1
|
Abstract
Complete duplication of large metazoan chromosomes requires thousands of potential initiation sites, only a small fraction of which are selected in each cell cycle. Assembly of the replication machinery is highly conserved and tightly regulated during the cell cycle, but the sites of initiation are highly flexible, and their temporal order of firing is regulated at the level of large-scale multi-replicon domains. Importantly, the number of replication forks must be quickly adjusted in response to replication stress to prevent genome instability. Here we argue that large genomes are divided into domains for exactly this reason. Once established, domain structure abrogates the need for precise initiation sites and creates a scaffold for the evolution of other chromosome functions.
Collapse
Affiliation(s)
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA; Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL 32306-4295, USA.
| |
Collapse
|
2
|
Gillespie PJ, Neusiedler J, Creavin K, Chadha GS, Blow JJ. Cell Cycle Synchronization in Xenopus Egg Extracts. Methods Mol Biol 2016; 1342:101-47. [PMID: 26254920 DOI: 10.1007/978-1-4939-2957-3_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many important discoveries in cell cycle research have been made using cell-free extracts prepared from the eggs of the South African clawed frog Xenopus laevis. These extracts efficiently support the key nuclear functions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. Here, we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei. We detail how these extracts can be used to study the key transitions of the eukaryotic cell cycle and describe conditions under which these transitions can be manipulated by addition of drugs that either retard or advance passage. In addition, we describe in detail essential techniques that provide a practical starting point for investigating the function of proteins involved in the operation of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Peter J Gillespie
- Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | |
Collapse
|
3
|
Mukhopadhyay R, Lajugie J, Fourel N, Selzer A, Schizas M, Bartholdy B, Mar J, Lin CM, Martin MM, Ryan M, Aladjem MI, Bouhassira EE. Allele-specific genome-wide profiling in human primary erythroblasts reveal replication program organization. PLoS Genet 2014; 10:e1004319. [PMID: 24787348 PMCID: PMC4006724 DOI: 10.1371/journal.pgen.1004319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
We have developed a new approach to characterize allele-specific timing of DNA replication genome-wide in human primary basophilic erythroblasts. We show that the two chromosome homologs replicate at the same time in about 88% of the genome and that large structural variants are preferentially associated with asynchronous replication. We identified about 600 megabase-sized asynchronously replicated domains in two tested individuals. The longest asynchronously replicated domains are enriched in imprinted genes suggesting that structural variants and parental imprinting are two causes of replication asynchrony in the human genome. Biased chromosome X inactivation in one of the two individuals tested was another source of detectable replication asynchrony. Analysis of high-resolution TimEX profiles revealed small variations termed timing ripples, which were undetected in previous, lower resolution analyses. Timing ripples reflect highly reproducible, variations of the timing of replication in the 100 kb-range that exist within the well-characterized megabase-sized replication timing domains. These ripples correspond to clusters of origins of replication that we detected using novel nascent strands DNA profiling methods. Analysis of the distribution of replication origins revealed dramatic differences in initiation of replication frequencies during S phase and a strong association, in both synchronous and asynchronous regions, between origins of replication and three genomic features: G-quadruplexes, CpG Islands and transcription start sites. The frequency of initiation in asynchronous regions was similar in the two homologs. Asynchronous regions were richer in origins of replication than synchronous regions. DNA replication in mammalian cells proceeds according to a distinct order. Genes that are expressed tend to replicate before genes that are not expressed. We report here that we have developed a method to measure the timing of replication of the maternal and paternal chromosomes separately. We found that the paternal and maternal chromosomes replicate at exactly the same time in the large majority of the genome and that the 12% of the genome that replicated asynchronously was enriched in imprinted genes and in structural variants. Previous experiments have shown that chromosomes could be divided into replication timing domains that are a few hundred thousand to a few megabases in size. We show here that these domains can be divided into sub-domains defined by ripples in the timing profile. These ripples corresponded to clusters of origins of replication. Finally, we show that the frequency of initiation in asynchronous regions was similar in the two homologs.
Collapse
Affiliation(s)
- Rituparna Mukhopadhyay
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Julien Lajugie
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicolas Fourel
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ari Selzer
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Michael Schizas
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jessica Mar
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Chii Mei Lin
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvenia M. Martin
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Michael Ryan
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mirit I. Aladjem
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Eric E. Bouhassira
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abstract
The minichromosome maintenance (MCM) complex, which plays multiple important roles in DNA replication, is loaded onto chromatin following mitosis, remains on chromatin until the completion of DNA synthesis, and then is unloaded by a poorly defined mechanism that involves the MCM binding protein (MCM-BP). Here we show that MCM-BP directly interacts with the ubiquitin-specific protease USP7, that this interaction occurs predominantly on chromatin, and that MCM-BP can tether USP7 to MCM proteins. Detailed biochemical and structure analyses of the USP7-MCM-BP interaction showed that the (155)PSTS(158) MCM-BP sequence mediates critical interactions with the TRAF domain binding pocket of USP7. Analysis of the effects of USP7 knockout on DNA replication revealed that lack of USP7 results in slowed progression through late S phase without globally affecting the fork rate or origin usage. Lack of USP7 also resulted in increased levels of MCM proteins on chromatin, and investigation of the cause of this increase revealed a defect in the dissociation of MCM proteins from chromatin in mid- to late S phase. This role of USP7 mirrors the previously described role for MCM-BP in MCM complex unloading and suggests that USP7 works with MCM-BP to unload MCM complexes from chromatin at the end of S phase.
Collapse
|
5
|
Gillespie PJ, Gambus A, Blow JJ. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 2012; 57:203-13. [PMID: 22521908 PMCID: PMC3437562 DOI: 10.1016/j.ymeth.2012.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/20/2022] Open
Abstract
The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication.
Collapse
Affiliation(s)
- Peter J. Gillespie
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - J. Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
6
|
Sasaki T, Li A, Gillespie PJ, Blow JJ, Gilbert DM. Evidence for a mammalian late-G1 phase inhibitor of replication licensing distinct from geminin or Cdk activity. Nucleus 2011; 2:455-64. [PMID: 21983086 DOI: 10.4161/nucl.2.5.17859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pre-replication complexes (pre-RCs) are assembled onto DNA during late mitosis and G1 to license replication origins for use in S phase. In order to prevent re-replication of DNA, licensing must be completely shutdown prior to entry into S phase. While mechanisms preventing re-replication during S phase and mitosis have been elucidated, the means by which cells first prevent licensing during late G1 phase are poorly understood. We have employed a hybrid mammalian / Xenopus egg extract replication system to dissect activities that inhibit replication licensing at different stages of the cell cycle in Chinese Hamster Ovary (CHO) cells. We find that soluble extracts from mitotic cells inhibit licensing through a combination of geminin and Cdk activities, while extracts from S-phase cells inhibit licensing predominantly through geminin alone. Surprisingly however, geminin did not accumulate until after cells enter S phase. Unlike extracts from cells in early G1 phase, extracts from late G1 phase and early S phase cells contained an inhibitor of licensing that could not be accounted for by either geminin or Cdk. Moreover, inhibiting cyclin and geminin protein synthesis or inhibiting Cdk activity early in G1 phase did not prevent the appearance of inhibitory activity. These results suggest that a soluble inhibitor of replication licensing appears prior to entry into S phase that is distinct from either geminin or Cdk activity. Our hybrid system should permit the identification of this and other novel cell cycle regulatory activities.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | | | | | | | | |
Collapse
|
7
|
Dimitrova DS. DNA replication initiation patterns and spatial dynamics of the human ribosomal RNA gene loci. J Cell Sci 2011; 124:2743-52. [DOI: 10.1242/jcs.082230] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Typically, only a fraction of the ≥600 ribosomal RNA (rRNA) gene copies in human cells are transcriptionally active. Expressed rRNA genes coalesce in specialized nuclear compartments – the nucleoli – and are believed to replicate during the first half of S phase. Paradoxically, attempts to visualize replicating rDNA during early S phase have failed. Here, I show that, in human (HeLa) cells, early-replicating rDNA is detectable at the nucleolar periphery and, more rarely, even outside nucleoli. Early-replicated rDNA relocates to the nucleolar interior and reassociates with the transcription factor UBF, implying that it predominantly represents expressed rDNA units. Contrary to the established model for active gene loci, replication initiates randomly throughout the early-replicating rDNA. By contrast, mostly silent rDNA copies replicate inside the nucleoli during mid and late S phase. At this stage, replication origins are fired preferentially within the non-transcribed intergenic spacers (NTSs), and ongoing rDNA transcription is required to maintain this specific initiation pattern. I propose that the unexpected spatial dynamics of the early-replicating rDNA repeats serve to ensure streamlined efficient replication of the most heavily transcribed genomic loci while simultaneously reducing the risk of chromosome breaks and rDNA hyper-recombination.
Collapse
|
8
|
Lu J, Li F, Murphy CS, Davidson MW, Gilbert DM. G2 phase chromatin lacks determinants of replication timing. ACTA ACUST UNITED AC 2010; 189:967-80. [PMID: 20530209 PMCID: PMC2886351 DOI: 10.1083/jcb.201002002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin spatial organization helps establish the replication timing decision point at early G1. However, at G2, although retained, chromatin organization is no longer necessary or sufficient to maintain the replication timing program. DNA replication in all eukaryotes follows a defined replication timing program, the molecular mechanism of which remains elusive. Using a Xenopus laevis egg extract replication system, we previously demonstrated that replication timing is established during early G1 phase of the cell cycle (timing decision point [TDP]), which is coincident with the repositioning and anchorage of chromatin in the newly formed nucleus. In this study, we use this same system to show that G2 phase chromatin lacks determinants of replication timing but maintains the overall spatial organization of chromatin domains, and we confirm this finding by genome-wide analysis of rereplication in vivo. In contrast, chromatin from quiescent cells retains replication timing but exhibits disrupted spatial organization. These data support a model in which events at the TDP, facilitated by chromatin spatial organization, establish determinants of replication timing that persist independent of spatial organization until the process of chromatin replication during S phase erases those determinants.
Collapse
Affiliation(s)
- Junjie Lu
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | |
Collapse
|
9
|
Thomson AM, Gillespie PJ, Blow JJ. Replication factory activation can be decoupled from the replication timing program by modulating Cdk levels. ACTA ACUST UNITED AC 2010; 188:209-21. [PMID: 20083602 PMCID: PMC2812520 DOI: 10.1083/jcb.200911037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cdk activity can differentially regulate the number of active replication factories, replication rates, and the rate of progression through the timing program during S phase. In the metazoan replication timing program, clusters of replication origins located in different subchromosomal domains fire at different times during S phase. We have used Xenopus laevis egg extracts to drive an accelerated replication timing program in mammalian nuclei. Although replicative stress caused checkpoint-induced slowing of the timing program, inhibition of checkpoint kinases in an unperturbed S phase did not accelerate it. Lowering cyclin-dependent kinase (Cdk) activity slowed both replication rate and progression through the timing program, whereas raising Cdk activity increased them. Surprisingly, modest alteration of Cdk activity changed the amount of DNA synthesized during different stages of the timing program. This was associated with a change in the number of active replication factories, whereas the distribution of origins within active factories remained relatively normal. The ability of Cdks to differentially effect replication initiation, factory activation, and progression through the timing program provides new insights into the way that chromosomal DNA replication is organized during S phase.
Collapse
Affiliation(s)
- Alexander M Thomson
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | | | | |
Collapse
|
10
|
Abstract
DNA replication takes place at discrete sites in the cell nucleus, named replication foci. The spatial arrangements of these foci change in the course of S phase in a temporally regulated and reproducible fashion forming five distinct and highly conserved replication patterns. The organization of nuclear replication sites can be studied by electron and light microscopy techniques. This chapter describes several procedures for detection of replication foci in mammalian nuclei via indirect immunofluorescence microscopy.
Collapse
|
11
|
Abstract
I have demonstrated that nuclear transcription modulates the distribution of replication origins along mammalian chromosomes. Chinese Hamster Ovary (CHO) cells were exposed to transcription inhibitors in early G1 phase and replication origin sites in the dihydrofolate reductase (DHFR) gene locus were mapped several hours later. DNA within nuclei prepared from control and transcription-deficient G1-phase cells was replicated with similar efficiencies when introduced into Xenopus egg extracts. Replication initiated in the intergenic region within control late-G1 nuclei, but randomly within transcriptionally repressed nuclei. Random initiation was not a consequence of inability to produce an essential protein(s), since initiation was site-specific within cells exposed to the translation inhibitor cycloheximide during the same interval of G1 phase. Furthermore, in vivo inhibition of transcription within late-G1-phase cells reduced the frequency of usage of pre-established DHFR replication origin sites. Transcription rates in the DHFR domain were very low and did not change throughout G1 phase. This implies that, although ongoing nuclear transcription is required, local expression of the genes in the DHFR locus alone is not sufficient to create a site-specific replication initiation pattern. I conclude that epigenetic factors, including general nuclear transcription, play a role in replication origin selection in mammalian nuclei.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
12
|
Wu R, Singh PB, Gilbert DM. Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. ACTA ACUST UNITED AC 2006; 174:185-94. [PMID: 16831888 PMCID: PMC2064179 DOI: 10.1083/jcb.200601113] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mouse chromocenters are clusters of late-replicating pericentric heterochromatin containing HP1 bound to trimethylated lysine 9 of histone H3 (Me3K9H3). Using a cell-free system to initiate replication within G1-phase nuclei, we demonstrate that chromocenters acquire the property of late replication coincident with their reorganization after mitosis and the establishment of a global replication timing program. HP1 dissociated during mitosis but rebound before the establishment of late replication, and removing HP1 from chromocenters by competition with Me3K9H3 peptides did not result in early replication, demonstrating that this interaction is neither necessary nor sufficient for late replication. However, in cells lacking the Suv39h1,2 methyltransferases responsible for K9H3 trimethylation and HP1 binding at chromocenters, replication of chromocenter DNA was advanced by 10–15% of the length of S phase. Reintroduction of Suv39h1 activity restored the later replication time. We conclude that Suv39 activity is required for the fine-tuning of pericentric heterochromatin replication relative to other late-replicating domains, whereas separate factors establish a global replication timing program during early G1 phase.
Collapse
Affiliation(s)
- Rong Wu
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
13
|
Sasaki T, Ramanathan S, Okuno Y, Kumagai C, Shaikh SS, Gilbert DM. The Chinese hamster dihydrofolate reductase replication origin decision point follows activation of transcription and suppresses initiation of replication within transcription units. Mol Cell Biol 2006; 26:1051-62. [PMID: 16428457 PMCID: PMC1347040 DOI: 10.1128/mcb.26.3.1051-1062.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chinese hamster ovary (CHO) cells select specific replication origin sites within the dihydrofolate reductase (DHFR) locus at a discrete point during G1 phase, the origin decision point (ODP). Origin selection is sensitive to transcription but not protein synthesis inhibitors, implicating a pretranslational role for transcription in origin specification. We have constructed a DNA array covering 121 kb surrounding the DHFR locus, to comprehensively investigate replication initiation and transcription in this region. When nuclei isolated within the first 3 h of G1 phase were stimulated to initiate replication in Xenopus egg extracts, replication initiated without any detectable preference for specific sites. At the ODP, initiation became suppressed from within the Msh3, DHFR, and 2BE2121 transcription units. Active transcription was mostly confined to these transcription units, and inhibition of transcription by alpha-amanitin resulted in the initiation of replication within transcription units, indicating that transcription is necessary to limit initiation events to the intergenic region. However, the resumption of DHFR transcription after mitosis took place prior to the ODP and so is not on its own sufficient to suppress initiation of replication. Together, these results demonstrate a remarkable flexibility in sequence selection for initiating replication and implicate transcription as one important component of origin specification at the ODP.
Collapse
Affiliation(s)
- Takayo Sasaki
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams St., Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
14
|
Radichev I, Parashkevova A, Anachkova B. Initiation of DNA replication at a nuclear matrix-attached chromatin fraction. J Cell Physiol 2005; 203:71-7. [PMID: 15493011 DOI: 10.1002/jcp.20203] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is still unclear what nuclear components support initiation of DNA replication. To address this issue, we developed a cell-free replication system in which the nuclear matrix along with the residual matrix-attached chromatin was used as a substrate for DNA replication. We found out that initiation occurred at late G1 residual chromatin but not at early G1 chromatin and depended on cytosolic and nuclear factors present in S phase cells but not in G1 cells. Initiation of DNA replication occurred at discrete replication foci in a pattern typical for early S phase. To prove that the observed initiation takes place at legitimate DNA replication origins, the in vitro synthesized nascent DNA strands were isolated and analyzed. It was shown that they were enriched in sequences from the core origin region of the early firing, dihydrofolate reductase origin of replication ori-beta and not in distal to the origin sequences. A conclusion is drawn that initiation of DNA replication occurs at discrete sub-chromosomal structures attached to the nuclear matrix.
Collapse
Affiliation(s)
- Ilian Radichev
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | |
Collapse
|
15
|
Altman AL, Fanning E. Defined sequence modules and an architectural element cooperate to promote initiation at an ectopic mammalian chromosomal replication origin. Mol Cell Biol 2004; 24:4138-50. [PMID: 15121836 PMCID: PMC400449 DOI: 10.1128/mcb.24.10.4138-4150.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2003] [Revised: 08/12/2003] [Accepted: 02/19/2004] [Indexed: 01/01/2023] Open
Abstract
A small DNA fragment containing the high-frequency initiation region (IR) ori-beta from the hamster dihydrofolate reductase locus functions as an independent replicator in ectopic locations in both hamster and human cells. Conversely, a fragment of the human lamin B2 locus containing the previously mapped IR serves as an independent replicator at ectopic chromosomal sites in hamster cells. At least four defined sequence elements are specifically required for full activity of ectopic ori-beta in hamster cells. These include an AT-rich element, a 4-bp sequence located within the mapped IR, a region of intrinsically bent DNA located between these two elements, and a RIP60 protein binding site adjacent to the bent region. The ori-beta AT-rich element is critical for initiation activity in human, as well as hamster, cells and can be functionally substituted for by an AT-rich region from the human lamin B2 IR that differs in nucleotide sequence and length. Taken together, the results demonstrate that two mammalian replicators can be activated at ectopic sites in chromosomes of another mammal and lead us to speculate that they may share functionally related elements.
Collapse
Affiliation(s)
- Amy L Altman
- Department of Biological Sciences and the Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
16
|
Abstract
The function of the 'origin recognition complex' (ORC) in eukaryotic cells is to select genomic sites where pre-replication complexes (pre-RCs) can be assembled. Subsequent activation of these pre-RCs results in bi-directional DNA replication that originates at or close to the ORC DNA binding sites. Recent results have revealed that one or more of the six ORC subunits is modified during the G1 to S-phase transition in such a way that ORC activity is inhibited until mitosis is complete and a nuclear membrane is assembled. In yeast, Cdk1/Clb phosphorylates ORC. In frog eggs, pre-RC assembly destabilizes ORC/chromatin sites, and ORC is eventually hyperphosphorylated and released. In mammals, the affinity of Orc1 for chromatin is selectively reduced during S-phase and restored during early G1-phase. Unbound Orc1 is ubiquitinated during S-phase and in some cases degraded. Thus, most, perhaps all, eukaryotes exhibit some manifestation of an 'ORC cycle' that restricts the ability of ORC to initiate pre-RC assembly to the early G1-phase of the cell cycle, making the 'ORC cycle' the premier step in determining when replication begins.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, Building 6/416, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| |
Collapse
|
17
|
Li F, Chen J, Solessio E, Gilbert DM. Spatial distribution and specification of mammalian replication origins during G1 phase. J Cell Biol 2003; 161:257-66. [PMID: 12707307 PMCID: PMC1255929 DOI: 10.1083/jcb.200211127] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication.
Collapse
Affiliation(s)
- Feng Li
- Dept. of Biochemistry and Molecular Biology, 750 East Adams St., S.U.N.Y. Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
18
|
Dimitrova DS, Berezney R. The spatio-temporal organization of DNA replication sites is identical in primary, immortalized and transformed mammalian cells. J Cell Sci 2002; 115:4037-51. [PMID: 12356909 DOI: 10.1242/jcs.00087] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the organization of DNA replication sites in primary (young or presenescent), immortalized and transformed mammalian cells. Four different methods were used to visualize replication sites: in vivo pulse-labeling with 5-bromo-2'-deoxyuridine (BrdU), followed by either acid depurination, or incubation in nuclease cocktail to expose single-stranded BrdU-substituted DNA regions for immunolabeling; biotin-dUTP labeling of nascent DNA by run-on replication within intact nuclei and staining with fluorescent streptavidin; and, finally, immunolabeling of the replication fork proteins PCNA and RPA. All methods produced identical results, demonstrating no fundamental differences in the spatio-temporal organization of replication patterns between primary, immortal or transformed mammalian cells. In addition, we did not detect a spatial coincidence between the early firing replicons and nuclear lamin proteins, the retinoblastoma protein or the nucleolus in primary human and rodent cells. The retinoblastoma protein does not colocalize in vivo with members of the Mcm family of proteins (Mcm2, 3 and 7) at any point of the cell cycle and neither in the chromatin-bound nor in the soluble nucleoplasmic fraction. These results argue against a direct role for the retinoblastoma or nuclear lamin proteins in mammalian DNA synthesis under normal physiological conditions.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
19
|
Dimitrova DS, Prokhorova TA, Blow JJ, Todorov IT, Gilbert DM. Mammalian nuclei become licensed for DNA replication during late telophase. J Cell Sci 2002; 115:51-9. [PMID: 11801723 PMCID: PMC1255924 DOI: 10.1242/jcs.115.1.51] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Mcm 2-7 are essential replication proteins that bind to chromatin in mammalian nuclei during late telophase. Here, we have investigated the relationship between Mcm binding, licensing of chromatin for replication, and specification of the dihydrofolate reductase (DHFR) replication origin. Approximately 20% of total Mcm3 protein was bound to chromatin in Chinese hamster ovary (CHO) cells during telophase, while an additional 25% bound gradually and cumulatively throughout G1-phase. To investigate the functional significance of this binding, nuclei prepared from CHO cells synchronized at various times after metaphase were introduced into Xenopus egg extracts, which were either immunodepleted of Mcm proteins or supplemented with geminin, an inhibitor of the Mcm-loading protein Cdt1. Within 1 hour after metaphase, coincident with completion of nuclear envelope formation, CHO nuclei were fully competent to replicate in both of these licensing-defective extracts. However, sites of initiation of replication in each of these extracts were found to be dispersed throughout the DHFR locus within nuclei isolated between 1 to 5 hours after metaphase, but became focused to the DHFR origin within nuclei isolated after 5 hours post-metaphase. Importantly, introduction of permeabilized post-ODP, but not pre-ODP, CHO nuclei into licensing-deficient Xenopus egg extracts resulted in the preservation of a significant degree of DHFR origin specificity, implying that the previously documented lack of specific origin selection in permeabilized nuclei is at least partially due to the licensing of new initiation sites by proteins in the Xenopus egg extracts. We conclude that the functional association of Mcm proteins with chromatin (i.e. replication licensing) in CHO cells takes place during telophase, several hours prior to the specification of replication origins at the DHFR locus.
Collapse
Affiliation(s)
- Daniela S Dimitrova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | | | |
Collapse
|
20
|
Li CJ, DePamphilis ML. Mammalian Orc1 protein is selectively released from chromatin and ubiquitinated during the S-to-M transition in the cell division cycle. Mol Cell Biol 2002; 22:105-16. [PMID: 11739726 PMCID: PMC134224 DOI: 10.1128/mcb.22.1.105-116.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that changes in the affinity of the hamster Orc1 protein for chromatin during the M-to-G(1) transition correlate with the activity of hamster origin recognition complexes (ORCs) and the appearance of prereplication complexes at specific sites. Here we show that Orc1 is selectively released from chromatin as cells enter S phase, converted into a mono- or diubiquitinated form, and then deubiquitinated and re-bound to chromatin during the M-to-G(1) transition. Orc1 is degraded by the 26S proteasome only when released into the cytosol, and peptide additions to Orc1 make it hypersensitive to polyubiquitination. In contrast, Orc2 remains tightly bound to chromatin throughout the cell cycle and is not a substrate for ubiquitination. Since the concentration of Orc1 remains constant throughout the cell cycle, and its half-life in vivo is the same as that of Orc2, ubiquitination of non-chromatin-bound Orc1 presumably facilitates the inactivation of ORCs by sequestering Orc1 during S phase. Thus, in contrast to yeast (Saccharomyces cerevisiae and Schizosaccharomyces pombe), mammalian ORC activity appears to be regulated during each cell cycle through selective dissociation and reassociation of Orc1 from chromatin-bound ORCs.
Collapse
Affiliation(s)
- Cong-Jun Li
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | |
Collapse
|
21
|
Abstract
Cell differentiation may depend in part upon a type of unbalanced growth in which several cell cycles occur with a reduced level of total protein synthesis. During this period the synthesis of the chromatin protein HMG-I/Y is reduced since its synthesis is correlated with that of total protein. The synthesis of histone H1 shows less reduction since its synthesis is entrained with that of DNA. This greater reduction of HMG-I/Y than of histone H1 is thought to delay or prevent replicon initiations within AT-enriched isochores. This shifts their time of replication from early to late S phase. This may restrict certain pathways of cell differentiation in multipotent progenitor cells and allow one particular type of differentiation.
Collapse
Affiliation(s)
- R Flickinger
- Department of Biological Sciences, State University of New York at Buffalo, 14260, USA
| |
Collapse
|
22
|
Li F, Chen J, Izumi M, Butler MC, Keezer SM, Gilbert DM. The replication timing program of the Chinese hamster beta-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J Cell Biol 2001; 154:283-92. [PMID: 11470818 PMCID: PMC1255917 DOI: 10.1083/jcb.200104043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the dynamics of nuclear repositioning and the establishment of a replication timing program for the actively transcribed dihydrofolate reductase (DHFR) locus and the silent beta-globin gene locus in Chinese hamster ovary cells. The DHFR locus was internally localized and replicated early, whereas the beta-globin locus was localized adjacent to the nuclear periphery and replicated during the middle of S phase, coincident with replication of peripheral heterochromatin. Nuclei were prepared from cells synchronized at various times during early G1 phase and stimulated to enter S phase by introduction into Xenopus egg extracts, and the timing of DHFR and beta-globin replication was evaluated in vitro. With nuclei isolated 1 h after mitosis, neither locus was preferentially replicated before the other. However, with nuclei isolated 2 or 3 h after mitosis, there was a strong preference for replication of DHFR before beta-globin. Measurements of the distance of DHFR and beta-globin to the nuclear periphery revealed that the repositioning of the beta-globin locus adjacent to peripheral heterochromatin also took place between 1 and 2 h after mitosis. These results suggest that the CHO beta-globin locus acquires the replication timing program of peripheral heterochromatin upon association with the peripheral subnuclear compartment during early G1 phase.
Collapse
Affiliation(s)
- F Li
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
23
|
Leight ER, Sugden B. Establishment of an oriP replicon is dependent upon an infrequent, epigenetic event. Mol Cell Biol 2001; 21:4149-61. [PMID: 11390644 PMCID: PMC87076 DOI: 10.1128/mcb.21.13.4149-4161.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plasmids containing oriP, the latent origin of replication for Epstein-Barr virus, support efficient replication in selected cell clones when the viral protein EBNA-1 is provided, being lost at a rate of 2 to 4% per cell generation after removal of selection (A. L. Kirchmaier and B. Sugden, J. Virol. 69:1280-1283, 1995; B. Sugden and N. Warren, Mol. Biol. Med. 5:85-94, 1988). We refer to these plasmids as established replicons in that they support efficient DNA synthesis and partitioning each cell cycle. Unexpectedly, we have found that upon introduction of oriP plasmids into a population of EBNA-1-positive cells, oriP plasmids replicate but are lost precipitously from cells during 2 weeks posttransfection (>25% rate of loss per cell generation). Upon investigation of these disparate observations, we have found that only 1 to 10% of cells transfected with an oriP plasmid expressing EBNA-1 and hygromycin phosphotransferase give rise to drug-resistant clones in which the oriP replicon is established. A hereditable alteration in these drug-resistant cell clones, manifested at the genetic or epigenetic level, does not underlie the establishment of oriP, as newly introduced oriP plasmids replicate but are also lost rapidly from these cells. In addition, a genetic alteration in the oriP plasmid is not responsible for establishment, as oriP plasmids isolated from an established cell clone, propagated in Escherichia coli, and reintroduced into EBNA-1-positive cells are likewise established inefficiently. Our findings demonstrate that oriP replicons are not intrinsically stable in EBNA-1-positive cell lines. Rather, the establishment of an oriP replicon is conferred upon the replicon by a stochastic, epigenetic event that occurs infrequently and, therefore, is detected in only a minority of cells.
Collapse
Affiliation(s)
- E R Leight
- McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
24
|
Cimbora DM, Groudine M. The Control of Mammalian DNA Replication. Cell 2001. [DOI: 10.1016/s0092-8674(01)00260-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Wu JR, Gilbert DM. Lovastatin arrests CHO cells between the origin decision point and the restriction point. FEBS Lett 2000; 484:108-12. [PMID: 11068042 DOI: 10.1016/s0014-5793(00)02135-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Asynchronously growing Chinese hamster ovary (CHO) cells treated with the pro-drug, beta-lactone ring form of lovastatin were arrested in G(1)-phase. Subsequent removal of lovastatin resulted in the synchronous entry of cells into S-phase regardless of the presence of mevalonic acid. Lovastatin-arrested cells contained hypophosphorylated retinoblastoma protein (Rb) and required serum mitogens to enter S-phase after lovastatin removal, indicating that cell-cycle arrest is prior to the restriction point (R-point). However, in contrast to quiescent cells, intact nuclei prepared from lovastatin-arrested cells were competent for DNA replication when introduced into Xenopus egg extracts. Initiation of replication by Xenopus egg cytosol took place specifically within the dihydrofolate reductase (DHFR) origin locus, demonstrating that cells were arrested after the origin decision point (ODP). We conclude that the beta-lactone ring form of lovastatin is an effective reagent with which to synchronize CHO cells between the ODP and R-point, without resulting in the withdrawal of cells from the cell-cycle into a quiescent state.
Collapse
Affiliation(s)
- J R Wu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Shanghai Research Center of Life Science, Shanghai Institutes for Biological Sciences, Chineses Academy of Sciences, Shanghai, Japam.
| | | |
Collapse
|
26
|
Abstract
DNA replication is a highly conserved process among eukaryotes where it occurs within a unique organelle-the nucleus. The importance of this structure is indicated by the fact that assembly of prereplication complexes on cellular chromatin is delayed until mitosis is completed and a nuclear structure has formed. Although nuclear structure is dispensable for DNA replication in vitro, it does appear to play a role in vivo by regulating the concentration of proteins required to initiate DNA replication, by facilitating the assembly or activity of DNA replication forks, and by determining where in the genome initiation of DNA replication occurs.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, Building 6, Room 416, Bethesda, Maryland, 20892-2753, USA
| |
Collapse
|
27
|
Dimitrova DS, Gilbert DM. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell 1999; 4:983-93. [PMID: 10635323 DOI: 10.1016/s1097-2765(00)80227-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian chromosomal domains replicate at defined, developmentally regulated times during S phase. The positions of these domains in Chinese hamster nuclei were established within 1 hr after nuclear envelope formation and maintained thereafter. When G1 phase nuclei were incubated in Xenopus egg extracts, domains were replicated in the proper temporal order with nuclei isolated after spatial repositioning, but not with nuclei isolated prior to repositioning. Mcm2 was bound both to early- and late-replicating chromatin domains prior to this transition whereas specification of the dihydrofolate reductase replication origin took place several hours thereafter. These results identify an early G1 phase point at which replication timing is determined and demonstrate a provocative temporal coincidence between the establishment of nuclear position and replication timing.
Collapse
Affiliation(s)
- D S Dimitrova
- Department of Biochemistry and Molecular Biology, State University of New York Health Science Center, Syracuse 13210, USA
| | | |
Collapse
|
28
|
Rein T, Kobayashi T, Malott M, Leffak M, DePamphilis ML. DNA methylation at mammalian replication origins. J Biol Chem 1999; 274:25792-800. [PMID: 10464318 DOI: 10.1074/jbc.274.36.25792] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Escherichia coli, DNA methylation regulates both origin usage and the time required to reassemble prereplication complexes at replication origins. In mammals, at least three replication origins are associated with a high density cluster of methylated CpG dinucleotides, and others whose methylation status has not yet been characterized have the potential to exhibit a similar DNA methylation pattern. One of these origins is found within the approximately 2-kilobase pair region upstream of the human c-myc gene that contains 86 CpGs. Application of the bisulfite method for detecting 5-methylcytosines at specific DNA sequences revealed that this region was not methylated in either total genomic DNA or newly synthesized DNA. Therefore, DNA methylation is not a universal component of mammalian replication origins. To determine whether or not DNA methylation plays a role in regulating the activity of origins that are methylated, the rate of remethylation and the effect of hypomethylation were determined at origin beta (ori-beta), downstream of the hamster DHFR gene. Remethylation at ori-beta did not begin until approximately 500 base pairs of DNA was synthesized, but it was then completed by the time that 4 kilobase pairs of DNA was synthesized (<3 min after release into S phase). Thus, DNA methylation cannot play a significant role in regulating reassembly of prereplication complexes in mammalian cells, as it does in E. coli. To determine whether or not DNA methylation plays any role in origin activity, hypomethylated hamster cells were examined for ori-beta activity. Cells that were >50% reduced in methylation at ori-beta no longer selectively activated ori-beta. Therefore, at some loci, DNA methylation either directly or indirectly determines where replication begins.
Collapse
Affiliation(s)
- T Rein
- NICHD, National Institutes of Health, Bethesda, Maryland 20892-2753, USA
| | | | | | | | | |
Collapse
|
29
|
Dimitrova DS, Todorov IT, Melendy T, Gilbert DM. Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J Cell Biol 1999; 146:709-22. [PMID: 10459007 PMCID: PMC2156148 DOI: 10.1083/jcb.146.4.709] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 07/23/1999] [Indexed: 11/22/2022] Open
Abstract
Previous experiments in Xenopus egg extracts identified what appeared to be two independently assembled prereplication complexes (pre-RCs) for DNA replication: the stepwise assembly of ORC, Cdc6, and Mcm onto chromatin, and the FFA-1-mediated recruitment of RPA into foci on chromatin. We have investigated whether both of these pre-RCs can be detected in Chinese hamster ovary (CHO) cells. Early- and late-replicating chromosomal domains were pulse-labeled with halogenated nucleotides and prelabeled cells were synchronized at various times during the following G1-phase. The recruitment of Mcm2 and RPA to these domains was examined in relation to the formation of a nuclear envelope, specification of the dihydrofolate reductase (DHFR) replication origin and entry into S-phase. Mcm2 was loaded gradually and cumulatively onto both early- and late-replicating chromatin from late telophase throughout G1-phase. During S-phase, detectable Mcm2 was rapidly excluded from PCNA-containing active replication forks. By contrast, detergent-resistant RPA foci were undetectable until the onset of S-phase, when RPA joined only the earliest-firing replicons. During S-phase, RPA was present with PCNA specifically at active replication forks. Together, our data are consistent with a role for Mcm proteins, but not RPA, in the formation of mammalian pre-RCs during early G1-phase.
Collapse
Affiliation(s)
- Daniela S. Dimitrova
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Health Science Center, Syracuse, New York 13210
| | | | - Thomas Melendy
- Department of Microbiology, S.U.N.Y. at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214
| | - David M. Gilbert
- Department of Biochemistry and Molecular Biology, S.U.N.Y. Health Science Center, Syracuse, New York 13210
| |
Collapse
|
30
|
Abstract
The process by which eukaryotic cells decide when and where to initiate DNA replication has been illuminated in yeast, where specific DNA sequences (replication origins) bind a unique group of proteins (origin recognition complex) next to an easily unwound DNA sequence at which replication can begin. The origin recognition complex provides a platform on which additional proteins assemble to form a pre-replication complex that can be activated at S-phase by specific protein kinases. Remarkably, multicellular eukaryotes, such as frogs, flies, and mammals (metazoa), have counterparts to these yeast proteins that are required for DNA replication. Therefore, one might expect metazoan chromosomes to contain specific replication origins as well, a hypothesis that has long been controversial. In fact, recent results strongly support the view that DNA replication origins in metazoan chromosomes consist of one or more high frequency initiation sites and perhaps several low frequency ones that together can appear as a nonspecific initiation zone. Specific replication origins are established during G1-phase of each cell cycle by multiple parameters that include nuclear structure, chromatin structure, DNA sequence, and perhaps DNA modification. Such complexity endows metazoa with the flexibility to change both the number and locations of replication origins in response to the demands of animal development.
Collapse
Affiliation(s)
- M L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| |
Collapse
|
31
|
Ortega JM, DePamphilis ML. Nucleoskeleton and initiation of DNA replication in metazoan cells. J Cell Sci 1998; 111 ( Pt 24):3663-73. [PMID: 9819357 DOI: 10.1242/jcs.111.24.3663] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether or not initiation sites for DNA replication in mammalian cells are defined by association with nuclear structure, attachments between the nucleoskeleton and the hamster DHFR gene initiation zone were examined. Nucleoskeletons were prepared by encapsulating cells in agarose and then extracting them with a nonionic detergent in a physiological buffer. The fraction of DNA that remained following endonuclease digestion was resistant to salt, sensitive to Sarkosyl, and essentially unchanged by glutaraldehyde crosslinking. Although newly replicated DNA was preferentially attached to the nucleoskeleton, no specific sequence was preferentially attached within a 65 kb locus containing the DHFR gene, two origins of bi-directional replication and at least one nuclear matrix attachment region. Instead, the entire region went from preferentially unattached to preferentially attached as cells progressed from G1 to late S-phase. Thus, initiation sites in mammalian chromosomes are not defined by attachments to the nucleoskeleton. To further assess the relationship between the nucleoskeleton and DNA replication, plasmid DNA containing the DHFR initiation region was replicated in a Xenopus egg extract. All of the DNA associated with the nucleoskeleton prior to S-phase without preference for a particular sequence and was released upon mitosis. However, about half of this DNA was trapped rather than bound to the nucleoskeleton. Thus, attachments to the nucleoskeleton can form in the absence of either DNA replication or transcription, but if they are required for replication, they are not maintained once replication is completed.
Collapse
Affiliation(s)
- J M Ortega
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | |
Collapse
|