1
|
Feng S, Yuan S, Hou B, Liu Z, Xu Y, Hao S, Lu Y. CEP20 promotes invasion and metastasis of non-small cell lung cancer cells by depolymerizing microtubules. Sci Rep 2023; 13:17484. [PMID: 37838783 PMCID: PMC10576744 DOI: 10.1038/s41598-023-44754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Worldwide, Lung cancer is the leading cause of cancer-related death and poses a direct health threat, non-small cell lung cancer (NSCLC) is the most common type. In this study, we demonstrated that centrosomal protein 20 (CEP20) is upregulated in NSCLC tissues and associated with cancer invasion metastasis. Notably, CEP20 depletion inhibited NSCLC cell proliferation, migration, and microtubule polymerization. Mechanistically, we discovered that CEP20 is critical in the development of NSCLC by regulating microtubule dynamics and cell adhesion-related signaling pathways. Furthermore, the knockdown or overexpression of CEP20 affects microtubule polymerization in A549 cell lines. Our research provides a promising therapeutic target for the diagnosis and treatment of lung cancer, as well as a theoretical and experimental basis for clinical application.
Collapse
Affiliation(s)
- Sijie Feng
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China
| | - Shuai Yuan
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Baohua Hou
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Zhiqiang Liu
- School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Yanjun Xu
- Department of Medical Thoracic Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Shuangying Hao
- School of Medicine, Henan Polytechnic University, Jiaozuo, China.
| | - Yunkun Lu
- School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
- Jiaozuo Key Laboratory of Gynecological Oncology Medicine, Jiaozuo, China.
| |
Collapse
|
2
|
Le Borgne P, Greibill L, Laporte MH, Lemullois M, Bouhouche K, Temagoult M, Rosnet O, Le Guennec M, Lignières L, Chevreux G, Koll F, Hamel V, Guichard P, Tassin AM. The evolutionary conserved proteins CEP90, FOPNL, and OFD1 recruit centriolar distal appendage proteins to initiate their assembly. PLoS Biol 2022; 20:e3001782. [PMID: 36070319 PMCID: PMC9484695 DOI: 10.1371/journal.pbio.3001782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/19/2022] [Accepted: 08/03/2022] [Indexed: 12/27/2022] Open
Abstract
In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins. CEP90, FOPNL and OFD1 form an evolutionary conserved module which promotes the assembly of centriolar distal appendages. This study uses ultrastructure expansion microscopy to reveal the recruitment of this module on early-born procentrioles to in turn recruit centriolar distal appendage proteins, proposing that this dictates the future location of distal appendages.
Collapse
Affiliation(s)
- Pierrick Le Borgne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Logan Greibill
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marine Hélène Laporte
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Michel Lemullois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Khaled Bouhouche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Mebarek Temagoult
- Imagerie-Gif Light facility, Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Rosnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, Marseille, France
| | - Maeva Le Guennec
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Laurent Lignières
- ProteoSeine@IJM, Université de Paris/CNRS, Institut Jacques Monod, Paris, France
| | - Guillaume Chevreux
- ProteoSeine@IJM, Université de Paris/CNRS, Institut Jacques Monod, Paris, France
| | - France Koll
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Virginie Hamel
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Paul Guichard
- University of Geneva, Section of Biology, Department of Molecular and Cellular Biology, Geneva, Switzerland
| | - Anne-Marie Tassin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
3
|
Bouhouche K, Valentine MS, Le Borgne P, Lemullois M, Yano J, Lodh S, Nabi A, Tassin AM, Van Houten JL. Paramecium, a Model to Study Ciliary Beating and Ciliogenesis: Insights From Cutting-Edge Approaches. Front Cell Dev Biol 2022; 10:847908. [PMID: 35359441 PMCID: PMC8964087 DOI: 10.3389/fcell.2022.847908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022] Open
Abstract
Cilia are ubiquitous and highly conserved extensions that endow the cell with motility and sensory functions. They were present in the first eukaryotes and conserved throughout evolution (Carvalho-Santos et al., 2011). Paramecium has around 4,000 motile cilia on its surface arranged in longitudinal rows, beating in waves to ensure movement and feeding. As with cilia in other model organisms, direction and speed of Paramecium ciliary beating is under bioelectric control of ciliary ion channels. In multiciliated cells of metazoans as well as paramecia, the cilia become physically entrained to beat in metachronal waves. This ciliated organism, Paramecium, is an attractive model for multidisciplinary approaches to dissect the location, structure and function of ciliary ion channels and other proteins involved in ciliary beating. Swimming behavior also can be a read-out of the role of cilia in sensory signal transduction. A cilium emanates from a BB, structurally equivalent to the centriole anchored at the cell surface, and elongates an axoneme composed of microtubule doublets enclosed in a ciliary membrane contiguous with the plasma membrane. The connection between the BB and the axoneme constitutes the transition zone, which serves as a diffusion barrier between the intracellular space and the cilium, defining the ciliary compartment. Human pathologies affecting cilia structure or function, are called ciliopathies, which are caused by gene mutations. For that reason, the molecular mechanisms and structural aspects of cilia assembly and function are actively studied using a variety of model systems, ranging from unicellular organisms to metazoa. In this review, we will highlight the use of Paramecium as a model to decipher ciliary beating mechanisms as well as high resolution insights into BB structure and anchoring. We will show that study of cilia in Paramecium promotes our understanding of cilia formation and function. In addition, we demonstrate that Paramecium could be a useful tool to validate candidate genes for ciliopathies.
Collapse
Affiliation(s)
- K. Bouhouche
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | - P. Le Borgne
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - M. Lemullois
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - J. Yano
- Department of Biology, University of Vermont, Burlington, VT, United States
| | - S. Lodh
- Biological Sciences, Marquette University, Milwaukee, WI, United States
| | - A. Nabi
- Luminex, Austin, TX, United States
| | - A. M. Tassin
- CEA, CNRS, Université Paris-Saclay, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - J. L. Van Houten
- Department of Biology, University of Vermont, Burlington, VT, United States
| |
Collapse
|
4
|
Valentine M, Van Houten J. Using Paramecium as a Model for Ciliopathies. Genes (Basel) 2021; 12:genes12101493. [PMID: 34680887 PMCID: PMC8535419 DOI: 10.3390/genes12101493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023] Open
Abstract
Paramecium has served as a model organism for the studies of many aspects of genetics and cell biology: non-Mendelian inheritance, genome duplication, genome rearrangements, and exocytosis, to name a few. However, the large number and patterning of cilia that cover its surface have inspired extraordinary ultrastructural work. Its swimming patterns inspired exquisite electrophysiological studies that led to a description of the bioelectric control of ciliary motion. A genetic dissection of swimming behavior moved the field toward the genes and gene products underlying ciliary function. With the advent of molecular technologies, it became clear that there was not only great conservation of ciliary structure but also of the genes coding for ciliary structure and function. It is this conservation and the legacy of past research that allow us to use Paramecium as a model for cilia and ciliary diseases called ciliopathies. However, there would be no compelling reason to study Paramecium as this model if there were no new insights into cilia and ciliopathies to be gained. In this review, we present studies that we believe will do this. For example, while the literature continues to state that immotile cilia are sensory and motile cilia are not, we will provide evidence that Paramecium cilia are clearly sensory. Other examples show that while a Paramecium protein is highly conserved it takes a different interacting partner or conducts a different ion than expected. Perhaps these exceptions will provoke new ideas about mammalian systems.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York at Plattsburgh, 101 Broad Street, Plattsburgh, NY 12901, USA;
| | - Judith Van Houten
- Department of Biology, University of Vermont, 120 Marsh Life Science, 109 Carrigan Drive, Burlington, VT 05405, USA
- Correspondence:
| |
Collapse
|
5
|
Xu Z, Liu M, Gao C, Kuang W, Chen X, Liu F, Ge B, Yan X, Zhou T, Xie S. Centrosomal protein FOR20 knockout mice display embryonic lethality and left-right patterning defects. FEBS Lett 2021; 595:1462-1472. [PMID: 33686659 DOI: 10.1002/1873-3468.14071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022]
Abstract
Centrosomal protein FOR20 has been reported to be crucial for essential cellular processes, including ciliogenesis, cell migration, and cell cycle in vertebrates. However, the function of FOR20 during mammalian embryonic development remains unknown. To investigate the in vivo function of the For20 gene in mammals, we generated For20 homozygous knockout mice by gene targeting. Our data reveal that homozygous knockout of For20 results in significant embryonic growth arrest and lethality during gestation, while the heterozygotes show no obvious defects. The absence of For20 leads to impaired left-right patterning of embryos and reduced cilia in the embryonic node. Deletion of For20 also disrupts angiogenesis in yolk sacs and embryos. These results highlight a critical role of For20 in early mammalian embryogenesis.
Collapse
Affiliation(s)
- Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Gao
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjun Kuang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiying Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Feifei Liu
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Bai Ge
- Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyi Yan
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Department of Molecular Genetics, University of Toronto, Canada
| | - Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wiegering A, Dildrop R, Vesque C, Khanna H, Schneider-Maunoury S, Gerhardt C. Rpgrip1l controls ciliary gating by ensuring the proper amount of Cep290 at the vertebrate transition zone. Mol Biol Cell 2021; 32:675-689. [PMID: 33625872 PMCID: PMC8108517 DOI: 10.1091/mbc.e20-03-0190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A range of severe human diseases called ciliopathies is caused by the dysfunction of primary cilia. Primary cilia are cytoplasmic protrusions consisting of the basal body (BB), the axoneme, and the transition zone (TZ). The BB is a modified mother centriole from which the axoneme, the microtubule-based ciliary scaffold, is formed. At the proximal end of the axoneme, the TZ functions as the ciliary gate governing ciliary protein entry and exit. Since ciliopathies often develop due to mutations in genes encoding proteins that localize to the TZ, the understanding of the mechanisms underlying TZ function is of eminent importance. Here, we show that the ciliopathy protein Rpgrip1l governs ciliary gating by ensuring the proper amount of Cep290 at the vertebrate TZ. Further, we identified the flavonoid eupatilin as a potential agent to tackle ciliopathies caused by mutations in RPGRIP1L as it rescues ciliary gating in the absence of Rpgrip1l.
Collapse
Affiliation(s)
- Antonia Wiegering
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Renate Dildrop
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Hemant Khanna
- Department of Ophthalmology and Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Institut de Biologie Paris Seine (IBPS) - Developmental Biology Unit, 75005 Paris, France
| | - Christoph Gerhardt
- Institute for Animal Developmental and Molecular Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
7
|
Jiang H, Liu S, Cheung MH, Amin A, Liang C. FOP Negatively Regulates Ciliogenesis and Promotes Cell Cycle Re-entry by Facilitating Primary Cilia Disassembly. Front Cell Dev Biol 2020; 8:590449. [PMID: 33304902 PMCID: PMC7693466 DOI: 10.3389/fcell.2020.590449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/21/2020] [Indexed: 01/19/2023] Open
Abstract
Primary cilia are microtubule-based, antenna-like organelles, which are formed in G0 phase and resorbed as cells re-enter the cell cycle. It has been reported that primary cilia can influence the timing of cell cycle progression. However, the molecular links between ciliogenesis and cell cycle progression are not well understood. The Fibroblast Growth Factor Receptor 1 Oncogene Partner (FOP) has been implicated in ciliogenesis, but its function in ciliogenesis is not clear. Here, we show that FOP plays a negative role in ciliogenesis. Knockdown of FOP promotes cilia elongation and suppresses cilia disassembly. In contrast, ectopic expression of FOP induces defects in primary cilia formation, which can be rescued by either pharmacological or genetic inhibition of Aurora kinase A which promotes cilia disassembly. Moreover, knockdown of FOP delays cell cycle re-entry of quiescent cells following serum re-stimulation, and this can be reversed by silencing Intraflagellar Transport 20 (IFT20), an intraflagellar transport member essential for ciliogenesis. Collectively, these results suggest that FOP negatively regulates ciliogenesis and can promote cell cycle re-entry by facilitating cilia disassembly.
Collapse
Affiliation(s)
- Huadong Jiang
- State Key Lab for Molecular Neuroscience, Division of Life Science, Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | - Shanshan Liu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Department of Pharmacology, Carson International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Man-Hei Cheung
- State Key Lab for Molecular Neuroscience, Division of Life Science, Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | - Aftab Amin
- State Key Lab for Molecular Neuroscience, Division of Life Science, Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chun Liang
- State Key Lab for Molecular Neuroscience, Division of Life Science, Center for Cancer Research, Hong Kong University of Science and Technology, Hong Kong, China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
- EnKang Pharmaceuticals (Guangzhou), Ltd., Guangzhou, China
- Intelgen Limited, Hong Kong-Guangzhou-Foshan, China
| |
Collapse
|
8
|
Gogendeau D, Lemullois M, Le Borgne P, Castelli M, Aubusson-Fleury A, Arnaiz O, Cohen J, Vesque C, Schneider-Maunoury S, Bouhouche K, Koll F, Tassin AM. MKS-NPHP module proteins control ciliary shedding at the transition zone. PLoS Biol 2020; 18:e3000640. [PMID: 32163404 PMCID: PMC7093003 DOI: 10.1371/journal.pbio.3000640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 03/24/2020] [Accepted: 02/24/2020] [Indexed: 12/21/2022] Open
Abstract
Ciliary shedding occurs from unicellular organisms to metazoans. Although required during the cell cycle and during neurogenesis, the process remains poorly understood. In all cellular models, this phenomenon occurs distal to the transition zone (TZ), suggesting conserved molecular mechanisms. The TZ module proteins (Meckel Gruber syndrome [MKS]/Nephronophtysis [NPHP]/Centrosomal protein of 290 kDa [CEP290]/Retinitis pigmentosa GTPase regulator-Interacting Protein 1-Like Protein [RPGRIP1L]) are known to cooperate to establish TZ formation and function. To determine whether they control deciliation, we studied the function of 5 of them (Transmembrane protein 107 [TMEM107], Transmembrane protein 216 [TMEM216], CEP290, RPGRIP1L, and NPHP4) in Paramecium. All proteins are recruited to the TZ of growing cilia and localize with 9-fold symmetry at the level of the most distal part of the TZ. We demonstrate that depletion of the MKS2/TMEM216 and TMEM107 proteins induces constant deciliation of some cilia, while depletion of either NPHP4, CEP290, or RPGRIP1L prevents Ca2+/EtOH deciliation. Our results constitute the first evidence for a role of conserved TZ proteins in deciliation and open new directions for understanding motile cilia physiology. Functional analysis and subcellular localisation of the conserved transition zone proteins in the ciliate Paramecium tetraurelia demonstrates their involvement in the ciliary shedding process, opening new avenues fir understanding the molecular mechanism of deciliation.
Collapse
Affiliation(s)
- Delphine Gogendeau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Michel Lemullois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pierrick Le Borgne
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Manon Castelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne Aubusson-Fleury
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Olivier Arnaiz
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jean Cohen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christine Vesque
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Developmental Biology Laboratory-Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Université, CNRS UMR7622, INSERM U1156, Developmental Biology Laboratory-Institut de Biologie Paris-Seine (IBPS), Paris, France
| | - Khaled Bouhouche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - France Koll
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anne-Marie Tassin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
9
|
Bayless BA, Navarro FM, Winey M. Motile Cilia: Innovation and Insight From Ciliate Model Organisms. Front Cell Dev Biol 2019; 7:265. [PMID: 31737631 PMCID: PMC6838636 DOI: 10.3389/fcell.2019.00265] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Ciliates are a powerful model organism for the study of basal bodies and motile cilia. These single-celled protists contain hundreds of cilia organized in an array making them an ideal system for both light and electron microscopy studies. Isolation and subsequent proteomic analysis of both cilia and basal bodies have been carried out to great success in ciliates. These studies reveal that ciliates share remarkable protein conservation with metazoans and have identified a number of essential basal body/ciliary proteins. Ciliates also boast a genetic and molecular toolbox that allows for facile manipulation of ciliary genes. Reverse genetics studies in ciliates have expanded our understanding of how cilia are positioned within an array, assembled, stabilized, and function at a molecular level. The advantages of cilia number coupled with a robust genetic and molecular toolbox have established ciliates as an ideal system for motile cilia and basal body research and prove a promising system for future research.
Collapse
Affiliation(s)
- Brian A Bayless
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Francesca M Navarro
- Department of Biology, Santa Clara University, Santa Clara, CA, United States
| | - Mark Winey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
10
|
Harmer J, Towers K, Addison M, Vaughan S, Ginger ML, McKean PG. A centriolar FGR1 oncogene partner-like protein required for paraflagellar rod assembly, but not axoneme assembly in African trypanosomes. Open Biol 2019; 8:rsob.170218. [PMID: 30045883 PMCID: PMC6070722 DOI: 10.1098/rsob.170218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/21/2018] [Indexed: 01/21/2023] Open
Abstract
Proteins of the FGR1 oncogene partner (or FOP) family are found at microtubule organizing centres (MTOCs) including, in flagellate eukaryotes, the centriole or flagellar basal body from which the axoneme extends. We report conservation of FOP family proteins, TbFOPL and TbOFD1, in the evolutionarily divergent sleeping sickness parasite Trypanosoma brucei, showing (in contrast with mammalian cells, where FOP is essential for flagellum assembly) depletion of a trypanosome FOP homologue, TbFOPL, affects neither axoneme nor flagellum elongation. Instead, TbFOPL depletion causes catastrophic failure in assembly of a lineage-specific, extra-axonemal structure, the paraflagellar rod (PFR). That depletion of centriolar TbFOPL causes failure in PFR assembly is surprising because PFR nucleation commences approximately 2 µm distal from the basal body. When over-expressed with a C-terminal myc-epitope, TbFOPL was also observed at mitotic spindle poles. Little is known about bi-polar spindle assembly during closed trypanosome mitosis, but indication of a possible additional MTOC function for TbFOPL parallels MTOC localization of FOP-like protein TONNEAU1 in acentriolar plants. More generally, our functional analysis of TbFOPL emphasizes significant differences in evolutionary cell biology trajectories of FOP-family proteins. We discuss how at the molecular level FOP homologues may contribute to flagellum assembly and function in diverse flagellates.
Collapse
Affiliation(s)
- Jane Harmer
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Katie Towers
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Max Addison
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Sue Vaughan
- Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Michael L Ginger
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Paul G McKean
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
11
|
Xie S, Jin J, Xu Z, Huang Y, Zhang W, Zhao L, Lo LJ, Peng J, Liu W, Wang F, Shu Q, Zhou T. Centrosomal protein FOR20 is essential for cilia-dependent development in zebrafish embryos. FASEB J 2019; 33:3613-3622. [PMID: 30475641 DOI: 10.1096/fj.201801235rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centrosomal proteins play critical roles in ciliogenesis. Mutations in many centrosomal proteins have been documented to contribute to developmental defects and cilium-related diseases. Centrosomal protein fibroblast growth factor receptor 1 oncogene partner-related protein of 20 kDa (FOR20) is crucial for ciliogenesis in mammalian cells and the unicellular eukaryote Paramecium; however, the biologic significance of FOR20 in vertebrate development remains unclear. We cloned the zebrafish homolog of the for20 gene and found that for20 mRNA is enriched in ciliated tissues during early zebrafish development. Knockdown of for20 by morpholino oligonucleotides in zebrafish results in multiple ciliary phenotypes, including curved body, hydrocephaly, pericardial edema, kidney cysts, and left-right asymmetry defects. for20 morphants show reduced number and length of cilia in Kupffer's vesicle and pronephric ducts. High-speed video microscopy reveals that cilia in most for20 morphants are consistently paralyzed or beat arrhythmically. To confirm the ciliary phenotypes of for20 morphants, we used the CRISPR/Cas9 system to disrupt for20 gene in zebrafish. for20 mutants exhibit multiple ciliary phenotypes resembling the defects in for20 morphants. All of these phenotypes in for20 morphants and mutants are significantly reversed by exogenous expression of for20 mRNA. Taken together, these data suggest that FOR20 is required for cilium-mediated processes during zebrafish embryogenesis.-Xie, S., Jin, J., Xu, Z., Huang, Y., Zhang, W., Zhao, L., Lo, L. J., Peng, J., Liu, W., Wang, F., Shu, Q., Zhou, T. Centrosomal protein FOR20 is essential for cilia-dependent development in zebrafish embryos.
Collapse
Affiliation(s)
- Shanshan Xie
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Jin
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhangqi Xu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Huang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wen Zhang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zhao
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Li Jan Lo
- Ministry of Education (MOE) Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China; and
| | - Jinrong Peng
- Ministry of Education (MOE) Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China; and
| | - Wei Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Hangzhou, China
| |
Collapse
|
12
|
Abstract
Imagine that in 1678 you are Christiaan Huygens or Antonie van Leeuwenhoek seeing paramecia swim gracefully across the field of view of your new microscope. These unicellular, free-living, and swimming cells might have remained a curiosity if not for the ability of H.S. Jennings (Behavior of the lower organisms. Indiana University Press, Bloomington, 1906) and T.M. Sonneborn (Proc Natl Acad Sci USA 23:378-385, 1937) to recognize them for their behavior and genetics, both Mendelian and non-Mendelian. Following many years of painstaking work by Sonneborn and other researchers, Paramecium now serves as a modern model organism that has made specific contributions to cell and molecular biology and development. We will review the continuing usefulness and contributions of Paramecium species in this chapter.Even without a microscope, Paramecium species is visible to the naked eye because of their size (50-300 μ long). Paramecia are holotrichous ciliates, that is, unicellular organisms in the phylum Ciliophora that are covered with cilia. It was the beating of these cilia that propelled them across the slides of the first microscopes and continue to fascinate us today. Over time, Paramecium became a favorite model organism for a large variety of studies. Denis Lyn has called Paramecium the "white rat" of the Ciliophora for their manipulability and amenity to research. We will touch upon the use of Paramecium species to examine swimming behavior, ciliary structure and function, ion channel function, basal body duplication and patterning, non-Mendelian cortical inheritance, programmed DNA rearrangements, regulated secretion and exocytosis, and cell trafficking. In particular, we will focus on the use of P. tetraurelia and P. caudatum.
Collapse
|
13
|
Feng S, Song Y, Shen M, Xie S, Li W, Lu Y, Yang Y, Ou G, Zhou J, Wang F, Liu W, Yan X, Liang X, Zhou T. Microtubule-binding protein FOR20 promotes microtubule depolymerization and cell migration. Cell Discov 2017; 3:17032. [PMID: 28884019 PMCID: PMC5583970 DOI: 10.1038/celldisc.2017.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Microtubules are highly dynamic filaments assembled from αβ-tubulin heterodimers and play important roles in many cellular processes, including cell division and migration. Microtubule dynamics is tightly regulated by microtubule-associated proteins (MAPs) that function by binding to microtubules or free tubulin dimers. Here, we report that FOR20 (FOP-related protein of 20 kDa), a conserved protein critical for ciliogenesis and cell cycle progression, is a previously uncharacterized MAP that facilitates microtubule depolymerization and promotes cell migration. FOR20 not only directly binds to microtubules but also regulates microtubule dynamics in vitro by decreasing the microtubule growth rate and increasing the depolymerization rate and catastrophe frequency. In the in vitro microtubule dynamics assays, FOR20 appears to preferentially interact with free tubulin dimers over microtubules. Depletion of FOR20 inhibits microtubule depolymerization and promotes microtubule regrowth after the nocodazole treatment in HeLa cells. In addition, FOR20 knockdown significantly inhibits both individual and collective migration of mammalian cells. Taken together, these data suggest that FOR20 functions as a MAP to promote microtubule depolymerization and cell migration.
Collapse
Affiliation(s)
- Sijie Feng
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Yinlong Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Max-Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, Tianjing 300073, China
| | - Minhong Shen
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Shanshan Xie
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Lu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fudi Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Xin Liang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Max-Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, Tianjing 300073, China
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| |
Collapse
|
14
|
Harmer J, Qi X, Toniolo G, Patel A, Shaw H, Benson FE, Ginger ML, McKean PG. Variation in Basal Body Localisation and Targeting of Trypanosome RP2 and FOR20 Proteins. Protist 2017; 168:452-466. [PMID: 28822909 DOI: 10.1016/j.protis.2017.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/28/2017] [Accepted: 07/01/2017] [Indexed: 12/22/2022]
Abstract
TOF-LisH-PLL motifs define FOP family proteins; some members are involved in flagellum assembly. The critical role of FOP family protein FOR20 is poorly understood. Here, we report relative localisations of the four FOP family proteins in parasitic Trypanosoma brucei: TbRP2, TbOFD1 and TbFOP/FOP1-like are mature basal body proteins whereas TbFOR20 is present on pro- and mature basal bodies - on the latter it localises distal to TbRP2. We discuss how the data, together with published work for another protist Giardia intestinalis, informs on likely FOR20 function. Moreover, our localisation study provides convincing evidence that the antigen recognised by monoclonal antibody YL1/2 at trypanosome mature basal bodies is FOP family protein TbRP2, not tyrosinated α-tubulin as widely stated in the literature. Curiously, FOR20 proteins from T. brucei and closely related African trypanosomes possess short, negatively-charged N-terminal extensions absent from FOR20 in other trypanosomatids and other eukaryotes. The extension is necessary for protein targeting, but insufficient to re-direct TbRP2 to probasal bodies. Yet, FOR20 from the American trypanosome T. cruzi, which lacks any extension, localises to pro- and mature basal bodies when expressed in T. brucei. This identifies unexpected variation in FOR20 architecture that is presently unique to one clade of trypanosomatids.
Collapse
Affiliation(s)
- Jane Harmer
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Xin Qi
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Gabriella Toniolo
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Aysha Patel
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hannah Shaw
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Fiona E Benson
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK
| | - Michael L Ginger
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Paul G McKean
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| |
Collapse
|
15
|
A centrosomal protein FOR20 regulates microtubule assembly dynamics and plays a role in cell migration. Biochem J 2017; 474:2841-2859. [DOI: 10.1042/bcj20170303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/03/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022]
Abstract
Here, we report that a centrosomal protein FOR20 [FOP (FGFR1 (fibroblast growth factor receptor 1) oncogene protein)-like protein of molecular mass of 20 kDa; also named as C16orf63, FLJ31153 or PHSECRG2] can regulate the assembly and stability of microtubules. Both FOR20 IgG antibody and GST (glutathione S-transferase)-tagged FOR20 could precipitate tubulin from the HeLa cell extract, indicating a possible interaction between FOR20 and tubulin. FOR20 was also detected in goat brain tissue extract and it cycled with microtubule-associated proteins. Furthermore, FOR20 bound to purified tubulin and inhibited the assembly of tubulin in vitro. The overexpression of FOR20 depolymerized interphase microtubules and the depletion of FOR20 prevented nocodazole-induced depolymerization of microtubules in HeLa cells. In addition, the depletion of FOR20 suppressed the dynamics of individual microtubules in live HeLa cells. FOR20-depleted MDA-MB-231 cells displayed zigzag motion and migrated at a slower rate than the control cells, indicating that FOR20 plays a role in directed cell migration. The results suggested that the centrosomal protein FOR20 is a new member of the microtubule-associated protein family and that it regulates the assembly and dynamics of microtubules.
Collapse
|
16
|
Kiss KP, Varga G, Mikala G, Balassa K, Bors A, Kovy P, Meggyesi N, Kozma A, Csacsovszki O, Remenyi P, Valyi-Nagy I, Tordai A, Masszi T, Andrikovics H. The adverse effect of FOPNL genomic variant is reversed by bortezomib-based treatment protocols in multiple myeloma. Leuk Lymphoma 2017; 59:710-716. [PMID: 28691553 DOI: 10.1080/10428194.2017.1346250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fibroblast growth factor receptor 1 oncogene partner N-terminal like gene (FOPNL) rs72773978 polymorphism was identified as an adverse prognostic factor in multiple myeloma (MM). We aimed to investigate the associations of rs72773978 with clinical characteristics and treatment outcome in 373 Hungarian MM patients. In our cohort, FOPNL polymorphism showed differential prognostic effect that depended on the treatment applied. Among patients treated with non-proteasome inhibitor (PI)-based therapy, carriership of the minor allele was significantly associated with adverse overall survival (p=.022). In contrast, the adverse effect was overcome by the application of PI-containing treatment (p=.048). Multivariate analyses revealed the independent adverse effect of rs72773978 on survival in the non-PI-treated group (p=.045), but not in PI treatment (OS: p=.093). We confirmed the adverse prognostic effect of rs72773978 associated with non-PI-based treatment regimens. Our results point to the importance of genotypic prognostic information associated with complex clinical background MM.
Collapse
Affiliation(s)
- Katalin Piroska Kiss
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Gergely Varga
- b 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary
| | - Gabor Mikala
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Katalin Balassa
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Andras Bors
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Petra Kovy
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Nora Meggyesi
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| | - Andras Kozma
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Otto Csacsovszki
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Peter Remenyi
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Istvan Valyi-Nagy
- c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Attila Tordai
- d Department of Pathophysiology , Semmelweis University , Budapest , Hungary
| | - Tamas Masszi
- b 3rd Department of Internal Medicine , Semmelweis University , Budapest , Hungary.,c Department of Haematology and Stem Cell Transplantation , St. Istvan and St. Laszlo Hospital , Budapest , Hungary
| | - Hajnalka Andrikovics
- a Laboratory of Molecular Diagnostics , Hungarian National Blood Transfusion Service , Budapest , Hungary
| |
Collapse
|
17
|
Aubusson-Fleury A, Balavoine G, Lemullois M, Bouhouche K, Beisson J, Koll F. Centrin diversity and basal body patterning across evolution: new insights from Paramecium. Biol Open 2017; 6:765-776. [PMID: 28432105 PMCID: PMC5483020 DOI: 10.1242/bio.024273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
First discovered in unicellular eukaryotes, centrins play crucial roles in basal body duplication and anchoring mechanisms. While the evolutionary status of the founding members of the family, Centrin2/Vfl2 and Centrin3/cdc31 has long been investigated, the evolutionary origin of other members of the family has received less attention. Using a phylogeny of ciliate centrins, we identify two other centrin families, the ciliary centrins and the centrins present in the contractile filaments (ICL centrins). In this paper, we carry on the functional analysis of still not well-known centrins, the ICL1e subfamily identified in Paramecium, and show their requirement for correct basal body anchoring through interactions with Centrin2 and Centrin3. Using Paramecium as well as a eukaryote-wide sampling of centrins from completely sequenced genomes, we revisited the evolutionary story of centrins. Their phylogeny shows that the centrins associated with the ciliate contractile filaments are widespread in eukaryotic lineages and could be as ancient as Centrin2 and Centrin3. Summary: Functional and phylogenetic analyses reveal the existence of five centrin families and show that basal body patterning in Paramecium requires a third centrin present in many eukaryote lineages.
Collapse
Affiliation(s)
- Anne Aubusson-Fleury
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| | - Guillaume Balavoine
- Institut Jacques Monod, Evolution and development of Metazoa, UMR 7592, CNRS/Université Paris Diderot, 15 rue Hélène Brion, Paris 75013, France
| | - Michel Lemullois
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| | - Khaled Bouhouche
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, IFR 145, Faculté des Sciences et Techniques, Limoges 87060, France
| | - Janine Beisson
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), Cell Biology Department, CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif sur Yvette 91198, France
| |
Collapse
|
18
|
Shi L, Koll F, Arnaiz O, Cohen J. The Ciliary Protein IFT57 in the Macronucleus of Paramecium. J Eukaryot Microbiol 2017; 65:12-27. [DOI: 10.1111/jeu.12423] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Lei Shi
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
- Department of Biochemical and Molecular Biology; School of Basic Medical Sciences; Xinxiang Medical University; Xinxiang 453003 China
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Olivier Arnaiz
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| | - Jean Cohen
- Institute for Integrative Biology of the Cell (I2BC), formerly Centre de Génétique Moléculaire; Université Paris Saclay; CEA; CNRS; 1 Avenue de la Terrasse 91198 Gif sur Yvette France
| |
Collapse
|
19
|
Bengueddach H, Lemullois M, Aubusson-Fleury A, Koll F. Basal body positioning and anchoring in the multiciliated cell Paramecium tetraurelia: roles of OFD1 and VFL3. Cilia 2017; 6:6. [PMID: 28367320 PMCID: PMC5374602 DOI: 10.1186/s13630-017-0050-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
Background The development of a ciliary axoneme requires the correct docking of the basal body at cytoplasmic vesicles or plasma membrane. In the multiciliated cell Paramecium, three conserved proteins, FOR20, Centrin 2, and Centrin 3 participate in this process, FOR20 and Centrin 2 being involved in the assembly of the transition zone. We investigated the function of two other evolutionary conserved proteins, OFD1 and VFL3, likely involved in this process. Results In Paramecium tetraurelia, a single gene encodes OFD1, while four genes encode four isoforms of VFL3, grouped into two families, VFL3-A and VFL3-B. Depletion of OFD1 and the sole VFL3-A family impairs basal body docking. Loss of OFD1 yields a defective assembly of the basal body distal part. Like FOR20, OFD1 is recruited early during basal body assembly and localizes at the transition zone between axoneme and membrane at the level of the microtubule doublets. While the recruitment of OFD1 and Centrin 2 proceed independently, the localizations of OFD1 and FOR20 at the basal body are interdependent. In contrast, in VFL3-A depleted cells, the unanchored basal bodies harbor a fully organized distal part but display an abnormal distribution of their associated rootlets which mark their rotational asymmetry. VFL3-A, which is required for the recruitment of Centrin 3, is transiently present near the basal bodies at an early step of their duplication. VFL3-A localizes at the junction between the striated rootlet and the basal body. Conclusion Our results demonstrate the conserved role of OFD1 in the anchoring mechanisms of motile cilia and establish its relations with FOR20 and Centrin 2. They support the hypothesis of its association with microtubule doublets. They suggest that the primary defect of VFL3 depletion is a loss of the rotational asymmetry of the basal body which specifies the sites of assembly of the appendages which guide the movement of basal bodies toward the cell surface. The localization of VFL3 outside of the basal body suggests that extrinsic factors could control this asymmetry. Electronic supplementary material The online version of this article (doi:10.1186/s13630-017-0050-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hakim Bengueddach
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Michel Lemullois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Anne Aubusson-Fleury
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - France Koll
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
20
|
Abstract
Paramecium is a free-living unicellular organism, easy to cultivate, featuring ca. 4000 motile cilia emanating from longitudinal rows of basal bodies anchored in the plasma membrane. The basal body circumferential polarity is marked by the asymmetrical organization of its associated appendages. The complex basal body plus its associated rootlets forms the kinetid. Kinetids are precisely oriented within a row in correlation with the cell polarity. Basal bodies also display a proximo-distal polarity with microtubule triplets at their proximal ends, surrounding a permanent cartwheel, and microtubule doublets at the transition zone located between the basal body and the cilium. Basal bodies remain anchored at the cell surface during the whole cell cycle. On the opposite to metazoan, there is no centriolar stage and new basal bodies develop anteriorly and at right angle from the base of the docked ones. Ciliogenesis follows a specific temporal pattern during the cell cycle and both unciliated and ciliated docked basal bodies can be observed in the same cell. The transition zone is particularly well organized with three distinct plates and a maturation of its structure is observed during the growth of the cilium. Transcriptomic and proteomic analyses have been performed in different organisms including Paramecium to understand the ciliogenesis process. The data have incremented a multi-organism database, dedicated to proteins involved in the biogenesis, composition and function of centrosomes, basal bodies or cilia. Thanks to its thousands of basal bodies and the well-known choreography of their duplication during the cell cycle, Paramecium has allowed pioneer studies focusing on the structural and functional processes underlying basal body duplication. Proteins involved in basal body anchoring are sequentially recruited to assemble the transition zone thus indicating that the anchoring process parallels the structural differentiation of the transition zone. This feature offers an opportunity to dissect spatio-temporally the mechanisms involved in the basal body anchoring process and transition zone formation.
Collapse
|
21
|
Chevrier V, Bruel AL, Van Dam TJP, Franco B, Lo Scalzo M, Lembo F, Audebert S, Baudelet E, Isnardon D, Bole A, Borg JP, Kuentz P, Thevenon J, Burglen L, Faivre L, Rivière JB, Huynen MA, Birnbaum D, Rosnet O, Thauvin-Robinet C. OFIP/KIAA0753 forms a complex with OFD1 and FOR20 at pericentriolar satellites and centrosomes and is mutated in one individual with oral-facial-digital syndrome. Hum Mol Genet 2015; 25:497-513. [PMID: 26643951 DOI: 10.1093/hmg/ddv488] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/20/2015] [Indexed: 11/13/2022] Open
Abstract
Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.
Collapse
Affiliation(s)
- Véronique Chevrier
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Ange-Line Bruel
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD)
| | - Teunis J P Van Dam
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Naples, Italy, Medical Genetics, Department of Medical Translational Sciences, University of Napoli Federico II, Naples, Italy
| | | | - Frédérique Lembo
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Emilie Baudelet
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Daniel Isnardon
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | | | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Paul Kuentz
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD)
| | - Julien Thevenon
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet and Service de Génétique, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Laurence Faivre
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est
| | - Jean-Baptiste Rivière
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Laboratoire de Génétique Moléculaire, Plateau Technique de Biologie, Centre Hospitalier Universitaire Dijon, Dijon F-21079, France
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France
| | - Olivier Rosnet
- Centre de Recherche en Cancérologie de Marseille, INSERM UMR1068, Institut Paoli-Calmettes and CNRS U7258, F-13009 Marseille, France, Aix-Marseille Université, F-13007 Marseille, France,
| | - Christel Thauvin-Robinet
- Equipe d'Accueil 4271, Génétique des Anomalies du Développement, Université Fédérale Bourgogne - Franche Comté, F-21079 Dijon, France, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est,
| |
Collapse
|
22
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
23
|
Ziv E, Dean E, Hu D, Martino A, Serie D, Curtin K, Campa D, Aftab B, Bracci P, Buda G, Zhao Y, Caswell-Jin J, Diasio R, Dumontet C, Dudziński M, Fejerman L, Greenberg A, Huntsman S, Jamroziak K, Jurczyszyn A, Kumar S, Atanackovic D, Glenn M, Cannon-Albright LA, Jones B, Lee A, Marques H, Martin T, Martinez-Lopez J, Rajkumar V, Sainz J, Vangsted AJ, Wątek M, Wolf J, Slager S, Camp NJ, Canzian F, Vachon C. Genome-wide association study identifies variants at 16p13 associated with survival in multiple myeloma patients. Nat Commun 2015; 6:7539. [PMID: 26198393 PMCID: PMC4656791 DOI: 10.1038/ncomms8539] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 05/14/2015] [Indexed: 01/09/2023] Open
Abstract
Here we perform the first genome-wide association study (GWAS) of multiple myeloma (MM) survival. In a meta-analysis of 306 MM patients treated at UCSF and 239 patients treated at the Mayo clinic, we find a significant association between SNPs near the gene FOPNL on chromosome 16p13 and survival (rs72773978; P=6 × 10(-10)). Patients with the minor allele are at increased risk for mortality (HR: 2.65; 95% CI: 1.94-3.58) relative to patients homozygous for the major allele. We replicate the association in the IMMEnSE cohort including 772 patients, and a University of Utah cohort including 318 patients (rs72773978 P=0.044). Using publicly available data, we find that the minor allele was associated with increased expression of FOPNL and increased expression of FOPNL was associated with higher expression of centrosomal genes and with shorter survival. Polymorphisms at the FOPNL locus are associated with survival among MM patients.
Collapse
Affiliation(s)
- Elad Ziv
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Eric Dean
- Sutter Medical Center of Santa Rosa, Santa Rosa, California
| | - Donglei Hu
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alessandro Martino
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Serie
- Division of Biomedical Statistics and Informatics. Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - Karen Curtin
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Daniele Campa
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Blake Aftab
- Department of Medicine, Division of Hematology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Paige Bracci
- Department of Epidemiology and Biostatistics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Gabriele Buda
- Department of Oncology, Transplants and Advanced Technologies, Section of Hematology, Pisa University Hospital, Pisa, Italy
| | - Yi Zhao
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jennifer Caswell-Jin
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Robert Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN
| | - Charles Dumontet
- INSERM UMR 1052 / CNRS 5286, Laboratoire de Cytologie Analytique, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, Lyon, France
| | - Marek Dudziński
- Department of Hematology, Rzeszow Regional Hospital, Rzeszow, Poland
| | - Laura Fejerman
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Alexandra Greenberg
- Center for Translational Science Activities, Mayo Clinic, Rochester, MN, USA Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, USA
| | - Scott Huntsman
- Department of Medicine, Division of General Internal Medicine, Institute for Human Genetics, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | | | - Artur Jurczyszyn
- Department of Hematology, Cracow University Hospital, Cracow, Poland
| | - Shaji Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Djordje Atanackovic
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Martha Glenn
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Lisa A. Cannon-Albright
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Brandt Jones
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Adam Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Thomas Martin
- Department of Medicine, Division of Hematology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Joaquin Martinez-Lopez
- Hematology Service, CRIS facility for Hematological research, Hospital Universitario 12 de Octubre, Universidad Complutense, Madrid, Spain
| | - Vincent Rajkumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Juan Sainz
- Genomic Oncology Area, GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, Granada, Spain; Hematology department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Annette Juul Vangsted
- Department of Hematology, Righospitalet and Roskilde Hospital, Copenhagen University, Denmark
| | - Marzena Wątek
- Department of Hematology, Holycross Cancer Center, Kielce, Poland
| | - Jeffrey Wolf
- Department of Medicine, Division of Hematology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - Susan Slager
- Division of Biomedical Statistics and Informatics. Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Nicola J Camp
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Celine Vachon
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
24
|
Zhang C, Zhang Q, Wang F, Liu Q. Knockdown of poc1b causes abnormal photoreceptor sensory cilium and vision impairment in zebrafish. Biochem Biophys Res Commun 2015; 465:651-7. [PMID: 26188096 DOI: 10.1016/j.bbrc.2015.06.083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/12/2015] [Indexed: 01/26/2023]
Abstract
Proteomic analysis of the mouse photoreceptor sensory cilium identified a set of cilia proteins, including Poc1 centriolar protein b (Poc1b). Previous functional studies in human cells and zebrafish embryos implicated that Poc1b plays important roles in centriole duplication and length control, as well as ciliogenesis. To study the function of Poc1b in photoreceptor sensory cilia and other primary cilia, we expressed a tagged recombinant Poc1b protein in cultured renal epithelial cells and rat retina. Poc1b was localized to the centrioles and spindle bundles during cell cycle progression, and to the basal body of photoreceptor sensory cilia. A morpholino knockdown and complementation assay of poc1b in zebrafish showed that loss of poc1b led to a range of morphological anomalies of cilia commonly associated with human ciliopathies. In the retina, the development of retinal laminae was significantly delayed and the length of photoreceptor outer segments was shortened. Visual behavior studies revealed impaired visual function in the poc1b morphants. In addition, ciliopathy-associated developmental defects, such as small eyes, curved body axis, heart defects, and shortened cilia in Kupffer's vesicle, were observed as well. These data suggest that poc1b is required for normal development and ciliogenesis of retinal photoreceptor sensory cilia and other cilia. Furthermore, this conclusion is supported by recent findings that mutations in POC1B gene have been identified in patients with inherited retinal dystrophy and syndromic retinal ciliopathy.
Collapse
Affiliation(s)
- Conghui Zhang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Qi Zhang
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| | - Qin Liu
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA; Berman-Gund Laboratory for the Study of Retinal Degenerations, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Plattner H. Molecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution – The ciliated protozoan Paramecium in focus. Cell Calcium 2015; 57:174-85. [DOI: 10.1016/j.ceca.2014.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/01/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
|
26
|
Aubusson-Fleury A, Cohen J, Lemullois M. Ciliary heterogeneity within a single cell: the Paramecium model. Methods Cell Biol 2015; 127:457-85. [PMID: 25837404 DOI: 10.1016/bs.mcb.2014.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Paramecium is a single cell able to divide in its morphologically differentiated stage that has many cilia anchored at its cell surface. Many thousands of cilia are thus assembled in a short period of time during division to duplicate the cell pattern while the cell continues swimming. Most, but not all, of these sensory cilia are motile and involved in two main functions: prey capture and cell locomotion. These cilia display heterogeneity, both in their length and their biochemical properties. Thanks to these properties, as well as to the availability of many postgenomic tools and the possibility to follow the regrowth of cilia after deciliation, Paramecium offers a nice opportunity to study the assembly of the cilia, as well as the genesis of their diversity within a single cell. In this paper, after a brief survey of Paramecium morphology and cilia properties, we describe the tools and the protocols currently used for immunofluorescence, transmission electron microscopy, and ultrastructural immunocytochemistry to analyze cilia, with special recommendations to overcome the problem raised by cilium diversity.
Collapse
Affiliation(s)
- Anne Aubusson-Fleury
- Centre de Génétique Moléculaire, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Bat 26 Allée de la terrasse, 91 198 Gif sur Yvette Cedex, France
| | - Jean Cohen
- Centre de Génétique Moléculaire, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Bat 26 Allée de la terrasse, 91 198 Gif sur Yvette Cedex, France
| | - Michel Lemullois
- Centre de Génétique Moléculaire, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Université Paris Sud, Bat 26 Allée de la terrasse, 91 198 Gif sur Yvette Cedex, France
| |
Collapse
|
27
|
Ke YN, Yang WX. Primary cilium: an elaborate structure that blocks cell division? Gene 2014; 547:175-85. [PMID: 24971504 DOI: 10.1016/j.gene.2014.06.050] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/07/2014] [Accepted: 06/23/2014] [Indexed: 11/25/2022]
Abstract
A primary cilium is a microtubule-based membranous protrusion found in almost all cell types. A primary cilium has a "9+0" axoneme that distinguishes this ancient organelle from the canonical motile "9+2" cilium. A primary cilium is the sensory center of the cell that regulates cell proliferation and embryonic development. The primary ciliary pocket is a specialized endocytic membrane domain in the basal region. The basal body of a primary cilium exists as a form of the centriole during interphase of the cell cycle. Although conventional thinking suggests that the cell cycle regulates centrosomal changes, recent studies suggest the opposite, that is, centrosomal changes regulate the cell cycle. In this regard, centrosomal kinase Aurora kinase A (AurA), Polo-like kinase 1 (Plk1), and NIMA related Kinase (Nek or Nrk) propel cell cycle progression by promoting primary cilia disassembly which indicates a non-mitotic function. However, the persistence of primary cilia during spermatocyte division challenges the dominate idea of the incompatibility of primary cilia and cell division. In this review, we demonstrate the detailed structure of primary cilia and discuss the relationship between primary cilia disassembly and cell cycle progression on the background of various mitotic kinases.
Collapse
Affiliation(s)
- Yi-Ni Ke
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
28
|
Picariello T, Valentine MS, Yano J, Van Houten J. Reduction of meckelin leads to general loss of cilia, ciliary microtubule misalignment and distorted cell surface organization. Cilia 2014; 3:2. [PMID: 24484742 PMCID: PMC4124839 DOI: 10.1186/2046-2530-3-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Meckelin (MKS3), a conserved protein linked to Meckel Syndrome, assists in the migration of centrioles to the cell surface for ciliogenesis. We explored for additional functions of MKS3p using RNA interference (RNAi) and expression of FLAG epitope tagged protein in the ciliated protozoan Paramecium tetraurelia. This cell has a highly organized cell surface with thousands of cilia and basal bodies that are grouped into one or two basal body units delineated by ridges. The highly systematized nature of the P. tetraurelia cell surface provides a research model of MKS and other ciliopathies where changes in ciliary structure, subcellular organization and overall arrangement of the cell surface can be easily observed. We used cells reduced in IFT88 for comparison, as the involvement of this gene's product with cilia maintenance and growth is well understood. RESULTS FLAG-MKS3p was found above the plane of the distal basal body in the transition zone. Approximately 95% of those basal bodies observed had staining for FLAG-MKS3. The RNAi phenotype for MKS3 depleted cells included global shortening and loss of cilia. Basal body structure appeared unaffected. On the dorsal surface, the basal bodies and their associated rootlets appeared rotated out of alignment from the normal anterior-posterior rows. Likewise, cortical units were abnormal in shape and out of alignment from normal rows. A GST pull down using the MKS3 coiled-coil domain suggests previously unidentified interacting partners. CONCLUSIONS Reduction of MKS3p shows that this protein affects development and maintenance of cilia over the entire cell surface. Reduction of MKS3p is most visible on the dorsal surface. The anterior basal body is attached to and moves along the striated rootlet of the posterior basal body in preparation for duplication. We propose that with reduced MKS3p, this attachment and guidance of the basal body is lost. The basal body veers off course, causing basal body rows to be misaligned and units to be misshapen. Rootlets form normally on these misaligned basal bodies but are rotated out of their correct orientation. Our hypothesis is further supported by the identification of novel interacting partners of MKS3p including a kinetodesmal fiber protein, KdB2.
Collapse
Affiliation(s)
- Tyler Picariello
- Department of Biology, University of Vermont, 120A Marsh Life Science Bldg, Burlington, VT 05405, USA
| | - Megan Smith Valentine
- Department of Biology, University of Vermont, 120A Marsh Life Science Bldg, Burlington, VT 05405, USA
| | - Junji Yano
- Department of Biology, University of Vermont, 120A Marsh Life Science Bldg, Burlington, VT 05405, USA
| | - Judith Van Houten
- Department of Biology, University of Vermont, 120A Marsh Life Science Bldg, Burlington, VT 05405, USA
| |
Collapse
|
29
|
Simon M, Plattner H. Unicellular Eukaryotes as Models in Cell and Molecular Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 309:141-98. [DOI: 10.1016/b978-0-12-800255-1.00003-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Andre J, Kerry L, Qi X, Hawkins E, Drizyte K, Ginger ML, McKean PG. An alternative model for the role of RP2 protein in flagellum assembly in the African trypanosome. J Biol Chem 2013; 289:464-75. [PMID: 24257747 PMCID: PMC3879569 DOI: 10.1074/jbc.m113.509521] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme.
Collapse
Affiliation(s)
- Jane Andre
- From the Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Shen M, Cai Y, Yang Y, Yan X, Liu X, Zhou T. Centrosomal protein FOR20 is essential for S-phase progression by recruiting Plk1 to centrosomes. Cell Res 2013; 23:1284-95. [PMID: 24018379 PMCID: PMC3817547 DOI: 10.1038/cr.2013.127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/13/2013] [Accepted: 07/16/2013] [Indexed: 12/28/2022] Open
Abstract
Centrosomes are required for efficient cell cycle progression mainly by orchestrating microtubule dynamics and facilitating G1/S and G2/M transitions. However, the role of centrosomes in S-phase progression is largely unknown. Here, we report that depletion of FOR20 (FOP-related protein of 20 kDa), a conserved centrosomal protein, inhibits S-phase progression and prevents targeting of Plk1 (polo-like kinase 1) to centrosomes, where FOR20 interacts with Plk1. Ablation of Plk1 also significantly induces S-phase defects, which are reversed by ectopic expression of Plk1, even a kinase-dead mutant, but not a mutant that fails to localize to centrosomes. Exogenous expression of centrosome-tethered Plk1, but not wild-type Plk1, overrides FOR20 depletion-induced S-phase defects independently of its kinase activity. Thus, these data indicate that recruitment of Plk1 to centrosomes by FOR20 may act as a signal to license efficient progression of S-phase. This represents a hitherto uncharacterized role of centrosomes in cell cycle regulation.
Collapse
Affiliation(s)
- Minhong Shen
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuqi Cai
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
32
|
Aubusson-Fleury A, Bricheux G, Damaj R, Lemullois M, Coffe G, Donnadieu F, Koll F, Viguès B, Bouchard P. Epiplasmins and Epiplasm in Paramecium: The Building of a Submembraneous Cytoskeleton. Protist 2013; 164:451-69. [DOI: 10.1016/j.protis.2013.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 12/27/2022]
|
33
|
A Centrin3-dependent, Transient, Appendage of the Mother Basal Body Guides the Positioning of the Daughter Basal Body in Paramecium. Protist 2013; 164:352-68. [DOI: 10.1016/j.protis.2012.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/30/2022]
|
34
|
Lee JY, Stearns T. FOP is a centriolar satellite protein involved in ciliogenesis. PLoS One 2013; 8:e58589. [PMID: 23554904 PMCID: PMC3595297 DOI: 10.1371/journal.pone.0058589] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 02/06/2013] [Indexed: 11/17/2022] Open
Abstract
Centriolar satellites are proteinaceous granules that are often clustered around the centrosome. Although centriolar satellites have been implicated in protein trafficking in relation to the centrosome and cilium, the details of their function and composition remain unknown. FOP (FGFR1 Oncogene Partner) is a known centrosome protein with homology to the centriolar satellite proteins FOR20 and OFD1. We find that FOP partially co-localizes with the satellite component PCM1 in a cell cycle-dependent manner, similarly to the satellite and cilium component BBS4. As for BBS4, FOP localization to satellites is cell cycle dependent, with few satellites labeled in G1, when FOP protein levels are lowest, and most labeled in G2. FOP-FGFR1, an oncogenic fusion that causes a form of leukemia called myeloproliferative neoplasm, also localizes to centriolar satellites where it increases tyrosine phosphorylation. Depletion of FOP strongly inhibits primary cilium formation in human RPE-1 cells. These results suggest that FOP is a centriolar satellite cargo protein and, as for several other satellite-associated proteins, is involved in ciliogenesis. Localization of the FOP-FGFR1 fusion kinase to centriolar satellites may be relevant to myeloproliferative neoplasm disease progression.
Collapse
Affiliation(s)
- Joanna Y Lee
- Department of Biology, Stanford University, Stanford, California, USA
| | | |
Collapse
|
35
|
Vonderfecht T, Cookson MW, Giddings TH, Clarissa C, Winey M. The two human centrin homologues have similar but distinct functions at Tetrahymena basal bodies. Mol Biol Cell 2012; 23:4766-77. [PMID: 23087207 PMCID: PMC3521684 DOI: 10.1091/mbc.e12-06-0454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Centrins are a ubiquitous family of small Ca(2+)-binding proteins found at basal bodies that are placed into two groups based on sequence similarity to the human centrins 2 and 3. Analyses of basal body composition in different species suggest that they contain a centrin isoform from each group. We used the ciliate protist Tetrahymena thermophila to gain a better understanding of the functions of the two centrin groups and to determine their potential redundancy. We have previously shown that the Tetrahymena centrin 1 (Cen1), a human centrin 2 homologue, is required for proper basal body function. In this paper, we show that the Tetrahymena centrin 2 (Cen2), a human centrin 3 homologue, has functions similar to Cen1 in basal body orientation, maintenance, and separation. The two are, however, not redundant. A further examination of human centrin 3 homologues shows that they function in a manner distinct from human centrin 2 homologues. Our data suggest that basal bodies require a centrin from both groups in order to function correctly.
Collapse
Affiliation(s)
- Tyson Vonderfecht
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|