1
|
Davies EM, Gurung R, Le KQ, Roan KT, Harvey RP, Mitchell GM, Schwarz Q, Mitchell CA. PI(4,5)P 2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. SCIENCE ADVANCES 2023; 9:eadd6911. [PMID: 37000875 PMCID: PMC10065449 DOI: 10.1126/sciadv.add6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Kai Qin Le
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Katherine T. T. Roan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Clinical Medicine and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Geraldine M. Mitchell
- O’Brien Institute Department of St Vincent’s Institute and University of Melbourne, Department of Surgery, St. Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Health Sciences Faculty, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christina A. Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
2
|
Abstract
Vascular endothelial cells form the inner layer of blood vessels where they have a key role in the development and maintenance of the functional circulatory system and provide paracrine support to surrounding non-vascular cells. Technical advances in the past 5 years in single-cell genomics and in in vivo genetic labelling have facilitated greater insights into endothelial cell development, plasticity and heterogeneity. These advances have also contributed to a new understanding of the timing of endothelial cell subtype differentiation and its relationship to the cell cycle. Identification of novel tissue-specific gene expression patterns in endothelial cells has led to the discovery of crucial signalling pathways and new interactions with other cell types that have key roles in both tissue maintenance and disease pathology. In this Review, we describe the latest findings in vascular endothelial cell development and diversity, which are often supported by large-scale, single-cell studies, and discuss the implications of these findings for vascular medicine. In addition, we highlight how techniques such as single-cell multimodal omics, which have become increasingly sophisticated over the past 2 years, are being utilized to study normal vascular physiology as well as functional perturbations in disease.
Collapse
Affiliation(s)
- Emily Trimm
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Coxam B, Collins RT, Hußmann M, Huisman Y, Meier K, Jung S, Bartels-Klein E, Szymborska A, Finotto L, Helker CSM, Stainier DYR, Schulte-Merker S, Gerhardt H. Svep1 stabilises developmental vascular anastomosis in reduced flow conditions. Development 2022; 149:274823. [PMID: 35312765 PMCID: PMC8977097 DOI: 10.1242/dev.199858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Molecular mechanisms controlling the formation, stabilisation and maintenance of blood vessel connections remain poorly defined. Here, we identify blood flow and the large extracellular protein Svep1 as co-modulators of vessel anastomosis during developmental angiogenesis in zebrafish embryos. Both loss of Svep1 and blood flow reduction contribute to defective anastomosis of intersegmental vessels. The reduced formation and lumenisation of the dorsal longitudinal anastomotic vessel (DLAV) is associated with a compensatory increase in Vegfa/Vegfr pERK signalling, concomittant expansion of apelin-positive tip cells, but reduced expression of klf2a. Experimentally, further increasing Vegfa/Vegfr signalling can rescue the DLAV formation and lumenisation defects, whereas its inhibition dramatically exacerbates the loss of connectivity. Mechanistically, our results suggest that flow and Svep1 co-regulate the stabilisation of vascular connections, in part by modulating the Vegfa/Vegfr signalling pathway. Summary: Blood flow and the large extracellular matrix protein Svep1 jointly regulate vessel anastomosis during developmental angiogenesis in zebrafish embryos partly by modulating the Vegfa/Vegfr signalling pathway.
Collapse
Affiliation(s)
- Baptiste Coxam
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
| | - Russell T. Collins
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
| | - Melina Hußmann
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Yvonne Huisman
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Katja Meier
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Simone Jung
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Eireen Bartels-Klein
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Anna Szymborska
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
| | - Lise Finotto
- Vascular Patterning Laboratory, Center for Cancer Biology, VIB, Leuven 3000, Belgium
- Vascular Patterning Laboratory, Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Christian S. M. Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Schulte-Merker
- Institute of Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Mendelstraße 7, 48149 Münster, Germany
| | - Holger Gerhardt
- Integrative Vascular Biology Lab, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Strasse 10, Berlin 13125, Germany
- DZHK (German Center for Cardiovascular Research), Berlin 10785, Germany
- Berlin Institute of Health (BIH), Berlin 10178, Germany
| |
Collapse
|
4
|
Shao W, Kilic K, Yin W, Wirak G, Qin X, Feng H, Boas D, Gabel CV, Yi J. Wide field-of-view volumetric imaging by a mesoscopic scanning oblique plane microscopy with switchable objective lenses. Quant Imaging Med Surg 2021; 11:983-997. [PMID: 33654671 PMCID: PMC7829172 DOI: 10.21037/qims-20-806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Conventional light sheet fluorescence microscopy (LSFM), or selective plane illumination microscopy (SPIM), enables high-resolution 3D imaging over a large volume by using two orthogonally aligned objective lenses to decouple excitation and emission. The recent development of oblique plane microscopy (OPM) simplifies LSFM design with only one single objective lens, by using off-axis excitation and remote focusing. However, most reports on OPM have a limited microscopic field of view (FOV), typically within 1×1 mm2. Our goal is to overcome the limitation with a new variant of OPM to achieve a mesoscopic FOV. METHODS We implemented an optical design of mesoscopic scanning OPM to allow the use of low numerical aperture (NA) objective lenses. The angle of the intermediate image before the remote focusing system was increased by a demagnification under Scheimpflug condition such that the light collecting efficiency in the remote focusing system was significantly improved. A telescope composed of cylindrical lenses was used to correct the distorted image caused by the demagnification design. We characterized the 3D resolutions and imaging volume by imaging fluorescent microspheres, and demonstrated the volumetric imaging on intact whole zebrafish larvae, mouse cortex, and multiple Caenorhabditis elegans (C. elegans). RESULTS We demonstrate a mesoscopic FOV up to ~6×5×0.6 mm3 volumetric imaging, the largest reported FOV by OPM so far. The angle of the intermediate image plane is independent of the magnification as long as the size of the pupil aperture of the objectives is the same. As a result, the system is highly versatile, allowing simple switching between different objective lenses with low (10×, NA 0.3) and median NA (20×, NA 0.5). Detailed microvasculature in zebrafish larvae, mouse cortex, and neurons in C. elegans are clearly visualized in 3D. CONCLUSIONS The proposed mesoscopic scanning OPM allows using low NA objectives such that centimeter-level FOV volumetric imaging can be achieved. With the extended FOV, simple sample mounting protocol, and the versatility of changeable FOVs/resolutions, our system will be ready for the varieties of applications requiring in vivo volumetric imaging over large length scales.
Collapse
Affiliation(s)
- Wenjun Shao
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Kivilcim Kilic
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gregory Wirak
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Xiaodan Qin
- Departments of Pharmacology & Experimental Therapeutics and Medicine, Boston University, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology & Experimental Therapeutics and Medicine, Boston University, Boston, MA, USA
| | - David Boas
- Neurophotonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Ji Yi
- Department of Medicine, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Department of Electric and Computer Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Ikeogu NM, Edechi CA, Akaluka GN, Feiz-Barazandeh A, Zayats RR, Salako ES, Onwah SS, Onyilagha C, Jia P, Mou Z, Shan L, Murooka TT, Gounni AS, Uzonna JE. Semaphorin 3E Promotes Susceptibility to Leishmania major Infection in Mice by Suppressing CD4 + Th1 Cell Response. THE JOURNAL OF IMMUNOLOGY 2020; 206:588-598. [PMID: 33443083 DOI: 10.4049/jimmunol.2000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022]
Abstract
Protective immunity to cutaneous leishmaniasis is mediated by IFN-γ-secreting CD4+ Th1 cells. IFN-γ binds to its receptor on Leishmania-infected macrophages, resulting in their activation, production of NO, and subsequent destruction of parasites. This study investigated the role of Semaphorin 3E (Sema3E) in host immunity to Leishmania major infection in mice. We observed a significant increase in Sema3E expression at the infection site at different timepoints following L. major infection. Sema3E-deficient (Sema3E knockout [KO]) mice were highly resistant to L. major infection, as evidenced by significantly (p < 0.05-0.01) reduced lesion sizes and lower parasite burdens at different times postinfection when compared with their infected wild-type counterpart mice. The enhanced resistance of Sema3E KO mice was associated with significantly (p < 0.05) increased IFN-γ production by CD4+ T cells. CD11c+ cells from Sema3E KO mice displayed increased expression of costimulatory molecules and IL-12p40 production following L. major infection and were more efficient at inducing the differentiation of Leishmania-specific CD4+ T cells to Th1 cells than their wild-type counterpart cells. Furthermore, purified CD4+ T cells from Sema3E KO mice showed increased propensity to differentiate into Th1 cells in vitro, and this was significantly inhibited by the addition of recombinant Sema3E in vitro. These findings collectively show that Sema3E is a negative regulator of protective CD4+ Th1 immunity in mice infected with L. major and suggest that its neutralization may be a potential therapeutic option for treating individuals suffering from cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Nnamdi M Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chidalu A Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 3P5, Canada; and
| | - Gloria N Akaluka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Aida Feiz-Barazandeh
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Romaniya R Zayats
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Enitan S Salako
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Somtochukwu S Onwah
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Chukuwunonso Onyilagha
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba R3E 3M4, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Abdelilah S Gounni
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada
| | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba R3E 0T5, Canada;
| |
Collapse
|
6
|
Carretero-Ortega J, Chhangawala Z, Hunt S, Narvaez C, Menéndez-González J, Gay CM, Zygmunt T, Li X, Torres-Vázquez J. GIPC proteins negatively modulate Plexind1 signaling during vascular development. eLife 2019; 8:e30454. [PMID: 31050647 PMCID: PMC6499541 DOI: 10.7554/elife.30454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/15/2019] [Indexed: 12/18/2022] Open
Abstract
Semaphorins (SEMAs) and their Plexin (PLXN) receptors are central regulators of metazoan cellular communication. SEMA-PLXND1 signaling plays important roles in cardiovascular, nervous, and immune system development, and cancer biology. However, little is known about the molecular mechanisms that modulate SEMA-PLXND1 signaling. As PLXND1 associates with GIPC family endocytic adaptors, we evaluated the requirement for the molecular determinants of their association and PLXND1's vascular role. Zebrafish that endogenously express a Plxnd1 receptor with a predicted impairment in GIPC binding exhibit low penetrance angiogenesis deficits and antiangiogenic drug hypersensitivity. Moreover, gipc mutant fish show angiogenic impairments that are ameliorated by reducing Plxnd1 signaling. Finally, GIPC depletion potentiates SEMA-PLXND1 signaling in cultured endothelial cells. These findings expand the vascular roles of GIPCs beyond those of the Vascular Endothelial Growth Factor (VEGF)-dependent, proangiogenic GIPC1-Neuropilin 1 complex, recasting GIPCs as negative modulators of antiangiogenic PLXND1 signaling and suggest that PLXND1 trafficking shapes vascular development.
Collapse
Affiliation(s)
- Jorge Carretero-Ortega
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Zinal Chhangawala
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Shane Hunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carlos Narvaez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Javier Menéndez-González
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Carl M Gay
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Tomasz Zygmunt
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| | - Xiaochun Li
- Department of Population HealthNew York University School of MedicineNew YorkUnited States
| | - Jesús Torres-Vázquez
- Department of Cell Biology, Skirball Institute of Biomolecular MedicineNew York University Langone Medical CenterNew YorkUnited States
| |
Collapse
|
7
|
Red-Horse K, Siekmann AF. Veins and Arteries Build Hierarchical Branching Patterns Differently: Bottom-Up versus Top-Down. Bioessays 2019; 41:e1800198. [PMID: 30805984 PMCID: PMC6478158 DOI: 10.1002/bies.201800198] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/20/2018] [Indexed: 12/13/2022]
Abstract
A tree-like hierarchical branching structure is present in many biological systems, such as the kidney, lung, mammary gland, and blood vessels. Most of these organs form through branching morphogenesis, where outward growth results in smaller and smaller branches. However, the blood vasculature is unique in that it exists as two trees (arterial and venous) connected at their tips. Obtaining this organization might therefore require unique developmental mechanisms. As reviewed here, recent data indicate that arterial trees often form in reverse order. Accordingly, initial arterial endothelial cell differentiation occurs outside of arterial vessels. These pre-artery cells then build trees by following a migratory path from smaller into larger arteries, a process guided by the forces imparted by blood flow. Thus, in comparison to other branched organs, arteries can obtain their structure through inward growth and coalescence. Here, new information on the underlying mechanisms is discussed, and how defects can lead to pathologies, such as hypoplastic arteries and arteriovenous malformations.
Collapse
Affiliation(s)
- Kristy Red-Horse
- Department of Biology, Stanford University, Stanford 94305 California,
| | - Arndt F. Siekmann
- Department of Cell and Developmental Biology and Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia 19104 Pennsylvania,
| |
Collapse
|
8
|
Gerri C, Marín-Juez R, Marass M, Marks A, Maischein HM, Stainier DYR. Hif-1α regulates macrophage-endothelial interactions during blood vessel development in zebrafish. Nat Commun 2017; 8:15492. [PMID: 28524872 PMCID: PMC5493593 DOI: 10.1038/ncomms15492] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 04/01/2017] [Indexed: 12/21/2022] Open
Abstract
Macrophages are known to interact with endothelial cells during developmental and pathological angiogenesis but the molecular mechanisms modulating these interactions remain unclear. Here, we show a role for the Hif-1α transcription factor in this cellular communication. We generated hif-1aa;hif-1ab double mutants in zebrafish, hereafter referred to as hif-1α mutants, and find that they exhibit impaired macrophage mobilization from the aorta-gonad-mesonephros (AGM) region as well as angiogenic defects and defective vascular repair. Importantly, macrophage ablation is sufficient to recapitulate the vascular phenotypes observed in hif-1α mutants, revealing for the first time a macrophage-dependent angiogenic process during development. Further substantiating our observations of vascular repair, we find that most macrophages closely associated with ruptured blood vessels are Tnfα-positive, a key feature of classically activated macrophages. Altogether, our data provide genetic evidence that Hif-1α regulates interactions between macrophages and endothelial cells starting with the mobilization of macrophages from the AGM. The molecular mechanism regulating macrophage interaction with endothelial cells during development is unclear. Here, the authors show that in zebrafish mutation of hypoxia-inducible factor-1α impairs macrophage mobilization from the aorta-gonad-mesonephros, causing defects in angiogenesis and vessel repair.
Collapse
Affiliation(s)
- Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hans-Martin Maischein
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
9
|
Bowden N, Bryan MT, Duckles H, Feng S, Hsiao S, Kim HR, Mahmoud M, Moers B, Serbanovic-Canic J, Xanthis I, Ridger VC, Evans PC. Experimental Approaches to Study Endothelial Responses to Shear Stress. Antioxid Redox Signal 2016; 25:389-400. [PMID: 26772071 DOI: 10.1089/ars.2015.6553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Shear stress controls multiple physiological processes in endothelial cells (ECs). RECENT ADVANCES The response of ECs to shear has been studied using a range of in vitro and in vivo models. CRITICAL ISSUES This article describes some of the experimental techniques that can be used to study endothelial responses to shear stress. It includes an appraisal of large animal, rodent, and zebrafish models of vascular mechanoresponsiveness. It also describes several bioreactors to apply flow to cells and physical methods to separate mechanoresponses from mass transport mechanisms. FUTURE DIRECTIONS We conclude that combining in vitro and in vivo approaches can provide a detailed mechanistic view of vascular responses to force and that high-throughput systems are required for unbiased assessment of the function of shear-induced molecules. Antioxid. Redox Signal. 25, 389-400.
Collapse
Affiliation(s)
- Neil Bowden
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Matthew T Bryan
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Hayley Duckles
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Shuang Feng
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Sarah Hsiao
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Hyejeong Rosemary Kim
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| | - Marwa Mahmoud
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Britta Moers
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| | - Ioannis Xanthis
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Victoria C Ridger
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Paul C Evans
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
10
|
Kamaid A, Molina-Villa T, Mendoza V, Pujades C, Maldonado E, Ispizua Belmonte JC, López-Casillas F. Betaglycan knock-down causes embryonic angiogenesis defects in zebrafish. Genesis 2015; 53:583-603. [PMID: 26174808 DOI: 10.1002/dvg.22876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 01/21/2023]
Abstract
Angiogenesis is an essential requirement for embryonic development and adult homeostasis. Its deregulation is a key feature of numerous pathologies and many studies have shown that members of the transforming growth factor beta (TGF-β) family of proteins play important roles in angiogenesis during development and disease. Betaglycan (BG), also known as TGF-β receptor type III, is a TGF-β coreceptor essential for mice embryonic development but its role in angiogenesis has not been described. We have cloned the cDNA encoding zebrafish BG, a TGF-β-binding membrane proteoglycan that showed a dynamic expression pattern in zebrafish embryos, including the notochord and cells adjacent to developing vessels. Injection of antisense morpholinos decreased BG protein levels and morphant embryos exhibited impaired angiogenesis that was rescued by coinjection with rat BG mRNA. In vivo time-lapse microscopy revealed that BG deficiency differentially affected arterial and venous angiogenesis: morphants showed impaired pathfinding of intersegmental vessels migrating from dorsal aorta, while endothelial cells originating from the caudal vein displayed sprouting and migration defects. Our results reveal a new role for BG during embryonic angiogenesis in zebrafish, which has not been described in mammals and pose interesting questions about the molecular machinery regulating angiogenesis in different vertebrates. genesis 53:583-603, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrés Kamaid
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| | - Tonatiuh Molina-Villa
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| | - Valentín Mendoza
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| | - Cristina Pujades
- Department of Experimental And Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Park, Barcelona, España
| | - Ernesto Maldonado
- Instituto De Ciencias Del Mar Y Limnología, Unidad Académica De Sistemas Arrecifales, Universidad Nacional Autónoma De México, Puerto Morelos, Quintana Roo, México
| | | | - Fernando López-Casillas
- Instituto De Fisiología Celular, Universidad Nacional Autónoma de México. Circuito Exterior S/N, Ciudad Universitaria, Coyoacán, México City, D.F. México
| |
Collapse
|
11
|
Kawasaki J, Aegerter S, Fevurly RD, Mammoto A, Mammoto T, Sahin M, Mably JD, Fishman SJ, Chan J. RASA1 functions in EPHB4 signaling pathway to suppress endothelial mTORC1 activity. J Clin Invest 2014; 124:2774-84. [PMID: 24837431 DOI: 10.1172/jci67084] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/27/2014] [Indexed: 11/17/2022] Open
Abstract
Vascular malformations are linked to mutations in RAS p21 protein activator 1 (RASA1, also known as p120RasGAP); however, due to the global expression of this gene, it is unclear how these mutations specifically affect the vasculature. Here, we tested the hypothesis that RASA1 performs a critical effector function downstream of the endothelial receptor EPHB4. In zebrafish models, we found that either RASA1 or EPHB4 deficiency induced strikingly similar abnormalities in blood vessel formation and function. Expression of WT EPHB4 receptor or engineered receptors with altered RASA1 binding revealed that the ability of EPHB4 to recruit RASA1 is required to restore blood flow in EPHB4-deficient animals. Analysis of EPHB4-deficient zebrafish tissue lysates revealed that mTORC1 is robustly overactivated, and pharmacological inhibition of mTORC1 in these animals rescued both vessel structure and function. Furthermore, overexpression of mTORC1 in endothelial cells exacerbated vascular phenotypes in animals with reduced EPHB4 or RASA1, suggesting a functional EPHB4/RASA1/mTORC1 signaling axis in endothelial cells. Tissue samples from patients with arteriovenous malformations displayed strong endothelial phospho-S6 staining, indicating increased mTORC1 activity. These results indicate that deregulation of EPHB4/RASA1/mTORC1 signaling in endothelial cells promotes vascular malformation and suggest that mTORC1 inhibitors, many of which are approved for the treatment of certain cancers, should be further explored as a potential strategy to treat patients with vascular malformations.
Collapse
|
12
|
Wong MD, Dazai J, Walls JR, Gale NW, Henkelman RM. Design and implementation of a custom built optical projection tomography system. PLoS One 2013; 8:e73491. [PMID: 24023880 PMCID: PMC3762719 DOI: 10.1371/journal.pone.0073491] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022] Open
Abstract
Optical projection tomography (OPT) is an imaging modality that has, in the last decade, answered numerous biological questions owing to its ability to view gene expression in 3 dimensions (3D) at high resolution for samples up to several cm3. This has increased demand for a cabinet OPT system, especially for mouse embryo phenotyping, for which OPT was primarily designed for. The Medical Research Council (MRC) Technology group (UK) released a commercial OPT system, constructed by Skyscan, called the Bioptonics OPT 3001 scanner that was installed in a limited number of locations. The Bioptonics system has been discontinued and currently there is no commercial OPT system available. Therefore, a few research institutions have built their own OPT system, choosing parts and a design specific to their biological applications. Some of these custom built OPT systems are preferred over the commercial Bioptonics system, as they provide improved performance based on stable translation and rotation stages and up to date CCD cameras coupled with objective lenses of high numerical aperture, increasing the resolution of the images. Here, we present a detailed description of a custom built OPT system that is robust and easy to build and install. Included is a hardware parts list, instructions for assembly, a description of the acquisition software and a free download site, and methods for calibration. The described OPT system can acquire a full 3D data set in 10 minutes at 6.7 micron isotropic resolution. The presented guide will hopefully increase adoption of OPT throughout the research community, for the OPT system described can be implemented by personnel with minimal expertise in optics or engineering who have access to a machine shop.
Collapse
Affiliation(s)
- Michael D. Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- * E-mail:
| | - Jun Dazai
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Johnathon R. Walls
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - Nicholas W. Gale
- Regeneron Pharmaceuticals, Tarrytown, New York, United States of America
| | - R. Mark Henkelman
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Watson O, Novodvorsky P, Gray C, Rothman AMK, Lawrie A, Crossman DC, Haase A, McMahon K, Gering M, Van Eeden FJM, Chico TJA. Blood flow suppresses vascular Notch signalling via dll4 and is required for angiogenesis in response to hypoxic signalling. Cardiovasc Res 2013; 100:252-61. [PMID: 23812297 PMCID: PMC3797625 DOI: 10.1093/cvr/cvt170] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aims The contribution of blood flow to angiogenesis is incompletely understood. We examined the effect of blood flow on Notch signalling in the vasculature of zebrafish embryos, and whether blood flow regulates angiogenesis in zebrafish with constitutively up-regulated hypoxic signalling. Methods and results Developing zebrafish (Danio rerio) embryos survive via diffusion in the absence of circulation induced by knockdown of cardiac troponin T2 or chemical cardiac cessation. The absence of blood flow increased vascular Notch signalling in 48 h post-fertilization old embryos via up-regulation of the Notch ligand dll4. Despite this, patterning of the intersegmental vessels is not affected by absent blood flow. We therefore examined homozygous vhl mutant zebrafish that have constitutively up-regulated hypoxic signalling. These display excessive and aberrant angiogenesis from 72 h post-fertilization, with significantly increased endothelial number, vessel diameter, and length. The absence of blood flow abolished these effects, though normal vessel patterning was preserved. Conclusion We show that blood flow suppresses vascular Notch signalling via down-regulation of dll4. We have also shown that blood flow is required for angiogenesis in response to hypoxic signalling but is not required for normal vessel patterning. These data indicate important differences in hypoxia-driven vs. developmental angiogenesis.
Collapse
Affiliation(s)
- Oliver Watson
- Lab D38, MRC Centre for Developmental and Biomedical Genetics, University of Sheffield, Firth Court, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|