1
|
Nonaka M, Kanouchi H, Torii S, Nagano H, Kondo S, Fujii A, Nagano M, Takenaka S. Lactic acid induces HSPA1A expression through ERK1/2 activation. Biosci Biotechnol Biochem 2023; 87:191-196. [PMID: 36441019 DOI: 10.1093/bbb/zbac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
Heat shock protein (HSP) A1A protects cells from various stressors. The concentrated liquid of the traditional Japanese rice black vinegar Kurozu increased HSPA1A expression in normal rat liver RLN-10 cells. Lactic acid, the primary component of concentrated Kurozu, induced HSPA1A expression in a concentration-dependent manner. Induction with 4 m m lactic acid increased HSPA1A expression by three times compared with that in the absence of lactic acid. The induction was inhibited by staurosporine or a selective MEK1/2 inhibitor (SL327). The phosphorylation of ERK1/2 was increased by lactic acid. These results suggest that lactic acid induces HSPA1A expression by activating ERK1/2. As well as lactate, 3,5-dihydroxybenzoic acid (DHBA), a ligand for G protein-coupled receptor 81 (GPR81), also induced HSPA1A at lower concentrations than lactate. The increased effect of DHBA on HSPA1A expression as compared with lactate may be related to the higher affinity of DHBA for GPR81 than of lactate.
Collapse
Affiliation(s)
- Miwa Nonaka
- Kumamoto Prefectural Johoku Livestock Hygiene Center, Kumamoto, Japan
| | - Hiroaki Kanouchi
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Saki Torii
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| | - Hikaru Nagano
- Faculty of Regional Innovation, University of Miyazaki, Miyazaki, Japan
| | - Shigetada Kondo
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| | | | | | - Shigeo Takenaka
- Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
3
|
Silva MC, Amaral MD, Morimoto RI. Neuronal reprograming of protein homeostasis by calcium-dependent regulation of the heat shock response. PLoS Genet 2013; 9:e1003711. [PMID: 24009518 PMCID: PMC3757039 DOI: 10.1371/journal.pgen.1003711] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022] Open
Abstract
Protein quality control requires constant surveillance to prevent misfolding, aggregation, and loss of cellular function. There is increasing evidence in metazoans that communication between cells has an important role to ensure organismal health and to prevent stressed cells and tissues from compromising lifespan. Here, we show in C. elegans that a moderate increase in physiological cholinergic signaling at the neuromuscular junction (NMJ) induces the calcium (Ca(2+))-dependent activation of HSF-1 in post-synaptic muscle cells, resulting in suppression of protein misfolding. This protective effect on muscle cell protein homeostasis was identified in an unbiased genome-wide screening for modifiers of protein aggregation, and is triggered by downregulation of gei-11, a Myb-family factor and proposed regulator of the L-type acetylcholine receptor (AChR). This, in-turn, activates the voltage-gated Ca(2+) channel, EGL-19, and the sarcoplasmic reticulum ryanodine receptor in response to acetylcholine signaling. The release of calcium into the cytoplasm of muscle cells activates Ca(2+)-dependent kinases and induces HSF-1-dependent expression of cytoplasmic chaperones, which suppress misfolding of metastable proteins and stabilize the folding environment of muscle cells. This demonstrates that the heat shock response (HSR) can be activated in muscle cells by neuronal signaling across the NMJ to protect proteome health.
Collapse
Affiliation(s)
- M. Catarina Silva
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Lisboa, Lisboa, Portugal
| | - Margarida D. Amaral
- Faculty of Sciences, Centre for Biodiversity, Functional and Integrative Genomics (BioFIG), University of Lisboa, Lisboa, Portugal
- Centre of Human Genetics, National Institute of Health, Lisboa, Portugal
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Yoon YJ, Kim JA, Shin KD, Shin DS, Han YM, Lee YJ, Lee JS, Kwon BM, Han DC. KRIBB11 inhibits HSP70 synthesis through inhibition of heat shock factor 1 function by impairing the recruitment of positive transcription elongation factor b to the hsp70 promoter. J Biol Chem 2010; 286:1737-47. [PMID: 21078672 DOI: 10.1074/jbc.m110.179440] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock factor 1 (HSF1) is the master switch for heat shock protein (HSP) expression in eukaryotes. A synthetic chemical library was screened to identify inhibitors of HSF1 using a luciferase reporter under the control of a heat shock element. A compound named KRIBB11 (N(2)-(1H-indazole-5-yl)-N(6)-methyl-3-nitropyridine-2,6-diamine) was identified for its activity in abolishing the heat shock-induced luciferase activity with an IC(50) of 1.2 μmol/liter. When the cells were exposed to heat shock in the presence of KRIBB11, the induction of HSF1 downstream target proteins such as HSP27 and HSP70 was blocked. In addition, treatment of HCT-116 cells with KRIBB11 induced growth arrest and apoptosis. Markers of apoptosis, such as cleaved poly(ADP-ribose) polymerase, were detected after KRIBB11 treatment. Biotinyl-KRIBB11 was synthesized as an affinity probe for the identification of KRIBB11 target proteins. Using affinity chromatography and competition assays, KRIBB11 was shown to associate with HSF1 in vitro. Chromatin immunoprecipitation analysis showed that KRIBB11 inhibited HSF1-dependent recruitment of p-TEFb (positive transcription elongation factor b) to the hsp70 promoter. Finally, intraperitoneal treatment of nude mice with KRIBB11 at 50 mg/kg resulted in a 47.4% (p < 0.05) inhibition of tumor growth without body weight loss. Immunoblotting assays showed that the expression of HSP70 was lower in KRIBB11-treated tumor tissue than in control tissues. Because HSPs are expressed at high levels in a wide range of tumors, these results strengthen the rationale for targeting HSF1 in cancer therapy.
Collapse
Affiliation(s)
- Young Ju Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jorquera G, Juretić N, Jaimovich E, Riveros N. Membrane depolarization induces calcium-dependent upregulation of Hsp70 and Hmox-1 in skeletal muscle cells. Am J Physiol Cell Physiol 2009; 297:C581-90. [PMID: 19570893 DOI: 10.1152/ajpcell.00167.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Heat shock proteins (HSPs) are a conserved family of cytoprotective polypeptides, synthesized by cells in response to stress. Hsp70 and heme oxygenase 1 (Hmox-1) are induced by a variety of cellular stressors in skeletal muscle, playing a role in long-term adaptations and muscle fibers regeneration. Though HSPs expression after exercise has been intensely investigated, the molecular mechanisms concerning Hsp70 and Hmox-1 induction are poorly understood. The aim of this work was to investigate the involvement of calcium in Hsp70 and Hmox-1 expression upon depolarization of skeletal muscle cells. We observed that depolarization of myotubes increased both mRNA levels and protein expression for Hsp70 and Hmox-1. Stimulation in the presence of intracellular calcium chelator BAPTA-AM resulted in a complete inhibition of Hsp70-induced expression. It is known that inositol-1,4,5-trisphophate (IP(3))-mediated slow Ca(2+) transients, evoked by membrane depolarization, are involved in the regulation of gene expression. Here we demonstrated that inhibition of IP(3)-dependent calcium signals decreased both Hsp70 mRNA induction and Hsp70 and Hmox-1 protein expression. Inhibitors of calcium-dependent protein kinase C also abolished Hsp70 mRNA induction. Our results provide evidence that membrane depolarization increases Hsp70 and Hmox-1 expression in cultured skeletal muscle cells, which the effect is critically dependent on Ca(2+) released from IP(3)-sensitive intracellular stores and that it involves PKC as an upstream effector in Hsp70 mRNA-induced expression.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Estudios Moleculares de la Célula, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7, Chile
| | | | | | | |
Collapse
|
6
|
Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009; 13:469-78. [PMID: 19335068 DOI: 10.1517/14728220902832697] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In mammals, the cytoprotective heat-shock response is regulated primarily by heat shock factor 1 (HSF1). Unfortunately, the effects of HSF1 also support the ability of cancer cells to accommodate imbalances in signaling and alterations in DNA, protein and energy metabolism associated with oncogenesis. The malignant lifestyle confers dependence on this 'non-oncogene', suggesting a therapeutic role for HSF1 inhibitors. OBJECTIVE/METHODS We begin with an overview of how HSF1 affects cancer biology and how its activity is regulated. We then summarize progress in discovery and development of HSF1 inhibitors, their current limitations and potential as anticancer agents with a fundamentally different scope of action from other clinically validated modulators of protein homeostasis. RESULTS/CONCLUSIONS It is likely that within the next 5 years usable inhibitors of HSF1 will be identified and in early pre-clinical evaluation.
Collapse
Affiliation(s)
- Luke Whitesell
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
7
|
Staib JL, Tümer N, Powers SK. Increased temperature and protein oxidation lead to HSP72 mRNA and protein accumulation in the in vivo exercised rat heart. Exp Physiol 2009; 94:71-80. [PMID: 18931043 PMCID: PMC2941883 DOI: 10.1113/expphysiol.2008.044685] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Expression of myocardial heat shock protein 72 (HSP72), mediated by its transcription factor, heat shock factor 1 (HSF1), increases following exercise. However, the upstream stimuli governing exercise-induced HSF1 activation and subsequent Hsp72 gene expression in the whole animal remain unclear. Exercise-induced increases in body temperature may promote myocardial radical production, leading to protein oxidation. Conceivably, myocardial protein oxidation during exercise may serve as an important signal to promote nuclear HSF1 migration and activation of Hsp72 expression. Therefore, these experiments tested the hypothesis that prevention of exercise-induced increases in body temperature attenuates cardiac protein oxidation, diminishes HSF1 activation and decreases HSP72 expression in vivo. To test this hypothesis, in vivo exercise-induced changes in body temperature were manipulated by exercising male rats in either cold (4 degrees C) or warm ambient conditions (22 degrees C). Warm exercise increased both body temperature (+3 degrees C) and myocardial protein oxidation, whereas these changes were attenuated by cold exercise. Interestingly, exercise in both conditions did not significantly increase myocardial nuclear localized phosphorylated HSF1. Nonetheless, warm exercise elevated left-ventricular HSP72 mRNA by ninefold and increased myocardial HSP72 protein levels by threefold compared with cold-exercised animals. Collectively, these data indicate that elevated body temperature and myocardial protein oxidation promoted exercise-induced cardiac HSP72 mRNA expression and protein accumulation following in vivo exercise. However, these results suggest that exercise-induced myocardial HSP72 protein accumulation is not a result of nuclear-localized, phosphorylated HSF1, indicating that other transcriptional or post-transcriptional regulatory mechanisms are involved in exercise-induced HSP72 expression.
Collapse
Affiliation(s)
- Jessica L Staib
- Department of Applied Physiology and Kinesiology, University of Florida, PO Box 118225, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
8
|
Coaxum SD, Griffin TM, Martin JL, Mestril R. Influence of PKC-alpha overexpression on HSP70 and cardioprotection. Am J Physiol Heart Circ Physiol 2007; 292:H2220-6. [PMID: 17208995 DOI: 10.1152/ajpheart.01080.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research has indicated that the protein kinase C (PKC) isoforms and the heat shock proteins (HSPs) are involved in cardioprotection. We have investigated the possible interaction between these two protein families. We have found that adenoviral-mediated expression of PKC-alpha in neonatal rat ventricular myocytes (NRVM) not only increases the expression of HSP70 but also protects against simulated ischemia-reperfusion. In addition, Western blots of PKC-alpha-infected NRVM indicated that other HSPs are not induced in the same manner as HSP70. In an effort to determine the mechanism of induction of HSP70 by PKC-alpha, we tested a chimeric construct that linked the luciferase reporter gene to the 5'-promoter region of HSP70 in myogenic H9c2 cells. When PKC-alpha was expressed, the 5'-promoter region of the HSP70 responded robustly, indicating that PKC-alpha induction of HSP70 expression is through transcription activation. Electrophoretic mobility shift assay determined that overexpression of PKC-alpha, PKC-delta, or PKC-epsilon did not induce activation of heat shock factor-1 (HSF-1). Therefore, induction of HSP70 by PKC-alpha is independent of heat shock factor-1 activation. We also measured cellular injury by assessing creatine kinase (CK) release from NRVM after simulated ischemia to determine cardioprotection. NRVM infected with the wild-type adenoviral construct AdwtPKC-alpha released 54% less CK than control NRVM. Experiments using small interfering RNA against HSP70 indicate that loss of PKC-alpha-induced HSP70 expression results in increased CK release or a loss of protection. Our results show that there is a close interaction between PKC-alpha and HSP70, independent of heat shock factor-1 activation, and that the protection conferred by PKC-alpha overexpression is mediated by the transcriptionally induced expression of HSP70.
Collapse
Affiliation(s)
- Sonya D Coaxum
- Cardiovascular Institute, Loyola University Medical Center, 2160 S. First Avenue, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
9
|
Taylor DM, De Koninck P, Minotti S, Durham HD. Manipulation of protein kinases reveals different mechanisms for upregulation of heat shock proteins in motor neurons and non-neuronal cells. Mol Cell Neurosci 2007; 34:20-33. [PMID: 17113785 DOI: 10.1016/j.mcn.2006.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/12/2006] [Accepted: 09/27/2006] [Indexed: 01/13/2023] Open
Abstract
Motor neurons have a high threshold for induction of heat shock proteins (Hsps) in response to stress, a property associated with impaired ability to activate heat shock transcription factor 1 (Hsf1). Hyperphosphorylation of Hsf1 has been established as a requirement for transactivation of heat shock genes. This study demonstrated that the impaired heat shock response in motor neurons is not due to altered phosphorylation of Hsf1 by kinases previously shown to affect activation of Hsf1 in other cells (PKC, GSK3beta, ERK1, CaMKIIalpha). However, a constitutively active form of CaMKIV induced robust expression of Hsp70, as well as transcription of a GFP reporter gene driven by the human inducible Hsp70 promoter in unstressed motor neurons, but not in mouse embryonic fibroblasts. The results point to novel mechanisms of activation of heat shock genes in motor neurons that have relevance to exploitation of endogenous stress responses therapeutically.
Collapse
Affiliation(s)
- David M Taylor
- Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, Canada H3A 2B4
| | | | | | | |
Collapse
|
10
|
Shu CW, Cheng NL, Chang WM, Tseng TL, Lai YK. Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J Cell Biochem 2005; 94:1199-209. [PMID: 15696546 DOI: 10.1002/jcb.20348] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Geldanamycin is an antitumor drug that binds HSP90 and induces a wide range of heat shock proteins, including HSP70s. In this study we report that the induction of HSP70s is dose-dependent in geldanamycin-treated human non-small cell lung cancer H460 cells. Analysis of the induction of HSP70s specific isoform using LC-ESI-MS/MS analysis and Northern blotting showed that HSP70-1/2 are the major inducible forms under geldanamycin treatment. Transactivation of hsp70-1/2 was determined by electrophoretic mobility-shift assay using heat shock element (HSE) as a probe. The signaling pathway mediators involved in hsp70-1/2 transactivation were screened by the kinase inhibitor scanning technique. Pretreatment with serine/threonine protein kinase inhibitors H7 or H8 blocked geldanamycin-induced HSP70-1/2, whereas protein kinase A inhibitor HA1004, protein kinase G inhibitor KT5823, and myosin light chain kinase inhibitor ML-7 had no effect. Furthermore, the protein kinase C (PKC)-specific inhibitor Ro-31-8425 and the Ca2+-dependent PKC inhibitor Gö-6976 diminished geldanamycin-induced HSP70-1/2, suggesting an involvement of the PKC in the process. In addition, geldanamycin treatment causes a transient increase of intracellular Ca2+. Chelating intracellular Ca2+ with BAPTA-AM or depletion of intracellular Ca2+ store with A23187 or thapsigargin significantly decreased geldanamycin-transactivated HSP70-1/2 expression. Taken together, our results demonstrate that geldanamycin-induced specific HSP70-1/2 isoforms expression in H460 cells through signaling pathway mediated by Ca2+ and PKC.
Collapse
Affiliation(s)
- Chih-Wen Shu
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan, 300, Republic of China
| | | | | | | | | |
Collapse
|
11
|
Chang YS, Lee LC, Sun FC, Chao CC, Fu HW, Lai YK. Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J Cell Biochem 2005; 97:156-65. [PMID: 16173045 DOI: 10.1002/jcb.20623] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Both geldanamycin (GA) and radicicol (RA) are HSP90 binding agents that possess antitumour activities. Although the in vitro data indicated that the inhibitory constant of RA is much bigger than that of GA, the in vivo data on drug efficacy might reveal different results. We have recently shown that treatment with GA induces a heat-shock response and that calcium mobilization may be involved in the process. By using induction of HSP70 as the endpoint assay, we found changes in upstream signaling mediators, including HSF1 and calcium mobilization, as well as possible involvement of protein kinase in human non-small cell lung cancer H460 cells treated with GA and RA. Our results demonstrated that calcium mobilization, a calcium dependent and H7-sensitive protein kinase, along with HSF1 activation by phosphorylation, are all involved in the HSP70 induction process triggered by the drugs. However, only GA, but not RA, can provoke a rapid calcium mobilization and thereby result in an instant induction of HSP70. Furthermore, the rapid calcium influx, followed by instant HSP induction, could be achieved in GA- or RA-treated cells placed in a medium containing excessive calcium while the response was completely abolished in cells depleted of calcium. Taken together, our findings suggest that differential calcium signaling may account for the differential induction of HSP and the action of GA and RA.
Collapse
Affiliation(s)
- Yuo-Sheng Chang
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan 30013, Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Voellmy R. Transcriptional Regulation of the Metazoan Stress Protein Response. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2004; 78:143-85. [PMID: 15210330 DOI: 10.1016/s0079-6603(04)78004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
This review provides an updated account of the regulation of the metazoan stress protein response. Where indicated, observations made with yeasts are also included. However, a discussion of the plant stress protein response is intentionally omitted (for a review, see 1). The stress protein response, as discussed hereafter, is understood to relate to the response by virtually all cells to heat and other stressors that results in the induced expression of so-called heat shock or stress genes. The protein products of these genes localize largely to the cytoplasm, nucleus, or organelles. An analogous response controls the expression of related genes, whose products reside in the endoplasmic reticulum. The response, termed ER stress response or unfolded protein response, is mediated by a separate regulation system that is not discussed in this review. Note, however, that recent work suggests the existence of commonalities between the regulatory systems controlling the stress protein and ER stress responses (2).
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Wu JM, Xiao L, Cheng XK, Cui LX, Wu NH, Shen YF. PKCϵ Is a Unique Regulator for hsp90β Gene in Heat Shock Response. J Biol Chem 2003; 278:51143-9. [PMID: 14532285 DOI: 10.1074/jbc.m305537200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An early event in cellular heat shock response is the transmittance of stress signals from the cell surface into the nuclei, resulting in the induction of heat shock proteins (Hsps). Protein kinase C (PKC) has been implicated as a key player in transducing stress signals. However, mechanism(s) by which PKC regulates heat shock-induced events remains largely unknown. Here we present data that pan-PKC inhibitor GF109203X, but not classic PKC inhibitor Gö6976, specifically repressed heat shock-induced accumulation of mRNA as well as promoter activity of hsp90 beta, but not hsp90 alpha, in Jurkat cells. Subcellular fractionation studies revealed that heat shock exclusively induced PKC-epsilon membrane translocation. Consistently, expression of a constitutively active PKC-epsilon(A159E) resulted in an enhanced promoter activity of hsp90 beta upon heat shock, whereas a dominant-negative PKC-epsilon(K437R) abolished this effect. In contrast, constitutively active-PKC-alpha or dominant-negative-PKC-alpha had no effects on heat shock induction of the gene. The effect of PKC-epsilon on hsp90 beta expression seems to be stimuli-specific, as phorbol myristate acetate-mediated hsp90 beta expression was PKC-epsilon-independent. We conclude that PKC-epsilon is specifically required in the signaling pathway leading to the induction of hsp90 beta gene in response to heat shock.
Collapse
Affiliation(s)
- Jian-Min Wu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | |
Collapse
|
14
|
Xia W, Hardy L, Liu L, Zhao S, Goodman M, Voellmy R, Spector NL. Concurrent exposure to heat shock and H7 synergizes to trigger breast cancer cell apoptosis while sparing normal cells. Breast Cancer Res Treat 2003; 77:233-43. [PMID: 12602923 DOI: 10.1023/a:1021895803424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Most cancer therapies, including chemotherapy, kill tumor cells by inducing apoptosis. Consequently, the propensity of tumor cells to evade apoptotic signals contributes to therapeutic resistance. Here we show that breast cancer cells exhibiting a highly resistant phenotype undergo apoptosis when exposed to concurrent heat shock and H7, a potent serine/threonine kinase inhibitor. The anti-tumor effects of this combination are synergistic as neither treatment alone adversely affects breast cancer cell growth/survival. In contrast, non-malignant breast epithelial and hematopoietic progenitor cells are resistant to this combination therapy, thereby excluding non-specific cytotoxicity as the cause of tumor cell apoptosis. Heat or other cell stresses, including chemotherapy, preferentially enhance heat shock protein (hsp) synthesis, which serves to protect cells from potentially lethal consequences of heat shock stimuli. Ectopic overexpression of hsps in breast cancer cells protects against chemotherapy-induced apoptosis. Furthermore, increased hsps in primary breast cancers correlates with resistance to therapy and decreased survival. Stress-induced hsp synthesis is mediated by heat shock transcription factor 1 (HSF1). To simulate hsp overexpressing primary breast cancers, a number of breast cancer cell lines were transfected with HSF1d202-316, a constitutively activated form of HSF1 that leads to baseline overexpression of hsps in the absence of stress. Importantly, HSF1d202-316 transfected breast cancer cells undergo apoptosis following concurrent heat shock and H7. In light of its tumor selective activity against breast cancer cells that exhibit a highly resistant phenotype, concurrent H7 and heat shock warrants further investigation as a potential cancer therapy.
Collapse
Affiliation(s)
- Wenle Xia
- Division of Hematology/Oncology, Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gao T, Newton AC. The turn motif is a phosphorylation switch that regulates the binding of Hsp70 to protein kinase C. J Biol Chem 2002; 277:31585-92. [PMID: 12080070 DOI: 10.1074/jbc.m204335200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock proteins play central roles in ensuring the correct folding and maturation of cellular proteins. Here we show that the heat shock protein Hsp70 has a novel role in prolonging the lifetime of activated protein kinase C. We identified Hsp70 in a screen for binding partners for the carboxyl terminus of protein kinase C. Co-immunoprecipitation experiments revealed that Hsp70 specifically binds the unphosphorylated turn motif (Thr(641) in protein kinase C beta II), one of three priming sites phosphorylated during the maturation of protein kinase C family members. The interaction of Hsp70 with protein kinase C can be abolished in vivo by co-expression of fusion proteins encoding the carboxyl terminus of protein kinase C or the carboxyl terminus of Hsp70. Pulse-chase experiments reveal that Hsp70 does not regulate the maturation of protein kinase C: the rate of processing by phosphorylation is the same in the presence or absence of disrupting constructs. Rather, Hsp70 prolongs the lifetime of mature protein kinase C; disruption of the interaction promotes the accumulation of matured and then dephosphorylated protein kinase C in the detergent-insoluble fraction of cells. Furthermore, studies with K562 cells reveal that disruption of the interaction with Hsp70 slows the protein kinase C beta II-mediated recovery of cells from PMA-induced growth arrest. Last, we show that other members of the AGC superfamily (Akt/protein kinase B and protein kinase A) also bind Hsp70 via their unphosphorylated turn motifs. Our data are consistent with a model in which Hsp70 binds the dephosphorylated carboxyl terminus of mature protein kinase C, thus stabilizing the protein and allowing re-phosphorylation of the enzyme. Disruption of this interaction prevents re-phosphorylation and targets the enzyme for down-regulation.
Collapse
Affiliation(s)
- Tianyan Gao
- Department of Pharmacology, University of California, La Jolla, California 92093-0640, USA
| | | |
Collapse
|
16
|
Lacoste A, De Cian MC, Cueff A, Poulet SA. Noradrenaline and α-adrenergic signaling induce thehsp70gene promoter in mollusc immune cells. J Cell Sci 2001; 114:3557-64. [PMID: 11682614 DOI: 10.1242/jcs.114.19.3557] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of heat shock proteins (hsp) is a homeostatic mechanism induced in both prokaryotic and eukaryotic cells in response to metabolic and environmental insults. A growing body of evidence suggests that in mammals, the hsp response is integrated with physiological responses through neuroendocrine signaling. In the present study, we have examined the effect of noradrenaline (NA) on the hsp70 response in mollusc immune cells. Oyster and abalone hemocytes transfected with a gene construct containing a gastropod hsp70 gene promoter linked to the luciferase reporter-gene were exposed to physiological concentrations of NA, or to various α- and β-adrenoceptor agonists and antagonists. Results show that NA and α-adrenergic stimulations induced the expression of luciferase in transfected mollusc immunocytes. Furthermore, exposure of hemocytes to NA or to the α-adrenoceptor agonist phenylephrine (PE) resulted in the expression of the inducible isoform of the hsp70 protein. Pertussis toxin (PTX), the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor calphostin C, the Ca2+-dependent PKC inhibitor Gö 6976 and the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 blocked the PE-mediated induction of the hsp70 gene promoter. These results suggest that α-adrenergic signaling induces the transcriptionnal upregulation of hsp70 in mollusc hemocytes through a PTX-sensitive G-protein, PLC, Ca2+-dependent PKC and PI 3-kinase. Thus, a functional link exists between neuroendocrine signaling and the hsp70 response in mollusc immune cells.
Collapse
Affiliation(s)
- A Lacoste
- Station Biologique de Roscoff, CNRS-Université Paris VI-INSU, Place Georges Teissier, BP 74, F-29682 Roscoff Cedex, France.
| | | | | | | |
Collapse
|
17
|
Kaarniranta K, Holmberg CI, Lammi MJ, Eriksson JE, Sistonen L, Helminen HJ. Primary chondrocytes resist hydrostatic pressure-induced stress while primary synovial cells and fibroblasts show modified Hsp70 response. Osteoarthritis Cartilage 2001; 9:7-13. [PMID: 11178942 DOI: 10.1053/joca.2000.0354] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE During joint loading, chondrocytes in the articular cartilage are subjected to gradients of high compressive hydrostatic pressure (HP). In response to diverse chemical or physical stresses, heat shock genes are induced to express heat shock proteins (Hsps). This study sought to examine the role of Hsps in baroresistance in primary bovine chondrocytes and synovial cells, as well as in primary human fibroblasts. METHODS Northern blotting was used to analyze the steady-state levels of hsp70 mRNA in the primary cells exposed to HP or heat stress. Hsp70 protein accumulation was analyzed by Western blotting, and the DNA-binding activity was examined by gel mobility shift assay. RESULTS Primary bovine chondrocytes which have been adapted to live under pressurized conditions showed negligible Hsp70 response upon HP loading, whereas primary bovine synovial cells and human fibroblasts accumulated hsp70 mRNA and protein when subjected to HP. The response was initiated without activation of the heat shock transcription factor 1. Interestingly, pre-conditioning of the barosensitive fibroblasts with HP or heat shock reduced the Hsp70 response, indicating induction of baroresistance. CONCLUSION This study suggests that Hsp70 can play an important role in the early stages of adaptation of cells to HP. Thus, the Hsp70 gene expression upon HP loading may serve as one indicator of the chondrocytic phenotype of the cells. This can be of use in the treatment of cartilage lesions.
Collapse
Affiliation(s)
- K Kaarniranta
- Department of Anatomy, University of Kuopio, Kuopio, 70211, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Xavier IJ, Mercier PA, McLoughlin CM, Ali A, Woodgett JR, Ovsenek N. Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J Biol Chem 2000; 275:29147-52. [PMID: 10856293 DOI: 10.1074/jbc.m002169200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress activation of heat shock factor (HSF1) involves the conversion of repressed monomers to DNA-binding homotrimers with increased transcriptional capacity and results in transcriptional up-regulation of the heat shock protein (hsp) gene family. Cells tightly control the activity of HSF1 through interactions with hsp90 chaperone complexes and through integration into a number of different signaling cascades. A number of studies have shown that HSF1 transcriptional activity is negatively regulated by constitutive phosphorylation in the regulatory domain by glycogen synthase kinase (GSK3) isoforms alpha/beta. However, previous studies have not examined the ability of GSK3 to regulate the DNA-binding activity of native HSF1 in vivo under heat shock conditions. Here we show that GSK3beta inhibits both DNA-binding and transcriptional activities of HSF1 in heat-shocked cells. Specific inhibition of GSK3 increased the levels of DNA binding and transcription after heat shock and delayed the attenuation of HSF1 during recovery. In contrast, the overexpression of GSK3beta resulted in significant reduction in heat-induced HSF1 activities. These results confirm the role of GSK3beta as a negative regulator of HSF1 transcription in cells during heat shock and demonstrate for the first time that GSK3beta functions to repress DNA binding.
Collapse
Affiliation(s)
- I J Xavier
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Holmberg CI, Illman SA, Kallio M, Mikhailov A, Sistonen L. Formation of nuclear HSF1 granules varies depending on stress stimuli. Cell Stress Chaperones 2000; 5:219-28. [PMID: 11005380 PMCID: PMC312888 DOI: 10.1379/1466-1268(2000)005<0219:fonhgv>2.0.co;2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In concert with the stress-induced activation of human heat shock factor 1 (HSF1), the factor becomes inducibly phosphorylated and accumulates into nuclear granules. To date, these processes are not fully understood. Here, we show that although stress caused by the proteasome inhibitors MG132 and clasto-lactacystine beta-lactone induces the expression of Hsp70, the formation of HSF1 granules is affected differently in comparison to heat shock. Furthermore, proteasome inhibition increases serine phosphorylation on HSF1, but to a lesser extent than heat stress. Our results suggest that, depending on the type of stress stimulus, the multiple events associated with HSF1 activation might be affected differently.
Collapse
Affiliation(s)
- Carina I Holmberg
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, PO Box 123, FIN-20521 Turku, Finland and Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FIN-20521 Turku, Finland
| | - Sara A Illman
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, PO Box 123, FIN-20521 Turku, Finland and Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FIN-20521 Turku, Finland
| | - Marko Kallio
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, PO Box 123, FIN-20521 Turku, Finland
| | - Andrey Mikhailov
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, PO Box 123, FIN-20521 Turku, Finland
| | - Lea Sistonen
- Turku Centre for Biotechnology, University of Turku, Åbo Akademi University, PO Box 123, FIN-20521 Turku, Finland
- Correspondence to: Lea Sistonen, Tel: +358 2 333 8028; Fax: +358 2 333 8000; .
| |
Collapse
|
20
|
Kaarniranta K, Holmberg CI, Helminen HJ, Eriksson JE, Sistonen L, Lammi MJ. Protein synthesis is required for stabilization of hsp70 mRNA upon exposure to both hydrostatic pressurization and elevated temperature. FEBS Lett 2000; 475:283-6. [PMID: 10869572 DOI: 10.1016/s0014-5793(00)01693-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We have recently described that in chondrocytic cells high hydrostatic pressure (HP) causes a heat shock response via mRNA stabilization without a transcriptional activation of the hsp70 gene. In this study, we investigated whether this exceptional regulatory mechanism occurs more generally in different types of cells. Indeed, hsp70 mRNA and protein accumulated in HeLa, HaCat and MG-63 cells under 30 MPa HP, without DNA-binding of heat shock transcription factor 1 (HSF1) to the heat shock element of the hsp70 gene or formation of nuclear HSF1 granules, revealing a lack of transcriptional activation. Moreover, we observed that protein synthesis is needed for mRNA stabilization. Thus, high HP offers a model to study the mechanisms of hsp70 mRNA stabilization without HSF1-mediated induction of the heat shock gene response.
Collapse
Affiliation(s)
- K Kaarniranta
- Department of Anatomy, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | |
Collapse
|