1
|
Ye Q, Yang Y, van Staalduinen L, Crawley SW, Liu L, Brennan S, Côté GP, Jia Z. Structure of the Dictyostelium Myosin-II Heavy Chain Kinase A (MHCK-A) α-kinase domain apoenzyme reveals a novel autoinhibited conformation. Sci Rep 2016; 6:26634. [PMID: 27211275 PMCID: PMC4876393 DOI: 10.1038/srep26634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
The α-kinases are a family of a typical protein kinases present in organisms ranging from protozoa to mammals. Here we report an autoinhibited conformation for the α-kinase domain of Dictyostelium myosin-II heavy chain kinase A (MHCK-A) in which nucleotide binding to the catalytic cleft, located at the interface between an N-terminal and C-terminal lobe, is sterically blocked by the side chain of a conserved arginine residue (Arg592). Previous α-kinase structures have shown that an invariant catalytic aspartic acid residue (Asp766) is phosphorylated. Unexpectedly, in the autoinhibited conformation the phosphoryl group is transferred to the adjacent Asp663, creating an interaction network that stabilizes the autoinhibited state. The results suggest that Asp766 phosphorylation may play both catalytic and regulatory roles. The autoinhibited structure also provides the first view of a phosphothreonine residue docked into the phospho-specific allosteric binding site (Pi-pocket) in the C-lobe of the α-kinase domain.
Collapse
Affiliation(s)
- Qilu Ye
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Yidai Yang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Laura van Staalduinen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Scott William Crawley
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Linda Liu
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Stephanie Brennan
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Graham P Côté
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
2
|
Wessels DJ, Lusche DF, Kuhl S, Scherer A, Voss E, Soll DR. Quantitative Motion Analysis in Two and Three Dimensions. Methods Mol Biol 2016; 1365:265-92. [PMID: 26498790 DOI: 10.1007/978-1-4939-3124-8_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter describes 2D quantitative methods for motion analysis as well as 3D motion analysis and reconstruction methods. Emphasis is placed on the analysis of dynamic cell shape changes that occur through extension and retraction of force generating structures such as pseudopodia and lamellipodia. Quantitative analysis of these structures is an underutilized tool in the field of cell migration. Our intent, therefore, is to present methods that we developed in an effort to elucidate mechanisms of basic cell motility, directed cell motion during chemotaxis, and metastasis. We hope to demonstrate how application of these methods can more clearly define alterations in motility that arise due to specific mutations or disease and hence, suggest mechanisms or pathways involved in normal cell crawling and treatment strategies in the case of disease. In addition, we present a 4D tumorigenesis model for high-resolution analysis of cancer cells from cell lines and human cancer tissue in a 3D matrix. Use of this model led to the discovery of the coalescence of cancer cell aggregates and unique cell behaviors not seen in normal cells or normal tissue. Graphic illustrations to visually display and quantify cell shape are presented along with algorithms and formulae for calculating select 2D and 3D motion analysis parameters.
Collapse
Affiliation(s)
- Deborah J Wessels
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Daniel F Lusche
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Spencer Kuhl
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Amanda Scherer
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - Edward Voss
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA
| | - David R Soll
- W.M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, University of Iowa, 302 BBE, Iowa City, IA, 52242, USA.
| |
Collapse
|
3
|
Ambrose J, Livitz M, Wessels D, Kuhl S, Lusche DF, Scherer A, Voss E, Soll DR. Mediated coalescence: a possible mechanism for tumor cellular heterogeneity. Am J Cancer Res 2015; 5:3485-504. [PMID: 26807328 PMCID: PMC4697694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/18/2015] [Indexed: 06/05/2023] Open
Abstract
Recently, we demonstrated that tumorigenic cell lines and fresh tumor cells seeded in a 3D Matrigel model, first grow as clonal islands (primary aggregates), then coalesce through the formation and contraction of cellular cables. Non-tumorigenic cell lines and cells from normal tissue form clonal islands, but do not form cables or coalesce. Here we show that as little as 5% tumorigenic cells will actively mediate coalescence between primary aggregates of majority non-tumorigenic or non-cancerous cells, by forming cellular cables between them. We suggest that this newly discovered, specialized characteristic of tumorigenic cells may explain, at least in part, why tumors contain primarily non-tumorigenic cells.
Collapse
Affiliation(s)
- Joseph Ambrose
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Michelle Livitz
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Amanda Scherer
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - Edward Voss
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa Iowa City, Iowa 52242, USA
| |
Collapse
|
4
|
Lusche DF, Wessels D, Richardson NA, Russell KB, Hanson BM, Soll BA, Lin BH, Soll DR. PTEN redundancy: overexpressing lpten, a homolog of Dictyostelium discoideum ptenA, the ortholog of human PTEN, rescues all behavioral defects of the mutant ptenA-. PLoS One 2014; 9:e108495. [PMID: 25247494 PMCID: PMC4172592 DOI: 10.1371/journal.pone.0108495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/22/2014] [Indexed: 11/18/2022] Open
Abstract
Mutations in the tumor suppressor gene PTEN are associated with a significant proportion of human cancers. Because the human genome also contains several homologs of PTEN, we considered the hypothesis that if a homolog, functionally redundant with PTEN, can be overexpressed, it may rescue the defects of a PTEN mutant. We have performed an initial test of this hypothesis in the model system Dictyostelium discoideum, which contains an ortholog of human PTEN, ptenA. Deletion of ptenA results in defects in motility, chemotaxis, aggregation and multicellular morphogenesis. D. discoideum also contains lpten, a newly discovered homolog of ptenA. Overexpressing lpten completely rescues all developmental and behavioral defects of the D. discoideum mutant ptenA−. This hypothesis must now be tested in human cells.
Collapse
Affiliation(s)
- Daniel F. Lusche
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Deborah Wessels
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Nicole A. Richardson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Kanoe B. Russell
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brett M. Hanson
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin A. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin H. Lin
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - David R. Soll
- Monoclonal Antibody Research Institute and Developmental Studies Hybridoma Bank, Department of Biology, The University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
5
|
Wessels D, Lusche DF, Scherer A, Kuhl S, Myre MA, Soll DR. Huntingtin regulates Ca(2+) chemotaxis and K(+)-facilitated cAMP chemotaxis, in conjunction with the monovalent cation/H(+) exchanger Nhe1, in a model developmental system: insights into its possible role in Huntington׳s disease. Dev Biol 2014; 394:24-38. [PMID: 25149514 DOI: 10.1016/j.ydbio.2014.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 11/29/2022]
Abstract
Huntington׳s disease is a neurodegenerative disorder, attributable to an expanded trinucleotide repeat in the coding region of the human HTT gene, which encodes the protein huntingtin. These mutations lead to huntingtin fragment inclusions in the striatum of the brain. However, the exact function of normal huntingtin and the defect causing the disease remain obscure. Because there are indications that huntingtin plays a role in Ca(2+) homeostasis, we studied the deletion mutant of the HTT ortholog in the model developmental system Dictyostelium discoideum, in which Ca(2+) plays a role in receptor-regulated behavior related to the aggregation process that leads to multicellular morphogenesis. The D. discoideum htt(-)-mutant failed to undergo both K(+)-facilitated chemotaxis in spatial gradients of the major chemoattractant cAMP, and chemotaxis up a spatial gradient of Ca(2+), but behaved normally in Ca(2+)-facilitated cAMP chemotaxis and Ca(2+)-dependent flow-directed motility. This was the same phenotypic profile of the null mutant of Nhel, a monovalent cation/H(+)exchanger. The htt(-)-mutant also failed to orient correctly during natural aggregation, as was the case for the Nhel mutant. Moreover, in a K(+)-based buffer the normal localization of actin was similarly defective in both htt(-) and nhe1(-) cells in a K(+)-based buffer, and the normal localization of Nhe1 was disrupted in the htt(-) mutant. These observations demonstrate that Htt and Nhel play roles in the same specific cation-facilitated behaviors and that Nhel localization is directly or indirectly regulated by Htt. Similar cation-dependent behaviors and a similar relationship between Htt and Nhe1 have not been reported for mammalian neurons and deserves investigation, especially as it may relate to Huntington׳s disease.
Collapse
Affiliation(s)
- Deborah Wessels
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel F Lusche
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda Scherer
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Spencer Kuhl
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael A Myre
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David R Soll
- Developmental Studies Hybridoma Bank, Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Falke JJ, Ziemba BP. Interplay between phosphoinositide lipids and calcium signals at the leading edge of chemotaxing ameboid cells. Chem Phys Lipids 2014; 182:73-9. [PMID: 24451847 DOI: 10.1016/j.chemphyslip.2014.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/09/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
The chemotactic migration of eukaryotic ameboid cells up concentration gradients is among the most advanced forms of cellular behavior. Chemotaxis is controlled by a complex network of signaling proteins bound to specific lipids on the cytoplasmic surface of the plasma membrane at the front of the cell, or the leading edge. The central lipid players in this leading edge signaling pathway include the phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), both of which play multiple roles. The products of PI(4,5)P2 hydrolysis, diacylglycerol (DAG) and Ins(1,4,5)P3 (IP3), are also implicated as important players. Together, these leading edge phosphoinositides and their degradation products, in concert with a local Ca(2+) signal, control the recruitment and activities of many peripheral membrane proteins that are crucial to the leading edge signaling network. The present critical review summarizes the current molecular understanding of chemotactic signaling at the leading edge, including newly discovered roles of phosphoinositide lipids and Ca(2+), while highlighting key questions for future research.
Collapse
Affiliation(s)
- Joseph J Falke
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0596, USA.
| | - Brian P Ziemba
- Department of Chemistry and Biochemistry and Molecular Biophysics Program, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|