failure in removing the damaged proteins. Arsenite treatment activates a variety of signaling factors. Among them, ERK and JNK are associated with autophagy via regulating the levels of LC3 and p62. With arsenite administration, the LC3 and p62 levels increased. However, lysosomal activity was decreased and led to the decline of autophagic activity. The addition of rapamycin, the mTOR inhibitor, activated the autophagic pathway that accelerated the removal of damaged proteins. The recovery of autophagy increased the viability of arsenite-treated cells. Similar to rapamycin treatment, the knockdown of mTOR expression also enhanced the viability of arsenite-treated cells. Both rapamycin treatment and mTOR knockdown enhanced ERK activity further, but reduced JNK activity and the p62 level in arsenite-treated cells. Lysosomal activity increased with the depletion of mTOR, indicating an increase of autophagic activity. These results reveal the critical role of mTOR in regulating the cell fate of arsenite-exposed renal cells.
Collapse
Affiliation(s)
- Chien-Wei Wu
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Pei-Jung Lin
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Jia-Shiuan Tsai
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Chih-Ying Lin
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| | - Lih-Yuan Lin
- Institute of Molecular and Cellular Biology and Department of Life Science , National Tsing Hua University , Hsinchu , Taiwan . ; Tel: +886-3-5742693
| |
Collapse
|
47
|
Protein Degradation and the Pathologic Basis of Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 189:94-103. [PMID: 30312581 DOI: 10.1016/j.ajpath.2018.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 12/27/2022]
Abstract
The abundance of any protein is determined by the balance of protein synthesis and protein degradation. Regulated protein degradation has emerged as a powerful means of precisely controlling individual protein abundance within cells and is largely mediated by the ubiquitin-proteasome system (UPS). By controlling the levels of key regulatory proteins, the UPS contributes to nearly every aspect of cellular function. The UPS also functions in protein quality control, rapidly identifying and destroying misfolded or otherwise aberrant proteins that may be toxic to cells. Increasingly, we understand that dysregulation of protein degradation pathways is critical for many human diseases. Conversely, the versatility and scope of the UPS provides opportunities for therapeutic intervention. In this review, we will discuss the basic mechanisms of protein degradation by the UPS. We will then consider some paradigms of human disease related to protein degradation using selected examples. Finally, we will highlight several established and emerging therapeutic strategies based on altering pathways of protein degradation.
Collapse
|
48
|
Bhargava P, Kumari A, Putri JF, Ishida Y, Terao K, Kaul SC, Sundar D, Wadhwa R. Caffeic acid phenethyl ester (CAPE) possesses pro-hypoxia and anti-stress activities: bioinformatics and experimental evidences. Cell Stress Chaperones 2018; 23:1055-1068. [PMID: 29869000 PMCID: PMC6111076 DOI: 10.1007/s12192-018-0915-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/27/2022] Open
Abstract
Honeybee propolis and its bioactive component, caffeic acid phenethyl ester (CAPE), are known for a variety of therapeutic potentials. By recruiting a cell-based reporter assay for screening of hypoxia-modulating natural drugs, we identified CAPE as a pro-hypoxia factor. In silico studies were used to probe the capacity of CAPE to interact with potential hypoxia-responsive proteins. CAPE could not dock into hypoxia inducing factor (HIF-1), the master regulator of hypoxia response pathway. On the other hand, it was predicted to bind to factor inhibiting HIF (FIH-1). The active site residue (Asp201) of FIH-1α was involved in hydrogen bond formation with CAPE and its analogue, caffeic acid methyl ester (CAME), especially in the presence of Fe and 2-oxoglutaric acid (OGA). We provide experimental evidence that the low doses of CAPE, that did not cause cytotoxicity or anti-migratory effect, activated HIF-1α and inhibited stress-induced protein aggregation, a common cause of age-related pathologies. Furthermore, by structural homology search, we explored and found candidate compounds that possess stronger FIH-1 binding capacity. These compounds could be promising candidates for modulating therapeutic potential of CAPE, and its recruitment in treatment of protein aggregation-based disorders.
Collapse
Affiliation(s)
- Priyanshu Bhargava
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305 8572, Japan
| | - Anjani Kumari
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Yoshiyuki Ishida
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Keiji Terao
- CycloChem Co., Ltd, 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, 650 0047, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi, 110 016, India.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Central 5-41, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|
49
|
ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules. Mol Cell 2018; 70:906-919.e7. [PMID: 29804830 DOI: 10.1016/j.molcel.2018.04.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies of mRNPs stalled in translation initiation. They are induced by various stress conditions, including exposure to the environmental toxin and carcinogen arsenic. While perturbed SG turnover is linked to the pathogenesis of neurodegenerative diseases, the molecular mechanisms underlying SG formation and turnover are still poorly understood. Here, we show that ZFAND1 is an evolutionarily conserved regulator of SG clearance. ZFAND1 interacts with two key factors of protein degradation, the 26S proteasome and the ubiquitin-selective segregase p97, and recruits them to arsenite-induced SGs. In the absence of ZFAND1, SGs lack the 26S proteasome and p97, accumulate defective ribosomal products, and persist after arsenite removal, indicating their transformation into aberrant, disease-linked SGs. Accordingly, ZFAND1 depletion is epistatic to the expression of pathogenic mutant p97 with respect to SG clearance, suggesting that ZFAND1 function is relevant to the multisystem degenerative disorder IBMPFD/ALS.
Collapse
|
50
|
Cytoprotective role of ubiquitin against toxicity induced by polyglutamine-expanded aggregates. Biochem Biophys Res Commun 2018; 500:344-350. [PMID: 29654755 DOI: 10.1016/j.bbrc.2018.04.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022]
Abstract
Ubiquitin (Ub) homeostasis is important for cellular function and survival, especially under stress conditions. Recently, we have demonstrated that Ubc-/- (Ub-deficient) mouse embryonic fibroblasts (MEFs) exhibited reduced viability under oxidative stress induced by arsenite, which was not due to dysregulation of the antioxidant response pathway, but rather due to the potential toxicity caused by the misfolded protein aggregates. However, it is still not clear whether Ub deficiency is directly related to the accumulation of toxic protein aggregates, as arsenite itself triggers protein aggregation and renders cells into aberrant conditions such as reduced proteasome function and inhibition of autophagic flux. Therefore, under arsenite treatment, the outcome could be derived from the combination of multiple defective pathways. Furthermore, it has also been suggested that ubiquitination status of misfolded proteins may not be important for the formation of inclusion bodies composed of misfolded protein aggregates. We therefore wondered whether Ub deficiency is sufficient to trigger the accumulation of toxic protein aggregates inside the cells. In this study, we ectopically expressed polyQ-expanded aggregates (Q103) in MEFs and observed inclusion body formation at the juxtanuclear region, which was independent of cellular Ub levels. In contrast to arsenite treatment, polyQ expression did not affect proteasome function. However, we observed an increased accumulation of Q103 aggregates in Ubc-/- MEFs, which was due to impaired autophagic clearance. Finally, we demonstrated that the increased accumulation of Q103 aggregates under Ub deficiency dramatically reduced the viability of cells. Therefore, our results suggest that the maintenance of proper levels of cellular Ub is important to protect cells against the toxicity induced by the accumulation of protein aggregates.
Collapse
|