1
|
Lee JM, Jung H, Tang Q, Li L, Lee SK, Lee JW, Park Y, Kwon HJE. KMT2D Regulates Tooth Enamel Development. J Dent Res 2025:220345251320922. [PMID: 40103013 DOI: 10.1177/00220345251320922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Amelogenesis, the process of enamel formation, is tightly regulated and essential for producing the tooth enamel that protects teeth from decay and wear. Disruptions in amelogenesis can result in amelogenesis imperfecta, a group of genetic conditions characterized by defective enamel, including enamel hypoplasia, marked by thin or underdeveloped enamel. Mutations in the KMT2D (MLL4) gene, which encodes histone H3 lysine 4 methyltransferase, are associated with Kabuki syndrome, a developmental disorder that can involve dental anomalies such as enamel hypoplasia. However, the specific role of KMT2D in amelogenesis remains poorly understood. To address this gap, we generated a conditional knockout (cKO) mouse model with ectoderm-specific deletion of Kmt2d (Krt14-Cre;Kmt2dfl/fl, or Kmt2d-cKO) and characterized the resulting enamel defects using gross, radiographic, histologic, cellular, and molecular analyses. Micro-computed tomography and scanning electron microscopy revealed that adult Kmt2d-cKO mice exhibited 100% penetrant amelogenesis imperfecta, characterized by hypoplastic and hypomineralized enamel, partially phenocopying human Kabuki syndrome. Additionally, Kmt2d-cKO neonates developed molar tooth germs with subtle cusp shape alterations and mild delays in ameloblast differentiation at birth. RNA sequencing analysis of the first molar tooth germ at birth revealed that 33.7% of known amelogenesis-related genes were significantly downregulated in the Kmt2d-cKO teeth. Integration with KMT2D CUT&RUN sequencing results identified 8 overlapping genes directly targeted by KMT2D. Reanalysis of a single-cell RNA sequencing data set in the developing mouse incisors revealed distinct roles for these genes in KMT2D-regulated differentiation across various cell subtypes within the dental epithelium. Among these genes, Satb1 and Sp6 are likely direct targets involved in the differentiation of preameloblasts into ameloblasts. Taken together, we propose that KMT2D plays a crucial role in amelogenesis by directly activating key genes involved in ameloblast differentiation, offering insights into the molecular basis of enamel development and related dental pathologies.
Collapse
Affiliation(s)
- J-M Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - H Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Q Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - L Li
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S-K Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - J W Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Y Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - H-J E Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
2
|
Lee JM, Jung H, Tang Q, Li L, Lee SK, Lee JW, Park Y, Kwon HJE. KMT2D regulates tooth enamel development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608898. [PMID: 39411159 PMCID: PMC11475867 DOI: 10.1101/2024.08.20.608898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Amelogenesis, the process of enamel formation, is tightly regulated and essential for producing the tooth enamel that protects teeth from decay and wear. Disruptions in amelogenesis can result in amelogenesis imperfecta, a group of genetic conditions characterized by defective enamel, including enamel hypoplasia, marked by thin or underdeveloped enamel. Mutations in the KMT2D (MLL4) gene, which encodes a histone H3-lysine 4-methyltransferase, are associated with Kabuki syndrome, a developmental disorder that can involve dental anomalies such as enamel hypoplasia. However, the specific role of KMT2D in amelogenesis remains poorly understood. To address this gap, we generated a conditional knockout mouse model with ectoderm-specific deletion of Kmt2d (Krt14-Cre;Kmt2d fl/fl , or Kmt2d-cKO) and characterized the resulting enamel defects using gross, radiographic, histological, cellular, and molecular analyses. Micro-computed tomography and scanning electron microscopy revealed that adult Kmt2d-cKO mice exhibited 100% penetrant amelogenesis imperfecta, characterized by hypoplastic and hypomineralized enamel, partially phenocopying human Kabuki syndrome. Additionally, Kmt2d-cKO neonates developed molar tooth germs with subtle cusp shape alterations and mild delays in ameloblast differentiation at birth. RNA-seq analysis of the first molar tooth germ at birth revealed that 33.7% of known amelogenesis-related genes were significantly downregulated in the Kmt2d-cKO teeth. Integration with KMT2D CUT&RUN-seq results identified 8 overlapping genes directly targeted by KMT2D. Re-analysis of a single-cell RNA-seq dataset in the developing mouse incisors revealed distinct roles for these genes in KMT2D-regulated differentiation across various cell subtypes within the dental epithelium. Among these genes, Satb1 and Sp6 are likely direct targets involved in the differentiation of pre-ameloblasts into ameloblasts. Taken together, we propose that KMT2D plays a crucial role in amelogenesis by directly activating key genes involved in ameloblast differentiation, offering insights into the molecular basis of enamel development and related dental pathologies.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Hunmin Jung
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Qinghuang Tang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| | - Liwen Li
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
| | - Soo-Kyung Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
| | - Jae W. Lee
- Department of Biological Sciences, College of Arts and Sciences, FOXG1 Research Center, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A
| | - Yungki Park
- Institute for Myelin and Glia Exploration, Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, U.S.A
| | - Hyuk-Jae Edward Kwon
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, U.S.A
| |
Collapse
|
3
|
Siow A, Kowalczyk R, Hong J, Harris PWR. Chemical Modifications on the αvβ6 Integrin Targeting A20FMDV2 Peptide: A Review. ChemMedChem 2024; 19:e202400131. [PMID: 38830829 DOI: 10.1002/cmdc.202400131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Integrin proteins have received a significant increase in attention in recent scientific endeavors. The current trend uses the pre-established knowledge that the arginyl-glycyl-aspartic acid (RGD) structural motif present in the A20FMDV2 peptide is highly selective for the integrin class αvβ6 which is overexpressed in many cancer types. This review will provide an extensive overview of the existing literature research to date to the best of our knowledge, highlighting significant improvements and drawbacks of structure-activity relationships (SAR) work undertaken, aiding future research to identify established SAR for an informed design of future A20FMDV2 mimetic inhibitors. Herein, the review aims to collate the existing structural chemical modifications present on A20FMDV2 in the literature to highlight key structural analogues that display more potent biological activity.
Collapse
Affiliation(s)
- Andrew Siow
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Jiwon Hong
- School of Biological Sciences and Surgical and Translational Research Centre, The University of Auckland, 3A Symonds Street, Auckland, 1010, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, School of Biological Sciences and The Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, 23 and 3A Symonds Street, Auckland, 1010, New Zealand
| |
Collapse
|
4
|
Kawasaki K, Sasagawa I, Mikami M, Nakatomi M, Ishiyama M. Ganoin and acrodin formation on scales and teeth in spotted gar: A vital role of enamelin in the unique process of enamel mineralization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:455-468. [PMID: 36464775 PMCID: PMC10239528 DOI: 10.1002/jez.b.23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ichiro Sasagawa
- Advanced Research Center, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| | - Masato Mikami
- Department of Microbiology, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mikio Ishiyama
- Department of Histology, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| |
Collapse
|
5
|
Said R, Mortazavi H, Cooper D, Ovens K, McQuillan I, Papagerakis S, Papagerakis P. Deciphering the functions of Stromal Interaction Molecule-1 in amelogenesis using AmelX-iCre mice. Front Physiol 2023; 14:1100714. [PMID: 36935757 PMCID: PMC10014868 DOI: 10.3389/fphys.2023.1100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Introduction: The intracellular Ca2+ sensor stromal interaction molecule 1 (STIM1) is thought to play a critical role in enamel development, as its mutations cause Amelogenesis Imperfecta (AI). We recently established an ameloblast-specific (AmelX-iCre) Stim1 conditional deletion mouse model to investigate the role of STIM1 in controlling ameloblast function and differentiation in vivo (Stim1 cKO). Our pilot data (Said et al., J. Dent. Res., 2019, 98, 1002-1010) support our hypothesis for a broad role of Stim1 in amelogenesis. This paper aims to provide an in-depth characterization of the enamel phenotype observed in our Stim1 cKO model. Methods: We crossed AmelX-iCre mice with Stim1-floxed animals to develop ameloblast-specific Stim1 cKO mice. Scanning electron microscopy, energy dispersive spectroscopy, and micro- CT were used to study the enamel phenotype. RNAseq and RT-qPCR were utilized to evaluate changes in the gene expression of several key ameloblast genes. Immunohistochemistry was used to detect the amelogenin, matrix metalloprotease 20 and kallikrein 4 proteins in ameloblasts. Results: Stim1 cKO animals exhibited a hypomineralized AI phenotype, with reduced enamel volume, diminished mineral density, and lower calcium content. The mutant enamel phenotype was more severe in older Stim1 cKO mice compared to younger ones and changes in enamel volume and mineral content were more pronounced in incisors compared to molars. Exploratory RNAseq analysis of incisors' ameloblasts suggested that ablation of Stim1 altered the expression levels of several genes encoding enamel matrix proteins which were confirmed by subsequent RT-qPCR. On the other hand, RT-qPCR analysis of molars' ameloblasts showed non-significant differences in the expression levels of enamel matrix genes between control and Stim1-deficient cells. Moreover, gene expression analysis of incisors' and molars' ameloblasts showed that Stim1 ablation caused changes in the expression levels of several genes associated with calcium transport and mitochondrial kinetics. Conclusions: Collectively, these findings suggest that the loss of Stim1 in ameloblasts may impact enamel mineralization and ameloblast gene expression.
Collapse
Affiliation(s)
- Raed Said
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Helyasadat Mortazavi
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - David Cooper
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB, Canada
| | - Ian McQuillan
- Department of Computer Sciences, College of Arts and Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Silvana Papagerakis
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Petros Papagerakis
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Petros Papagerakis,
| |
Collapse
|
6
|
Uehara O, Bi J, Zhuang D, Koivisto L, Abiko Y, Häkkinen L, Larjava H. Altered composition of the oral microbiome in integrin beta 6-deficient mouse. J Oral Microbiol 2022; 14:2122283. [PMID: 36117552 PMCID: PMC9481083 DOI: 10.1080/20002297.2022.2122283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Osamu Uehara
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
- School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Deshu Zhuang
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yoshihiro Abiko
- School of Dentistry, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Tian Y, Mu H, Wang A, Gao Y, Dong Z, Zhao Y, Li C, Zhang L, Gao Y. Runx2 deficiency in junctional epithelium of mouse molars decreases the expressions of E-cadherin and junctional adhesion molecule 1. J Mol Histol 2021; 52:545-553. [PMID: 33763807 DOI: 10.1007/s10735-021-09962-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 01/09/2023]
Abstract
Junctional epithelium (JE) attaching to the enamel surface seals gaps around the teeth, functioning as the first line of gingival defense. Runt-related transcription factor 2 (Runx2) plays a role in epithelial cell fate, and the deficiency of Runx2 in JE causes periodontal destruction, while its effect on the barrier function of JE remains largely unexplored. In the present study, hematoxylin-eosin (H&E) staining revealed the morphological differences of JE between wild-type (WT) and Runx2 conditional knockout (cKO) mice. We speculated that these changes were related to the down-regulation of E-cadherin (E-cad), junctional adhesion molecule 1 (JAM1), and integrin β6 (ITGB6) in JE. Moreover, immunohistochemistry (IHC) was conducted to assess the expressions of these proteins. To verify the relationship between Runx2 and the three above-mentioned proteins, human gingival epithelial cells (HGEs) were cultured for in vitro experiment. The expression of Runx2 in HEGs was depleted by lentivirus. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were adopted to analyze the differences in mRNA and protein expressions. Taken together, Runx2 played a crucial role in maintaining the structure and function integrality of JE via regulating the expressions of E-cad and JAM1.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Haiyu Mu
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Aiqin Wang
- Department of Periodontics, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yan Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Zhiheng Dong
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Yang Zhao
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Cong Li
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China
| | - Li Zhang
- Institute of Stomatology, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yuguang Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, 256600, Shandong, China.
| |
Collapse
|
8
|
Urquiza M, Guevara V, Diaz-Sana E, Mora F. The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200528124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peptidic and non-peptidic αvβ6 integrin-binding molecules have been used in
the clinic for detection and treatment of tumors expressing αvβ6 integrin, because this protein
is expressed in malignant epithelial cells of the oral cavity, pancreas, breast, ovary,
colon and stomach carcinomas but it is not expressed in healthy adult tissue except during
wound healing and inflammation. This review focuses on the landscape of αvβ6 integrinbinding
molecules and their use in cancer treatment and detection, and discusses recent
designs for tumor detection, treatment, and immunotherapy. In the last ten years, several
reviews abamp;#945;vβ6 integrin-binding molecules and their role in cancer detection and treatment.
Firstly, this review describes the role of the αvβ6 integrin in normal tissues, how the expression
of this protein is correlated with cancer severity and its role in cancer development. Taking into account
the potential of αvβ6 integrin-binding molecules in detection and treatment of specific tumors, special
attention is given to several high-affinity αvβ6 integrin-binding peptides used for tumor imaging; particularly,
the αvβ6-binding peptide NAVPNLRGDLQVLAQKVART [A20FMDV2], derived from the foot and mouth
disease virus. This peptide labeled with either 18F, 111In or with 68Ga has been used for PET imaging of αvβ6
integrin-positive tumors. Moreover, αvβ6 integrin-binding peptides have been used for photoacoustic and fluorescence
imaging and could potentially be used in clinical application in cancer diagnosis and intraoperative
imaging of αvβ6-integrin positive tumors. Additionally, non-peptidic αvβ6-binding molecules have been designed
and used in the clinic for the detection and treatment of αvβ6-expressing tumors. Anti-αvβ6 integrin antibodies
are another useful tool for selective identification and treatment of αvβ6 (+) tumors. The utility of
these αvβ6 integrin-binding molecules as a tool for tumor detection and treatment is discussed, considering
specificity, sensitivity and serum stability. Another use of the αvβ6 integrin-binding peptides is to modify the
Ad5 cell tropism for inducing oncolytic activity of αvβ6-integrin positive tumor cells by expressing
A20FMDV2 peptide within the fiber knob protein (Ad5NULL-A20). The newly designed oncolytic
Ad5NULL-A20 virotherapy is promising for local and systemic targeting of αvβ6-overexpressing cancers. Finally,
new evidence has emerged, indicating that chimeric antigen receptor (CAR) containing the αvβ6 integrin-
binding peptide on top of CD28+CD3 endodomain displays a potent therapeutic activity in a diverse
repertoire of solid tumor models.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Valentina Guevara
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Erika Diaz-Sana
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| | - Felipe Mora
- Grupo de Investigacion en Hormonas (GIH), Department of Chemistry, National University of Columbia, Cra 30 # 45-03, Bogota, zip code 111321, Colombia
| |
Collapse
|
9
|
Meecham A, Marshall JF. The ITGB6 gene: its role in experimental and clinical biology. Gene 2020; 763S:100023. [PMID: 34493369 PMCID: PMC7285966 DOI: 10.1016/j.gene.2019.100023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Integrin αvβ6 is a membrane-spanning heterodimeric glycoprotein involved in wound healing and the pathogenesis of diseases including fibrosis and cancer. Therefore, it is of great clinical interest for us to understand the molecular mechanisms of its biology. As the limiting binding partner in the heterodimer, the β6 subunit controls αvβ6 expression and availability. Here we describe our understanding of the ITGB6 gene encoding the β6 subunit, including its structure, transcriptional and post-transcriptional regulation, the biological effects observed in ITGB6 deficient mice and clinical cases of ITGB6 mutations.
Collapse
Affiliation(s)
- Amelia Meecham
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Centre of Excellence, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
10
|
Xu C, Wang A, Zhang L, Yang C, Gao Y, Dong Z, Tian Y, Li C, Gao Y. Epithelium-Specific Runx2 knockout mice display junctional epithelium and alveolar bone defects. Oral Dis 2020; 27:1292-1299. [PMID: 32946165 DOI: 10.1111/odi.13647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this investigation was to study the effects of Runt-related transcription factor 2 (Runx2) on the junctional epithelium and alveolar bone. METHODS The attachment level of the junctional epithelium and the resorption of alveolar bone were analyzed by histology and scanning electron microscopy. The expression of amelotin was determined by immunohistochemistry, Western blot, and real-time PCR. The ultrastructure of the dentogingival interface was observed by transmission electron microscopy. RESULTS The cKO mice demonstrated remarkable attachment loss, epithelial hyperplasia, and alveolar bone loss. The relative protein and mRNA expression of amelotin was increased in the junctional epithelium of the cKO mice. The attachment apparatus of the cKO mice showed ultrastructural deficiency. CONCLUSIONS Loss of Runx2 led to the junctional epithelium and alveolar bone defects in mice. Runx2 may play a crucial role in maintaining the integrity of the dentogingival junction and the normal structure of alveolar bone.
Collapse
Affiliation(s)
- Chang Xu
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| | - Aiqin Wang
- Department of Periodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Li Zhang
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Chunyan Yang
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Yan Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| | - Zhiheng Dong
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Tian
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Cong Li
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Yuguang Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
11
|
Charlier E, Deroyer C, Neuville S, Plener Z, Malaise O, Ciregia F, Gillet P, Reuter G, Salvé M, Withofs N, Hustinx R, de Seny D, Malaise MG. Toward diagnostic relevance of the α Vβ 5, α Vβ 3, and α Vβ 6 integrins in OA: expression within human cartilage and spinal osteophytes. Bone Res 2020; 8:35. [PMID: 33083095 PMCID: PMC7527564 DOI: 10.1038/s41413-020-00110-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/06/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
We previously reported 18FPRGD2 uptake by the coxofemoral lining, intervertebral discs and facet joint osteophytes in OA using PET/SCAN imaging. However, the molecular mechanism by which the PRGD2 tracer interacts with joint tissues and osteophytes in OA remains unclear. As PRGD2 ligands are expected to belong to the RGD-specific integrin family, the purpose of this study was (i) to determine which integrin complexes display the highest affinity for PRGD2-based ligands, (ii) to analyze integrin expression in relevant tissues, and (iii) to test integrin regulation in chondrocytes using OA-related stimuli to increase the levels of fibrosis and ossification markers. To this end, the affinity of PRGD2-based ligands for five heterodimeric integrins was measured by competition with 125I-echistatin. In situ analyses were performed in human normal vs. OA cartilage and spinal osteophytes. Osteophytes were characterized by (immuno-)histological staining. Integrin subunit expression was tested in chondrocytes undergoing dedifferentiation, osteogenic differentiation, and inflammatory stimulation. The integrins αVβ5, αVβ3, and αVβ6 presented the highest affinity for PRGD2-based ligands. In situ, the expression of these integrins was significantly increased in OA compared to normal cartilage. Within osteophytes, the mean integrin expression score was significantly higher in blood vessels, fibrous areas, and cells from the bone lining than in osteocytes and cartilaginous zones. In vitro, the levels of integrin subunits were significantly increased during chondrocyte dedifferentiation (except for β6), fibrosis, and osteogenic differentiation as well as under inflammatory stimuli. In conclusion, anatomical zones (such as OA cartilage, intervertebral discs, and facet joint osteophytes) previously reported to show PRGD2 ligand uptake in vivo expressed increased levels of αVβ5, αVβ3, and β6 integrins, whose subunits are modulated in vitro by OA-associated conditions that increase fibrosis, inflammation, and osteogenic differentiation. These results suggest that the increased levels of integrins in OA compared to normal tissues favor PRGD2 uptake and might explain the molecular mechanism of OA imaging using the PRGD2-based ligand PET/CT.
Collapse
Affiliation(s)
- Edith Charlier
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Céline Deroyer
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Sophie Neuville
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Zelda Plener
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Olivier Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Federica Ciregia
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | | | - Gilles Reuter
- Department of Neurosurgery, CHULiège, Liège, Belgium
| | - Mallory Salvé
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Roland Hustinx
- Department of Nuclear Medicine, CHULiège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, GIGA-I3, CHULiège, ULiège, Liège, Belgium
| |
Collapse
|
12
|
Gil-Bona A, Bidlack FB. Tooth Enamel and its Dynamic Protein Matrix. Int J Mol Sci 2020; 21:ijms21124458. [PMID: 32585904 PMCID: PMC7352428 DOI: 10.3390/ijms21124458] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022] Open
Abstract
Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
Collapse
Affiliation(s)
- Ana Gil-Bona
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| | - Felicitas B. Bidlack
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
- Correspondence: (A.G.-B.); (F.B.B.)
| |
Collapse
|
13
|
Li Q, Zhou J, Lin L, Zhao H, Miao L, Pan Y. Porphyromonas gingivalis degrades integrin β1 and induces AIF-mediated apoptosis of epithelial cells. Infect Dis (Lond) 2019; 51:793-801. [PMID: 31411895 DOI: 10.1080/23744235.2019.1653490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Porphyromonas gingivalis, a major pathogen of chronic periodontitis, adheres to and invades epithelial cells via an interaction between fimbriae and integrin. P. gingivalis proliferation and infection may affect the survival of cells. In this study, we further examined alternative signaling pathways mediating epithelial-cell death induced by P. gingivalis and the role of the cell-adhesion molecule integrin. Methods: Human epithelial KB cells interacted with P. gingivalis to evaluate cell death by Annexin V-propidium iodide (PI) staining. JC-1 staining was used to measure mitochondrial membrane potential (MMP). The mRNA and protein of integrin β1, apoptosis-inducing factor (AIF) and caspase-3 were detected by real-time PCR and western blot. Caspase-3 activity was analyzed by spectrophotometry. Results: P. gingivalis infection downregulated integrin β1 and led to cell detachment in a dose and time-dependent manner. Large amount of P. gingivalis induced MMP depolarization and apoptosis in KB cells. Moreover, P. gingivalis up-regulated AIF, but not activate caspase-3 during apoptosis. In addition, AIF inhibitor N-Phenylmaleimide almost inhibited the P. gingivalis-induced apoptosis. Conclusions: P. gingivalis disrupts epithelial-cell adhesion by degrading integrin β1 and induces caspase-independent, AIF-mediated mitochondrial apoptosis, which may promote the damage of oral tissue.
Collapse
Affiliation(s)
- Qian Li
- Department of Oral Biology, School of Stomatology, China Medical University , Shenyang , China
| | - Jie Zhou
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Li Lin
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Haijiao Zhao
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Lei Miao
- Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| | - Yaping Pan
- Department of Oral Biology, School of Stomatology, China Medical University , Shenyang , China.,Department of Periodontics, School of Stomatology, China Medical University , Shenyang , China
| |
Collapse
|
14
|
Potential function of TGF-β isoforms in maturation-stage ameloblasts. J Oral Biosci 2019; 61:43-54. [PMID: 30929801 DOI: 10.1016/j.job.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To investigate potential functions of transforming growth factor-beta (TGF-β) isoforms in maturation-stage ameloblasts during amelogenesis. METHODS In vivo activation of TGF-β was characterized by using matrix metalloproteinase 20 null (Mmp20-/-) and wild-type (Mmp20+/+) mice. Using mHAT9d cells cultured in the presence of each TGF-β isoform, (1) cell proliferation was determined by MTS assay, (2) immunostaining with anti-cleaved caspase-3 monoclonal antibody was performed and apoptotic indices were measured, (3) gene expression was analyzed by RT-qPCR, and (4) the uptake of amelogenin into mHAT9d cells was directly observed using a fluorescence microscope. RESULTS TGF-β1 and TGF-β3 were present in the enamel matrix of developing teeth which were activated by MMP20 in vivo. A genetic study revealed that the three TGF-β isoforms upregulate kallikrein 4 (KLK4) mRNA levels but downregulate carbonic anhydrase II. Moreover, TGF-β1 and TGF-β2 significantly upregulated the mRNA level of amelotin, whereas TGF-β3 dramatically downregulated the mRNA levels of odontogenic ameloblast-associated protein (ODAM), family with sequence similarity 83 member H (FAM83H), and alkaline phosphatase (ALP). Immunostaining analysis showed that the apoptosis of mHAT9d cells is induced by three TGF-β isoforms, with TGF-β3 being most effective. Both TGF-β1 and TGF-β3 induced endocytosis of amelogenin. CONCLUSIONS We propose that TGF-β is regulated in an isoform-specific manner to perform multiple biological functions such as gene expression related to the structure of basal lamina/ameloblasts, mineral ion transport, apoptosis, and endocytosis in maturation-stage ameloblasts.
Collapse
|
15
|
Tian Z, Lv X, Zhang M, Wang X, Chen Y, Tang P, Xu P, Zhang L, Wu B, Zhang L. Deletion of epithelial cell-specific Cdc42 leads to enamel hypermaturation in a conditional knockout mouse model. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2623-2632. [DOI: 10.1016/j.bbadis.2018.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 12/01/2022]
|
16
|
Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: Structure, function and role in health and disease. Int J Biochem Cell Biol 2018; 99:186-196. [PMID: 29678785 DOI: 10.1016/j.biocel.2018.04.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/09/2023]
Abstract
Integrins are cell surface receptors that traditionally mediate cell-to-extracellular matrix and cell-to-cell adhesion. They can, however, also bind a large repertoire of other molecules. Integrin αvβ6 is exclusively expressed in epithelial cells where it can, for example, serve as a fibronectin receptor. However, its hallmark function is to activate transforming growth factor-β1 (TGF-β1) to modulate innate immune surveillance in lungs and skin and along the gastrointestinal tract, and to maintain epithelial stem cell quiescence. The loss of αvβ6 integrin function in mice and humans leads to an altered immune response in lungs and skin, amelogenesis imperfecta, periodontal disease and, in some cases, alopecia. Elevated αvβ6 integrin expression and aberrant TGF-β1 activation and function are associated with organ fibrosis and cancer. Therefore, αvβ6 integrin serves as an attractive target for cancer imaging and for fibrosis and cancer therapy.
Collapse
Affiliation(s)
- Leeni Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Jiarui Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Lari Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Hannu Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, University of British Columbia, 2199 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
17
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
18
|
Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. Eur J Hum Genet 2015; 24:1223-7. [PMID: 26695873 DOI: 10.1038/ejhg.2015.260] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 11/09/2022] Open
Abstract
Alopecia with mental retardation (APMR) is a very rare disorder. In this study, we report on a consanguineous Pakistani family (AP91) with mild-to-moderate intellectual disability, adolescent alopecia and dentogingival abnormalities. Using homozygosity mapping, linkage analysis and exome sequencing, we identified a novel rare missense variant c.898G>A (p.(Glu300Lys)) in ITGB6, which co-segregates with the phenotype within the family and is predicted to be deleterious. Structural modeling shows that Glu300 lies in the β-propeller domain, and is surrounded by several residues that are important for heterodimerization with α integrin. Previous studies showed that ITGB6 variants can cause amelogenesis imperfecta in humans, but patients from family AP91 who are homozygous for the c.898G>A variant present with neurological and dermatological features, indicating a role for ITGB6 beyond enamel formation. Our study demonstrates that a rare deleterious variant within ITGB6 causes not only dentogingival anomalies but also intellectual disability and alopecia.
Collapse
|
19
|
In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci Rep 2015; 5:17269. [PMID: 26608573 PMCID: PMC4660305 DOI: 10.1038/srep17269] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/28/2015] [Indexed: 11/16/2022] Open
Abstract
The shells of pearl oysters, Pinctada fucata, are composed of calcite and aragonite and possess remarkable mechanical properties. These shells are formed under the regulation of macromolecules, especially shell matrix proteins (SMPs). Identification of diverse SMPs will lay a foundation for understanding biomineralization process. Here, we identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata combined with a draft genome. Of 72 SMPs, 17 SMPs are related to both the prismatic and nacreous layers. Moreover, according to the diverse domains found in the SMPs, we hypothesize that in addition to controlling CaCO3 crystallization and crystal organization, these proteins may potentially regulate the extracellular microenvironment and communicate between cells and the extracellular matrix (ECM). Immunohistological localization techniques identify the SMPs in the mantle, shells and synthetic calcite. Together, these proteomic data increase the repertoires of the shell matrix proteins in P. fucata and suggest that shell formation in P. fucata may involve tight regulation of cellular activities and the extracellular microenvironment.
Collapse
|
20
|
Mihalaş E, Matricala L, Chelmuş A, Gheţu N, Petcu A, Paşca S. The Role of Chronic Exposure to Amoxicillin/Clavulanic Acid on the Developmental Enamel Defects in Mice. Toxicol Pathol 2015; 44:61-70. [DOI: 10.1177/0192623315610822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amoxicillin used in early childhood may be associated with enamel hypomineralization. Our aim was to assess disturbances of amelogenesis in mice lower incisors induced by chronic administration of amoxicillin/clavulanic acid (AMC). Twenty-eight C57BL/6 male mice, of similar age, randomly divided into a control and 3 treatment groups ( n = 7) received subcutaneous injection, once per day, for 60 days: 50, 100, and 150 mg/kg BW of AMC. Scanning electron microscopy/energy dispersive X-ray spectroscopy analysis in AMC treatment groups showed higher content in F and a decrease in P and Ca. Morphology changes ranged from scratched patterns, and small isolated pits-like enamel loss, to generalized demineralized enamel surface, giving a rough, foamy, scaly, or even cracked eggshell appearance to the affected areas. Histological analysis showed disturbances of maturation ameloblasts, which were less organized, with increased amounts of clear vacuoles in the cytoplasm and slightly more elongated and less condensed nucleus. Additionally, they were often detached from the enamel matrix. Transitional ameloblasts formed underlying the cysts of varied sizes. In conclusion, AMC dose-dependently affect ameloblast functions especially in the maturation phase, causing hypomineralized enamel formation with quantitative and/or qualitative defects.
Collapse
Affiliation(s)
- Eugeniu Mihalaş
- Department of Pedodontics, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Romania
| | - Lavinia Matricala
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Alina Chelmuş
- Department of Plastic and Reconstructive Surgery, Regional Oncology Institute, Iasi, Romania
- Center for Simulation and Training in Surgery, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Romania
| | - Nicolae Gheţu
- Department of Plastic and Reconstructive Surgery, Regional Oncology Institute, Iasi, Romania
- Center for Simulation and Training in Surgery, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Romania
| | - Ana Petcu
- Department of Pedodontics, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, Romania
| | - Sorin Paşca
- Department of Pathology, “Ion Ionescu de la Brad” University of Agricultural Sciences and Veterinary Medicine, Iasi, Romania
| |
Collapse
|
21
|
Periodontal pathogens invade gingiva and aortic adventitia and elicit inflammasome activation in αvβ6 integrin-deficient mice. Infect Immun 2015; 83:4582-93. [PMID: 26371120 DOI: 10.1128/iai.01077-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/04/2015] [Indexed: 12/21/2022] Open
Abstract
The American Heart Association supports an association between periodontal diseases and atherosclerosis but not a causal association. This study explores the use of the integrin β6(-/-) mouse model to study the causality. We investigated the ability of a polymicrobial consortium of Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum to colonize the periodontium and induce local and systemic inflammatory responses. Polymicrobially infected Itgβ6(-/-) mice demonstrate greater susceptibility to gingival colonization/infection, with severe gingival inflammation, apical migration of the junctional epithelium, periodontal pocket formation, alveolar bone resorption, osteoclast activation, bacterial invasion of the gingiva, a greater propensity for the bacteria to disseminate hematogenously, and a strong splenic T cell cytokine response. Levels of atherosclerosis risk factors, including serum nitric oxide, oxidized low-density lipoprotein, serum amyloid A, and lipid peroxidation, were significantly altered by polybacterial infection, demonstrating an enhanced potential for atherosclerotic plaque progression. Aortic gene expression revealed significant alterations in specific Toll-like receptor (TLR) and nucleotide-binding domain- and leucine-rich-repeat-containing receptor (NLR) pathway genes in response to periodontal bacterial infection. Histomorphometry of the aorta demonstrated larger atherosclerotic plaques in Itgβ6(-/-) mice than in wild-type (WT) mice but no significant difference in atherosclerotic plaque size between mice with polybacterial infection and mice with sham infection. Fluorescence in situ hybridization demonstrated active invasion of the aortic adventitial layer by P. gingivalis. Our observations suggest that polybacterial infection elicits distinct aortic TLR and inflammasome signaling and significantly increases local aortic oxidative stress. These results are the first to demonstrate the mechanism of the host aortic inflammatory response induced by polymicrobial infection with well-characterized periodontal pathogens.
Collapse
|
22
|
Lee HK, Ji S, Park SJ, Choung HW, Choi Y, Lee HJ, Park SY, Park JC. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling. J Biol Chem 2015; 290:14740-53. [PMID: 25911094 PMCID: PMC4505539 DOI: 10.1074/jbc.m115.648022] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 12/25/2022] Open
Abstract
Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- From the Departments of Oral Histology/Developmental Biology and
| | - Suk Ji
- the Department of Periodontology, Anam Hospital, Korea University, 73 Inchonro, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea, and
| | - Su-Jin Park
- From the Departments of Oral Histology/Developmental Biology and
| | - Han-Wool Choung
- From the Departments of Oral Histology/Developmental Biology and
| | - Youngnim Choi
- Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehagro, Chongro-gu, Seoul 110-744, Korea
| | - Hyo-Jung Lee
- the Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 173-82 Gumiro, Seongnam-si, Gyeonggi-do 463-707, Korea
| | - Shin-Young Park
- the Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, 173-82 Gumiro, Seongnam-si, Gyeonggi-do 463-707, Korea
| | - Joo-Cheol Park
- From the Departments of Oral Histology/Developmental Biology and
| |
Collapse
|
23
|
Interaction between fibronectin and β1 integrin is essential for tooth development. PLoS One 2015; 10:e0121667. [PMID: 25830530 PMCID: PMC4382024 DOI: 10.1371/journal.pone.0121667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
The dental epithelium and extracellular matrix interact to ensure that cell growth and differentiation lead to the formation of teeth of appropriate size and quality. To determine the role of fibronectin in differentiation of the dental epithelium and tooth formation, we analyzed its expression in developing incisors. Fibronectin mRNA was expressed during the presecretory stage in developing dental epithelium, decreased in the secretory and early maturation stages, and then reappeared during the late maturation stage. The binding of dental epithelial cells derived from postnatal day-1 molars to a fibronectin-coated dish was inhibited by the RGD but not RAD peptide, and by a β1 integrin-neutralizing antibody, suggesting that fibronectin-β1 integrin interactions contribute to dental epithelial-cell binding. Because fibronectin and β1 integrin are highly expressed in the dental mesenchyme, it is difficult to determine precisely how their interactions influence dental epithelial differentiation in vivo. Therefore, we analyzed β1 integrin conditional knockout mice (Intβ1lox-/lox-/K14-Cre) and found that they exhibited partial enamel hypoplasia, and delayed eruption of molars and differentiation of ameloblasts, but not of odontoblasts. Furthermore, a cyst-like structure was observed during late ameloblast maturation. Dental epithelial cells from knockout mice did not bind to fibronectin, and induction of ameloblastin expression in these cells by neurotrophic factor-4 was inhibited by treatment with RGD peptide or a fibronectin siRNA, suggesting that the epithelial interaction between fibronectin and β1 integrin is important for ameloblast differentiation and enamel formation.
Collapse
|
24
|
Seymen F, Lee KE, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim JW. Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta. Oral Dis 2015; 21:456-61. [PMID: 25431241 PMCID: PMC4440386 DOI: 10.1111/odi.12303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 11/30/2022]
Abstract
Objective Hereditary defects in tooth enamel formation, amelogenesis imperfecta (AI), can be non-syndromic or syndromic phenotype. Integrins are signaling proteins that mediate cell–cell and cell–extracellular matrix communication, and their involvement in tooth development is well known. The purposes of this study were to identify genetic cause of an AI family and molecular pathogenesis underlying defective enamel formation. Materials and Methods We recruited a Turkish family with isolated AI and performed mutational analyses to clarify the underlying molecular genetic etiology. Results Autozygosity mapping and exome sequencing identified a novel homozygous ITGB6 transversion mutation in exon 4 (c.517G>C, p.Gly173Arg). The glycine at this position in the middle of the βI-domain is conserved among a wide range of vertebrate orthologs and human paralogs. Clinically, the enamel was generally thin and pitted with pigmentation. Thicker enamel was noted at the cervical area of the molars. Conclusions In this study, we identified a novel homozygous ITGB6 mutation causing isolated AI, and this advances the understanding of normal and pathologic enamel development.
Collapse
Affiliation(s)
- F Seymen
- Department of Pedodontics, Faculty of Dentistry Istanbul University, Istanbul, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Goldberg M, Kellermann O, Dimitrova-Nakov S, Harichane Y, Baudry A. Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity. Front Physiol 2014; 5:359. [PMID: 25285079 PMCID: PMC4168675 DOI: 10.3389/fphys.2014.00359] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/02/2014] [Indexed: 01/11/2023] Open
Abstract
In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer enamel shows radial and tangential structures. Recently, the serotonin 2B receptor (5-HT2BR) was shown to be involved in ameloblast function and enamel mineralization. The incisors from 5HT2BR knockout (KO) mice exhibit mineralization defects mostly in the outer maturation zone and porous matrix network in the inner zone. In the molars, the mutation affects both secretory and maturation stages of amelogenesis since pronounced alterations concern overall enamel structures. Molars from 5HT2BR KO mice display reduction in enamel thickness, alterations of inner enamel architecture including defects in Hunter-Schreger Bands arrangements, and altered maturation of the outer radial enamel. Differences of enamel structure were also observed between incisor and molar from other KO mice depleted for genes encoding enamel extracellular matrix proteins. Thus, upon mutation, enamel analysis based exclusively on incisor defects would be biased. In view of the functional relationship between enamel structure and tooth morphogenesis, identification of molecular actors involved in amelogenesis requires comparative studies between mice molars and incisors.
Collapse
Affiliation(s)
- Michel Goldberg
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - O Kellermann
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - S Dimitrova-Nakov
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - Y Harichane
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| | - A Baudry
- INSERM UMR-S 1124, Cellules Souches, Signalisation et Prions Paris, France ; Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1124 Paris, France
| |
Collapse
|
26
|
Wang SK, Choi M, Richardson AS, Reid BM, Lin BP, Wang SJ, Kim JW, Simmer JP, Hu JCC. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum Mol Genet 2014; 23:2157-63. [PMID: 24305999 PMCID: PMC3959820 DOI: 10.1093/hmg/ddt611] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/27/2013] [Indexed: 11/14/2022] Open
Abstract
Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
- Oral Health Sciences Program, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA
| | - Murim Choi
- Department of Biomedical Sciences, College of Medicine Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
- Department of Genetics, Howard Hughes Medical Institute, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Amelia S. Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | - Bryan M. Reid
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | - Brent P. Lin
- Department of Orofacial Sciences, UCSF School of Dentistry, 707 Parnassus Avenue, PO Box 0753, San Francisco, CA 94143, USA
| | - Susan J. Wang
- Friends of Family Health Center, 501 S. Idaho Street, Suite 190, La Habra, CA 90631, USA
| | - Jung-Wook Kim
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| |
Collapse
|
27
|
Poulter JA, Brookes SJ, Shore RC, Smith CEL, Abi Farraj L, Kirkham J, Inglehearn CF, Mighell AJ. A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum Mol Genet 2013; 23:2189-97. [PMID: 24319098 PMCID: PMC3959822 DOI: 10.1093/hmg/ddt616] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We identified a family in which pitted hypomineralized amelogenesis imperfecta (AI) with premature enamel failure segregated in an autosomal recessive fashion. Whole-exome sequencing revealed a missense mutation (c.586C>A, p.P196T) in the I-domain of integrin-β6 (ITGB6), which is consistently predicted to be pathogenic by all available programmes and is the only variant that segregates with the disease phenotype. Furthermore, a recent study revealed that mice lacking a functional allele of Itgb6 display a hypomaturation AI phenotype. Phenotypic characterization of affected human teeth in this study showed areas of abnormal prismatic organization, areas of low mineral density and severe abnormal surface pitting in the tooth's coronal portion. We suggest that the pathogenesis of this form of AI may be due to ineffective ligand binding of ITGB6 resulting in either compromised cell-matrix interaction or compromised ITGB6 activation of transforming growth factor-β (TGF-β) impacting indirectly on ameloblast-ameloblast interactions and proteolytic processing of extracellular matrix proteins via MMP20. This study adds to the list of genes mutated in AI and further highlights the importance of cell-matrix interactions during enamel formation.
Collapse
Affiliation(s)
- James A Poulter
- Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim J, Seymen F, Lee K, Ko J, Yildirim M, Tuna E, Gencay K, Shin T, Kyun H, Simmer J, Hu JC. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta. J Dent Res 2013; 92:899-904. [PMID: 23958762 PMCID: PMC3775375 DOI: 10.1177/0022034513502054] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/12/2013] [Accepted: 07/26/2013] [Indexed: 01/13/2023] Open
Abstract
Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related.
Collapse
Affiliation(s)
- J.W. Kim
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - K.E. Lee
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | - J. Ko
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | - M. Yildirim
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - E.B. Tuna
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - K. Gencay
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - T.J. Shin
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | - H.K. Kyun
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, 275-1 Yongon-dong, Chongno-gu, Seoul 110-768, Korea
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Laboratory, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| | - J.C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan Dental Research Laboratory, 1210 Eisenhower Place, Ann Arbor, MI 48108, USA
| |
Collapse
|