1
|
Lambert MW. Critical role of alpha spectrin in DNA repair: the importance of μ-calpain and Fanconi anemia proteins. Exp Biol Med (Maywood) 2025; 250:10537. [PMID: 40375875 PMCID: PMC12078185 DOI: 10.3389/ebm.2025.10537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025] Open
Abstract
Nonerythroid spectrins are proteins important in maintaining the structural integrity and flexibility of the cell and nuclear membranes and are essential for a number of functionally important cellular processes. One of these proteins, nonerythroid α spectrin (αSpII), plays a critical role in DNA repair, specifically repair of DNA interstrand crosslinks (ICLs), where it acts as a scaffold, recruiting repair proteins to sites of damage. Loss or breakdown of αSpII is an important factor in a number of disorders. One of these is Fanconi anemia (FA), a genetic disorder characterized by bone marrow failure, chromosome instability, cancer predisposition, congenital abnormalities and a defect in DNA ICL repair. Significantly, breakdown of αSpII occurs in cells from a number of FA complementation groups, due to excessive cleavage by the protease, μ-calpain, leading to defective repair of DNA ICLs in telomeric and non-telomeric DNA. Knockdown of μ-calpain in FA cells by μ-calpain siRNA results in restoration of αSpII levels to normal and repair of DNA ICLs in telomeric and non-telomeric DNA, demonstrating the importance of αSpII stability in the repair process. It is hypothesized that there is a mechanistic link between excessive cleavage of αSpII by μ-calpain and defective DNA ICL repair in FA and that FA proteins, which are deficient in FA, play a key role in maintaining the stability of αSpII and preventing its cleavage by μ-calpain. All of these events are proposed to be important key factors involved in the pathophysiology of FA and suggest new avenues for potential therapeutic intervention.
Collapse
|
2
|
Lanning NJ, Mancour L, Argetsinger LS, Archer S, Carter-Su C. Identification of βIIΣ1-Spectrin as a Binding Partner of the GH-regulated Human Obesity Scaffold Protein SH2B1. Endocrinology 2025; 166:bqaf003. [PMID: 39801013 PMCID: PMC12053369 DOI: 10.1210/endocr/bqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 02/07/2025]
Abstract
SH2B1β is a multifunctional scaffold protein that modulates cytoskeletal processes such as cellular motility and neurite outgrowth. To identify novel SH2B1β-interacting proteins involved in these processes, a yeast 2-hybrid assay was performed. The C-terminal 159 residues of the cytoskeleton structural protein, βIIΣ1-spectrin, interacted with the N-terminal 260 residues of SH2B1β, a region implicated in SH2B1β enhancement of cell motility and localization at the plasma membrane. The interaction between SH2B1β and βIIΣ1-spectrin (2205-2363) requires residues 1 through 150 in SH2B1β, with residues 105 through 120 playing a key role. While βIIΣ1-spectrin (2205-2363) was expressed throughout the cell, it colocalized with SH2B1β when coexpressed with SH2B1β mutants with varied intracellular localizations. The SH2B1β-βIIΣ1-spectrin (2205-2363) interaction impaired the ability of SH2B1β to enter the nucleus. A slightly larger βIIΣ1-spectrin fragment (2170-2363) with an intact pleckstrin homology domain localized primarily to the plasma membrane and cytoplasm, similar to SH2B1β. Similarly, full-length βIIΣ1-spectrin colocalized at the plasma membrane and cytoplasm with SH2B1β as well as the SH2B1β-regulated tyrosine kinase, JAK2. Phosphorylation of spectrins has been shown to regulate their localization and function. Coexpression of βIIΣ1-spectrin, JAK2, and SH2B1β resulted in SH2B1β-dependent tyrosyl phosphorylation of βIIΣ1-spectrin. Finally, stimulation with GH induced formation of an endogenous complex containing βII-spectrin, SH2B1, and JAK2 in 3T3-F442A cells and increased tyrosyl phosphorylation of βII-spectrin. Our results identify a novel interaction between SH2B1β, βIIΣ1-spectrin, and JAK2 resulting in JAK2- and SHB1-dependent tyrosyl phosphorylation of βII-spectrin. This raises the possibility that the many other ligand-activated tyrosine kinases that signal through SH2B1 form similar complexes with βIIΣ1-spectrin.
Collapse
Affiliation(s)
- Nathan J Lanning
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liliya Mancour
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Lawrence S Argetsinger
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Stephen Archer
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christin Carter-Su
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Iannitti R, Mascanzoni F, Colanzi A, Spano D. The role of Golgi complex proteins in cell division and consequences of their dysregulation. Front Cell Dev Biol 2025; 12:1513472. [PMID: 39839669 PMCID: PMC11747491 DOI: 10.3389/fcell.2024.1513472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
The GC (Golgi complex) plays a pivotal role in the trafficking and sorting of proteins and lipids until they reach their final destination. Additionally, the GC acts as a signalling hub to regulate a multitude of cellular processes, including cell polarity, motility, apoptosis, DNA repair and cell division. In light of these crucial roles, the GC has garnered increasing attention, particularly given the evidence that a dysregulation of GC-regulated signalling pathways may contribute to the onset of various pathological conditions. This review examines the functions of the GC and GC-localised proteins in regulating cell cycle progression, in both mitosis and meiosis. It reviews the involvement of GC-resident proteins in the formation and orientation of the spindle during cell division. In light of the roles played by the GC in controlling cell division, this review also addresses the involvement of the GC in cancer development. Furthermore, TCGA (The Cancer Genome Atlas) database has been queried in order to retrieve information on the genetic alterations and the correlation between the expression of GC-localised proteins and the survival of cancer patients. The data presented in this review highlight the relevance of the GC in regulating cell cycle progression, cellular differentiation and tumourigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Spano
- Department of Biomedical Sciences (DSB), Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
4
|
Stankewich MC, Peters LL, Morrow JS. The loss of βΙ spectrin alters synaptic size and composition in the ja/ja mouse. Front Neurosci 2024; 18:1415115. [PMID: 39165342 PMCID: PMC11333264 DOI: 10.3389/fnins.2024.1415115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Deletion or mutation of members of the spectrin gene family contributes to many neurologic and neuropsychiatric disorders. While each spectrinopathy may generate distinct neuropathology, the study of βΙ spectrin's role (Sptb) in the brain has been hampered by the hematologic consequences of its loss. Methods Jaundiced mice (ja/ja) that lack βΙ spectrin suffer a rapidly fatal hemolytic anemia. We have used exchange transfusion of newborn ja/ja mice to blunt their hemolytic pathology, enabling an examination of βΙ spectrin deficiency in the mature mouse brain by ultrastructural and biochemical analysis. Results βΙ spectrin is widely utilized throughout the brain as the βΙΣ2 isoform; it appears by postnatal day 8, and concentrates in the CA1,3 region of the hippocampus, dentate gyrus, cerebellar granule layer, cortical layer 2, medial habenula, and ventral thalamus. It is present in a subset of dendrites and absent in white matter. Without βΙ spectrin there is a 20% reduction in postsynaptic density size in the granule layer of the cerebellum, a selective loss of ankyrinR in cerebellar granule neurons, and a reduction in the level of the postsynaptic adhesion molecule NCAM. While we find no substitution of another spectrin for βΙ at dendrites or synapses, there is curiously enhanced βΙV spectrin expression in the ja/ja brain. Discussion βΙΣ2 spectrin appears to be essential for refining postsynaptic structures through interactions with ankyrinR and NCAM. We speculate that it may play additional roles yet to be discovered.
Collapse
Affiliation(s)
- Michael C. Stankewich
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Jon S. Morrow
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Department Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
5
|
Argall AD, Sucharski-Argall HC, Comisford LG, Jurs SJ, Seminetta JT, Wallace MJ, Crawford CA, Takenaka SS, Han M, El Refaey M, Hund TJ, Mohler PJ, Koenig SN. Novel Identification of Ankyrin-R in Cardiac Fibroblasts and a Potential Role in Heart Failure. Int J Mol Sci 2024; 25:8403. [PMID: 39125973 PMCID: PMC11313496 DOI: 10.3390/ijms25158403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Altered ankyrin-R (AnkR; encoded by ANK1) expression is associated with diastolic function, left ventricular remodeling, and heart failure with preserved ejection fraction (HFpEF). First identified in erythrocytes, the role of AnkR in other tissues, particularly the heart, is less studied. Here, we identified the expression of both canonical and small isoforms of AnkR in the mouse myocardium. We demonstrate that cardiac myocytes primarily express small AnkR (sAnkR), whereas cardiac fibroblasts predominantly express canonical AnkR. As canonical AnkR expression in cardiac fibroblasts is unstudied, we focused on expression and localization in these cells. AnkR is expressed in both the perinuclear and cytoplasmic regions of fibroblasts with considerable overlap with the trans-Golgi network protein 38, TGN38, suggesting a potential role in trafficking. To study the role of AnkR in fibroblasts, we generated mice lacking AnkR in activated fibroblasts (Ank1-ifKO mice). Notably, Ank1-ifKO mice fibroblasts displayed reduced collagen compaction, supportive of a novel role of AnkR in normal fibroblast function. At the whole animal level, in response to a heart failure model, Ank1-ifKO mice displayed an increase in fibrosis and T-wave inversion compared with littermate controls, while preserving cardiac ejection fraction. Collagen type I fibers were decreased in the Ank1-ifKO mice, suggesting a novel function of AnkR in the maturation of collagen fibers. In summary, our findings illustrate the novel expression of AnkR in cardiac fibroblasts and a potential role in cardiac function in response to stress.
Collapse
Affiliation(s)
- Aaron D. Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Holly C. Sucharski-Argall
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Luke G. Comisford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sallie J. Jurs
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Jack T. Seminetta
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Casey A. Crawford
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sarah S. Takenaka
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Mei Han
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Mona El Refaey
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, College of Engineering, Ohio State University, Columbus, OH 43210, USA
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Sara N. Koenig
- Frick Center for Heart Failure and Arrhythmia Research, Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA; (A.D.A.); (H.C.S.-A.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Tomida S, Ishima T, Sawaki D, Imai Y, Nagai R, Aizawa K. Multi-Omics of Familial Thoracic Aortic Aneurysm and Dissection: Calcium Transport Impairment Predisposes Aortas to Dissection. Int J Mol Sci 2023; 24:15213. [PMID: 37894894 PMCID: PMC10607035 DOI: 10.3390/ijms242015213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Several genetic defects, including a mutation in myosin heavy chain 11 (Myh11), are reported to cause familial thoracic aortic aneurysm and dissection (FTAAD). We recently showed that mice lacking K1256 of Myh11 developed aortic dissection when stimulated with angiotensin II, despite the absence of major pathological phenotypic abnormalities prior to stimulation. In this study, we used a comprehensive, data-driven, unbiased, multi-omics approach to find underlying changes in transcription and metabolism that predispose the aorta to dissection in mice harboring the Myh11 K1256del mutation. Pathway analysis of transcriptomes showed that genes involved in membrane transport were downregulated in homozygous mutant (Myh11ΔK/ΔK) aortas. Furthermore, expanding the analysis with metabolomics showed that two mechanisms that raise the cytosolic Ca2+ concentration-multiple calcium channel expression and ADP-ribose synthesis-were attenuated in Myh11ΔK/ΔK aortas. We suggest that the impairment of the Ca2+ influx attenuates aortic contraction and that suboptimal contraction predisposes the aorta to dissection.
Collapse
Affiliation(s)
- Shota Tomida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Daigo Sawaki
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Yasushi Imai
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan;
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Tochigi, Japan; (S.T.); (T.I.); (D.S.); (Y.I.)
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Tochigi, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Tochigi, Japan
| |
Collapse
|
7
|
van der Krogt JMA, van der Meulen IJE, van Buul JD. Spatiotemporal regulation of Rho GTPase signaling during endothelial barrier remodeling. CURRENT OPINION IN PHYSIOLOGY 2023; 34:None. [PMID: 37547802 PMCID: PMC10398679 DOI: 10.1016/j.cophys.2023.100676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The vasculature is characterized by a thin cell layer that comprises the inner wall of all blood vessels, the continuous endothelium. Endothelial cells can also be found in the eye's cornea. And even though cornea and vascular endothelial (VE) cells differ from each other in structure, they both function as barriers and express similar junctional proteins such as the adherens junction VE-cadherin and tight-junction member claudin-5. How these barriers are controlled to maintain the barrier and thereby its integrity is of major interest in the development of potential therapeutic targets. An important target of endothelial barrier remodeling is the actin cytoskeleton, which is centrally coordinated by Rho GTPases that are in turn regulated by Rho-regulatory proteins. In this review, we give a brief overview of how Rho-regulatory proteins themselves are spatiotemporally regulated during the process of endothelial barrier remodeling. Additionally, we propose a roadmap for the comprehensive dissection of the Rho GTPase signaling network in its entirety.
Collapse
Affiliation(s)
| | | | - Jaap D van Buul
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, the Netherlands
- Leeuwenhoek Centre for Advanced Microscopy, section Molecular Cytology at Swammerdam Institute for Life Sciences at the University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Li D. Role of Spectrin in Endocytosis. Cells 2022; 11:cells11152459. [PMID: 35954302 PMCID: PMC9368487 DOI: 10.3390/cells11152459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/02/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoskeletal spectrin is found in (non)erythroid cells. Eukaryotic endocytosis takes place for internalizing cargos from extracellular milieu. The role of spectrin in endocytosis still remains poorly understood. Here, I summarize current knowledge of spectrin function, spectrin-based cytoskeleton and endocytosis of erythrocytes, and highlight how spectrin contributes to endocytosis and working models in different types of cells. From an evolutionary viewpoint, I discuss spectrin and endocytosis in a range of organisms, particularly in plants and yeast where spectrin is absent. Together, the role of spectrin in endocytosis is related to its post-translational modification, movement/rearrangement, elimination (by proteases) and meshwork fencing.
Collapse
Affiliation(s)
- Donghai Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Szule JA. Hypothesis Relating the Structure, Biochemistry and Function of Active Zone Material Macromolecules at a Neuromuscular Junction. Front Synaptic Neurosci 2022; 13:798225. [PMID: 35069169 PMCID: PMC8766674 DOI: 10.3389/fnsyn.2021.798225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
This report integrates knowledge of in situ macromolecular structures and synaptic protein biochemistry to propose a unified hypothesis for the regulation of certain vesicle trafficking events (i.e., docking, priming, Ca2+-triggering, and membrane fusion) that lead to neurotransmitter secretion from specialized “active zones” of presynaptic axon terminals. Advancements in electron tomography, to image tissue sections in 3D at nanometer scale resolution, have led to structural characterizations of a network of different classes of macromolecules at the active zone, called “Active Zone Material’. At frog neuromuscular junctions, the classes of Active Zone Material macromolecules “top-masts”, “booms”, “spars”, “ribs” and “pins” direct synaptic vesicle docking while “pins”, “ribs” and “pegs” regulate priming to influence Ca2+-triggering and membrane fusion. Other classes, “beams”, “steps”, “masts”, and “synaptic vesicle luminal filaments’ likely help organize and maintain the structural integrity of active zones. Extensive studies on the biochemistry that regulates secretion have led to comprehensive characterizations of the many conserved proteins universally involved in these trafficking events. Here, a hypothesis including a partial proteomic atlas of Active Zone Material is presented which considers the common roles, binding partners, physical features/structure, and relative positioning in the axon terminal of both the proteins and classes of macromolecules involved in the vesicle trafficking events. The hypothesis designates voltage-gated Ca2+ channels and Ca2+-gated K+ channels to ribs and pegs that are connected to macromolecules that span the presynaptic membrane at the active zone. SNARE proteins (Syntaxin, SNAP25, and Synaptobrevin), SNARE-interacting proteins Synaptotagmin, Munc13, Munc18, Complexin, and NSF are designated to ribs and/or pins. Rab3A and Rabphillin-3A are designated to top-masts and/or booms and/or spars. RIM, Bassoon, and Piccolo are designated to beams, steps, masts, ribs, spars, booms, and top-masts. Spectrin is designated to beams. Lastly, the luminal portions of SV2 are thought to form the bulk of the observed synaptic vesicle luminal filaments. The goal here is to help direct future studies that aim to bridge Active Zone Material structure, biochemistry, and function to ultimately determine how it regulates the trafficking events in vivo that lead to neurotransmitter secretion.
Collapse
|
10
|
Rao S, Yang X, Ohshiro K, Zaidi S, Wang Z, Shetty K, Xiang X, Hassan I, Mohammad T, Latham PS, Nguyen BN, Wong L, Yu H, Al-Abed Y, Mishra B, Vacca M, Guenigault G, Allison MED, Vidal-Puig A, Benhammou JN, Alvarez M, Pajukanta P, Pisegna JR, Mishra L. β2-spectrin (SPTBN1) as a therapeutic target for diet-induced liver disease and preventing cancer development. Sci Transl Med 2021; 13:eabk2267. [PMID: 34910547 PMCID: PMC8941321 DOI: 10.1126/scitranslmed.abk2267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) and liver cancer is increasing. De novo lipogenesis and fibrosis contribute to disease progression and cancerous transformation. Here, we found that β2-spectrin (SPTBN1) promotes sterol regulatory element (SRE)–binding protein (SREBP)–stimulated lipogenesis and development of liver cancer in mice fed a high-fat diet (HFD) or a western diet (WD). Either hepatocyte-specific knockout of SPTBN1 or siRNA-mediated therapy protected mice from HFD/WD-induced obesity and fibrosis, lipid accumulation, and tissue damage in the liver. Biochemical analysis suggested that HFD/WD induces SPTBN1 and SREBP1 cleavage by CASPASE-3 and that the cleaved products interact to promote expression of genes with sterol response elements. Analysis of human NASH tissue revealed increased SPTBN1 and CASPASE-3 expression. Thus, our data indicate that SPTBN1 represents a potential target for therapeutic intervention in NASH and liver cancer.
Collapse
Affiliation(s)
- Shuyun Rao
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| | - Xiaochun Yang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Kazufumi Ohshiro
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Sobia Zaidi
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Zhanhuai Wang
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kirti Shetty
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, 21201, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Patricia S. Latham
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
- Department of Pathology, The George Washington University, DC, 20037, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| | - Linda Wong
- Cancer Biology department, University of Hawaii Cancer Center, HI, 96813, USA
- Dept of Surgery, University of Hawaii John A. Burns School of Medicine, HI, 96813, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, HI, 96813, USA
| | - Yousef Al-Abed
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Bibhuti Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Department of Neurology, Northwell Health, Manhasset, NY, 11030, USA
| | - Michele Vacca
- TVP Lab, Metabolic Research Laboratories, WT/MRC Institute of Metabolic Science Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | | | - Michael ED Allison
- Liver Unit, Cambridge Biomedical Research Centre, Cambridge University Hospitals, CB2 0QQ, United Kingdom
| | - Antonio Vidal-Puig
- TVP Lab, Metabolic Research Laboratories, WT/MRC Institute of Metabolic Science Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
- Welcome Trust Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, 210000, China
| | - Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases and Gastroenterology, Hepatology and Parenteral Nutrition, David Geffen School of Medicine at UCLA and VA Greater Los Angeles HCS, Los Angeles, CA, 90095, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joseph R. Pisegna
- Department of Medicine and Human Genetics, Division of Gastroenterology, Hepatology and Parenteral Nutrition, David Geffen School of Medicine at UCLA and VA Greater Los Angeles HCS, Los Angeles, CA, 90095, USA
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| |
Collapse
|
11
|
Pal S, Bose D, Chakrabarti A, Chattopadhyay A. Comparative Analysis of Tryptophan Dynamics in Spectrin and Its Constituent Domains: Insights from Fluorescence. J Phys Chem B 2021; 126:1045-1053. [PMID: 34845910 DOI: 10.1021/acs.jpcb.1c08600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spectrin is a cytoskeletal protein ubiquitous in metazoan cells that acts as a liaison between the plasma membrane and the cellular interior and imparts mechanical stability to the plasma membrane. Spectrin is known to be highly dynamic, with an appreciable degree of torsional and segmental mobility. In this context, we have earlier utilized the red edge excitation shift (REES) approach to report the retention of restricted solvation dynamics and local structure in the vicinity of spectrin tryptophans on urea denaturation and loss of spectrin secondary structure. As a natural progression of our earlier work, in this work, we carried out a biophysical dissection of tryptophan solvation and rotational dynamics in spectrin and its constituent domains, in order to trace the origin of local structure retention observed in denatured spectrin. Our results show that the ankyrin binding domain (and, to a lesser extent, the β-tetramerization domain) is capable of retention of local structure, similar to that observed for intact spectrin. However, all α-chain domains studied exhibit negligible retention of local structure on urea denaturation. Such a stark chain-specific retention of local structure could originate from the fact that the β-chain domains possess specialized functions, where conservation of local (structural) integrity may be a prerequisite for optimum cellular function. To the best of our knowledge, these observations represent one of the first systematic biophysical dissections of spectrin dynamics in terms of its constituent domains and add to emerging literature on comprehensive domain-based analysis of spectrin organization, dynamics, and function.
Collapse
Affiliation(s)
- Sreetama Pal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | - Dipayan Bose
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Abhijit Chakrabarti
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | | |
Collapse
|
12
|
Miazek A, Zalas M, Skrzymowska J, Bogin BA, Grzymajło K, Goszczynski TM, Levine ZA, Morrow JS, Stankewich MC. Age-dependent ataxia and neurodegeneration caused by an αII spectrin mutation with impaired regulation of its calpain sensitivity. Sci Rep 2021; 11:7312. [PMID: 33790315 PMCID: PMC8012654 DOI: 10.1038/s41598-021-86470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
The neuronal membrane-associated periodic spectrin skeleton (MPS) contributes to neuronal development, remodeling, and organization. Post-translational modifications impinge on spectrin, the major component of the MPS, but their role remains poorly understood. One modification targeting spectrin is cleavage by calpains, a family of calcium-activated proteases. Spectrin cleavage is regulated by activated calpain, but also by the calcium-dependent binding of calmodulin (CaM) to spectrin. The physiologic significance of this balance between calpain activation and substrate-level regulation of spectrin cleavage is unknown. We report a strain of C57BL/6J mice harboring a single αII spectrin point mutation (Sptan1 c.3293G > A:p.R1098Q) with reduced CaM affinity and intrinsically enhanced sensitivity to calpain proteolysis. Homozygotes are embryonic lethal. Newborn heterozygotes of either gender appear normal, but soon develop a progressive ataxia characterized biochemically by accelerated calpain-mediated spectrin cleavage and morphologically by disruption of axonal and dendritic integrity and global neurodegeneration. Molecular modeling predicts unconstrained exposure of the mutant spectrin's calpain-cleavage site. These results reveal the critical importance of substrate-level regulation of spectrin cleavage for the maintenance of neuronal integrity. Given that excessive activation of calpain proteases is a common feature of neurodegenerative disease and traumatic encephalopathy, we propose that damage to the spectrin MPS may contribute to the neuropathology of many disorders.
Collapse
Affiliation(s)
- Arkadiusz Miazek
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Michał Zalas
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Joanna Skrzymowska
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Bryan A Bogin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Krzysztof Grzymajło
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, Norwida 31, 50-375, Wrocław, Poland
| | - Tomasz M Goszczynski
- Department of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114, Wrocław, Poland
| | - Zachary A Levine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA
| | - Jon S Morrow
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Michael C Stankewich
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH108, New Haven, CT, 06520, USA.
| |
Collapse
|
13
|
Lambert MW. The functional importance of lamins, actin, myosin, spectrin and the LINC complex in DNA repair. Exp Biol Med (Maywood) 2019; 244:1382-1406. [PMID: 31581813 PMCID: PMC6880146 DOI: 10.1177/1535370219876651] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Three major proteins in the nucleoskeleton, lamins, actin, and spectrin, play essential roles in maintenance of nuclear architecture and the integrity of the nuclear envelope, in mechanotransduction and mechanical coupling between the nucleoskeleton and cytoskeleton, and in nuclear functions such as regulation of gene expression, transcription and DNA replication. Less well known, but critically important, are the role these proteins play in DNA repair. The A-type and B-type lamins, nuclear actin and myosin, spectrin and the LINC (linker of nucleoskeleton and cytoskeleton) complex each function in repair of DNA damage utilizing various repair pathways. The lamins play a role in repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ) or homologous recombination (HR). Actin is involved in repair of DNA DSBs and interacts with myosin in facilitating relocalization of these DSBs in heterochromatin for HR repair. Nonerythroid alpha spectrin (αSpII) plays a critical role in repair of DNA interstrand cross-links (ICLs) where it acts as a scaffold in recruitment of repair proteins to sites of damage and is important in the initial damage recognition and incision steps of the repair process. The LINC complex contributes to the repair of DNA DSBs and ICLs. This review will address the important functions of these proteins in the DNA repair process, their mechanism of action, and the profound impact a defect or deficiency in these proteins has on cellular function. The critical roles of these proteins in DNA repair will be further emphasized by discussing the human disorders and the pathophysiological changes that result from or are related to deficiencies in these proteins. The demonstrated function for each of these proteins in the DNA repair process clearly indicates that there is another level of complexity that must be considered when mechanistically examining factors crucial for DNA repair.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology and Laboratory
Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
14
|
Machnicka B, Grochowalska R, Bogusławska DM, Sikorski AF. The role of spectrin in cell adhesion and cell-cell contact. Exp Biol Med (Maywood) 2019; 244:1303-1312. [PMID: 31226892 DOI: 10.1177/1535370219859003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation to changing environments. Primarily the spectrin-based membrane skeleton maintains cell membrane integrity and its mechanical properties, together with the cytoskeletal network a support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular environments indicates that it is a multifunctional protein involved in numerous physiological pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and formation of dynamic plasma membrane protrusions and associated signaling events is a subject of interest for researchers in the fields of cell biology and molecular medicine. In this mini-review, we focus on data concerning the role of spectrins in cell surface activities such as adhesion, cell–cell contact, and invadosome formation. We discuss data on different adhesion proteins that directly or indirectly interact with spectrin repeats. New findings support the involvement of spectrin in cell adhesion and spreading, formation of lamellipodia, and also the participation in morphogenetic processes, such as eye development, oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and cell–cell contact.Impact statementThis article reviews properties of spectrins as a group of proteins involved in cell surface activities such as, adhesion and cell–cell contact, and their contribution to morphogenesis. We show a new area of research and discuss the involvement of spectrin in regulation of cell–cell contact leading to immunological synapse formation and in shaping synapse architecture during myoblast fusion. Data indicate involvement of spectrins in adhesion and cell–cell or cell–extracellular matrix interactions and therefore in signaling pathways. There is evidence of spectrin’s contribution to the processes of morphogenesis which are connected to its interactions with adhesion molecules, membrane proteins (and perhaps lipids), and actin. Our aim was to highlight the essential role of spectrin in cell–cell contact and cell adhesion.
Collapse
Affiliation(s)
- Beata Machnicka
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Renata Grochowalska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Dżamila M Bogusławska
- Department of Biochemistry and Bioinformatics, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra 65-516, Poland
| | - Aleksander F Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław 50-383, Poland
| |
Collapse
|
15
|
Lambert MW. Spectrin and its interacting partners in nuclear structure and function. Exp Biol Med (Maywood) 2019; 243:507-524. [PMID: 29557213 DOI: 10.1177/1535370218763563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nonerythroid αII-spectrin is a structural protein whose roles in the nucleus have just begun to be explored. αII-spectrin is an important component of the nucleoskelelton and has both structural and non-structural functions. Its best known role is in repair of DNA ICLs both in genomic and telomeric DNA. αII-spectrin aids in the recruitment of repair proteins to sites of damage and a proposed mechanism of action is presented. It interacts with a number of different groups of proteins in the nucleus, indicating it has roles in additional cellular functions. αII-spectrin, in its structural role, associates/co-purifies with proteins important in maintaining the architecture and mechanical properties of the nucleus such as lamin, emerin, actin, protein 4.1, nuclear myosin, and SUN proteins. It is important for the resilience and elasticity of the nucleus. Thus, αII-spectrin's role in cellular functions is complex due to its structural as well as non-structural roles and understanding the consequences of a loss or deficiency of αII-spectrin in the nucleus is a significant challenge. In the bone marrow failure disorder, Fanconi anemia, there is a deficiency in αII-spectrin and, among other characteristics, there is defective DNA repair, chromosome instability, and congenital abnormalities. One may speculate that a deficiency in αII-spectrin plays an important role not only in the DNA repair defect but also in the congenital anomalies observed in Fanconi anemia , particularly since αII-spectrin has been shown to be important in embryonic development in a mouse model. The dual roles of αII-spectrin in the nucleus in both structural and non-structural functions make this an extremely important protein which needs to be investigated further. Such investigations should help unravel the complexities of αII-spectrin's interactions with other nuclear proteins and enhance our understanding of the pathogenesis of disorders, such as Fanconi anemia , in which there is a deficiency in αII-spectrin. Impact statement The nucleoskeleton is critical for maintaining the architecture and functional integrity of the nucleus. Nonerythroid α-spectrin (αIISp) is an essential nucleoskeletal protein; however, its interactions with other structural and non-structural nuclear proteins and its functional importance in the nucleus have only begun to be explored. This review addresses these issues. It describes αIISp's association with DNA repair proteins and at least one proposed mechanism of action for its role in DNA repair. Specific interactions of αIISp with other nucleoskeletal proteins as well as its important role in the biomechanical properties of the nucleus are reviewed. The consequences of loss of αIISp, in disorders such as Fanconi anemia, are examined, providing insights into the profound impact of this loss on critical processes known to be abnormal in FA, such as development, carcinogenesis, cancer progression and cellular functions dependent upon αIISp's interactions with other nucleoskeletal proteins.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
16
|
Abstract
The pulmonary endothelial cell forms a critical semi-permeable barrier between the vascular and interstitial space. As part of the blood-gas barrier in the lung, the endothelium plays a key role in normal physiologic function and pathologic disease. Changes in endothelial cell shape, defined by its plasma membrane, determine barrier integrity. A number of key cytoskeletal regulatory and effector proteins including non-muscle myosin light chain kinase, cortactin, and Arp 2/3 mediate actin rearrangements to form cortical and membrane associated structures in response to barrier enhancing stimuli. These actin formations support and interact with junctional complexes and exert forces to protrude the lipid membrane to and close gaps between individual cells. The current knowledge of these cytoskeletal processes and regulatory proteins are the subject of this review. In addition, we explore novel advancements in cellular imaging that are poised to shed light on the complex nature of pulmonary endothelial permeability.
Collapse
|
17
|
Manivannan S, Makwana M, Ahmed AI, Zaben M. Profiling biomarkers of traumatic axonal injury: From mouse to man. Clin Neurol Neurosurg 2018; 171:6-20. [PMID: 29803093 DOI: 10.1016/j.clineuro.2018.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022]
Abstract
Traumatic brain injury (TBI) poses a major public health problem on a global scale. Its burden results from high mortality and significant morbidity in survivors. This stems, in part, from an ongoing inadequacy in diagnostic and prognostic indicators despite significant technological advances. Traumatic axonal injury (TAI) is a key driver of the ongoing pathological process following TBI, causing chronic neurological deficits and disability. The science underpinning biomarkers of TAI has been a subject of many reviews in recent literature. However, in this review we provide a comprehensive account of biomarkers from animal models to clinical studies, bridging the gap between experimental science and clinical medicine. We have discussed pathogenesis, temporal kinetics, relationships to neuro-imaging, and, most importantly, clinical applicability in order to provide a holistic perspective of how this could improve TBI diagnosis and predict clinical outcome in a real-life setting. We conclude that early and reliable identification of axonal injury post-TBI with the help of body fluid biomarkers could enhance current care of TBI patients by (i) increasing speed and accuracy of diagnosis, (ii) providing invaluable prognostic information, (iii) allow efficient allocation of rehabilitation services, and (iv) provide potential therapeutic targets. The optimal model for assessing TAI is likely to involve multiple components, including several blood biomarkers and neuro-imaging modalities, at different time points.
Collapse
Affiliation(s)
- Susruta Manivannan
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Milan Makwana
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
| | - Aminul Islam Ahmed
- Clinical Neurosciences, University of Southampton, Southampton, SO16 6YD, United Kingdom; Wessex Neurological Centre, University Hospitals Southampton, Southampton, SO16 6YD, United Kingdom
| | - Malik Zaben
- Department of Neurosurgery, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom; Brain Repair & Intracranial Neurotherapeutics (BRAIN) Unit, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, United Kingdom.
| |
Collapse
|
18
|
Protein 4.1N is required for the formation of the lateral membrane domain in human bronchial epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1143-1151. [PMID: 29428502 DOI: 10.1016/j.bbamem.2018.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/16/2018] [Accepted: 02/07/2018] [Indexed: 12/13/2022]
Abstract
The membrane skeleton forms a scaffold on the cytoplasmic side of the plasma membrane. The erythrocyte membrane represents an archetype of such structural organization. It has been documented that a similar membrane skeleton also exits in the Golgi complex. It has been previously shown that βII spectrin and ankyrin G are localized at the lateral membrane of human bronchial epithelial cells. Here we show that protein 4.1N is also located at the lateral membrane where it associates E-cadherin, β-catenin and βII spectrin. Importantly, depletion of 4.1N by RNAi in human bronchial epithelial cells resulted in decreased height of lateral membrane, which was reversed following re-expression of mouse 4.1N. Furthermore, although the initial phase of lateral membrane biogenesis proceeded normally in 4.1N-depleted cells, the final height of the lateral membrane of 4.1N-depleted cells was shorter compared to that of control cells. Our findings together with previous findings imply that 4.1N, βII spectrin and ankyrin G are structural components of the lateral membrane skeleton and that this skeleton plays an essential role in the assembly of a fully functional lateral membrane.
Collapse
|
19
|
Spectrin βV adaptive mutations and changes in subcellular location correlate with emergence of hair cell electromotility in mammalians. Proc Natl Acad Sci U S A 2017; 114:2054-2059. [PMID: 28179572 DOI: 10.1073/pnas.1618778114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The remarkable hearing capacities of mammals arise from various evolutionary innovations. These include the cochlear outer hair cells and their singular feature, somatic electromotility, i.e., the ability of their cylindrical cell body to shorten and elongate upon cell depolarization and hyperpolarization, respectively. To shed light on the processes underlying the emergence of electromotility, we focused on the βV giant spectrin, a major component of the outer hair cells' cortical cytoskeleton. We identified strong signatures of adaptive evolution at multiple sites along the spectrin-βV amino acid sequence in the lineage leading to mammals, together with substantial differences in the subcellular location of this protein between the frog and the mouse inner ear hair cells. In frog hair cells, spectrin βV was invariably detected near the apical junctional complex and above the cuticular plate, a dense F-actin meshwork located underneath the apical plasma membrane. In the mouse, the protein had a broad punctate cytoplasmic distribution in the vestibular hair cells, whereas it was detected in the entire lateral wall of cochlear outer hair cells and had an intermediary distribution (both cytoplasmic and cortical, but restricted to the cell apical region) in cochlear inner hair cells. Our results support a scenario where the singular organization of the outer hair cells' cortical cytoskeleton may have emerged from molecular networks initially involved in membrane trafficking, which were present near the apical junctional complex in the hair cells of mammalian ancestors and would have subsequently expanded to the entire lateral wall in outer hair cells.
Collapse
|
20
|
Wu XT, Sun LW, Yang X, Ding D, Han D, Fan YB. The potential role of spectrin network in the mechanotransduction of MLO-Y4 osteocytes. Sci Rep 2017; 7:40940. [PMID: 28112189 PMCID: PMC5256107 DOI: 10.1038/srep40940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/13/2016] [Indexed: 02/06/2023] Open
Abstract
The spectrin is first identified as the main component of erythrocyte membrane skeleton. It is getting growing attention since being found in multiple nonerythroid cells, providing complex mechanical properties and signal interface under the cell membrane. Recent genomics studies have revealed that the spectrin is highly relevant to bone disorders. However, in osteocytes, the important mechanosensors in bone, the role of spectrin is poorly understood. In this research, the role of spectrin in the mechanotransduction of MLO-Y4 osteocytes was studied. Immunofluorescence staining showed that, the spectrins were elaborately organized as a porous network throughout the cytoplasm, and linked with F-actin into a dense layer underlying the cell membrane. AFM results indicate that, the spectrin is pivotal for maintaining the overall elasticity of osteocytes, especially for the cell cortex stiffiness. Disruption of the spectrin network caused obvious softening of osteocytes, and resulted in a significant increase of Ca2+ influx, NO secretion, cell-cell connections and also induced a translocation of eNOS from membrane to cytoplasm. These results indicate that the spectrin network is a global structural support for osteocytes involving in the mechanotransduction process, making it a potential therapeutic target for bone disorders.
Collapse
Affiliation(s)
- Xin-Tong Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Lian-Wen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China.,International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Ministry of Science and Technology of China, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Xiao Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Dong Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China
| | - Dong Han
- National Center for Nanoscience and Technology, Beijing, China
| | - Yu-Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 37th Xue-yuan Road, Hian-dian District, Beijing, China.,National Research Center for Rehabilitation Technical Aids, 1th Ronghuazhong Road, Beijing Economic and Technological Development Zone, China
| |
Collapse
|
21
|
Lambert MW. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Exp Biol Med (Maywood) 2016; 241:1621-38. [PMID: 27480253 PMCID: PMC4999628 DOI: 10.1177/1535370216662714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Non-erythroid alpha spectrin (αIISp) is a structural protein which we have shown is present in the nucleus of human cells. It interacts with a number of nuclear proteins such as actin, lamin, emerin, chromatin remodeling factors, and DNA repair proteins. αIISp's interaction with DNA repair proteins has been extensively studied. We have demonstrated that nuclear αIISp is critical in DNA interstrand cross-link (ICL) repair in S phase, in both genomic (non-telomeric) and telomeric DNA, and in maintenance of genomic stability following ICL damage to DNA. We have proposed that αIISp acts as a scaffold aiding to recruit repair proteins to sites of damage. This involvement of αIISp in ICL repair and telomere maintenance after ICL damage represents new and critical functions for αIISp. These studies have led to development of a model for the role of αIISp in DNA ICL repair. They have been aided by examination of cells from patients with Fanconi anemia (FA), a repair-deficient genetic disorder in which a deficiency in αIISp leads to defective ICL repair in genomic and telomeric DNA, telomere dysfunction, and chromosome instability following DNA ICL damage. We have shown that loss of αIISp in FA cells is due to increased breakdown by the protease, µ-calpain. Importantly, we have demonstrated that this deficiency can be corrected by knockdown of µ-calpain and restoring αIISp levels to normal. This corrects a number of the phenotypic deficiencies in FA after ICL damage. These studies suggest a new and unexplored direction for therapeutically restoring genomic stability in FA cells and for correcting numerous phenotypic deficiencies occurring after ICL damage. Developing a more in-depth understanding of the importance of the interaction of αIISp with other nuclear proteins could significantly enhance our knowledge of the consequences of loss of αIISp on critical nuclear processes.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
22
|
Lambert MW. Functional Significance of Nuclear α Spectrin. J Cell Biochem 2016; 116:1816-30. [PMID: 25757157 DOI: 10.1002/jcb.25123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 11/11/2022]
Abstract
Nonerythroid alpha spectrin (αIISp) interacts in the nucleus with an array of different proteins indicating its involvement in a number of diverse functions. However, the significance of these interactions and their functional importance has been a relatively unexplored area. The best documented role of nuclear αIISp is in DNA repair where it is critical for repair of DNA interstrand cross-links (ICLs), acting as a scaffold recruiting proteins to sites of damage in genomic and telomeric DNA. A deficiency in αIISp can importantly impact DNA ICL repair as is seen in cells from patients with the genetic disorder, Fanconi anemia (FA), where loss of αIISp leads to not only defects in repair of both genomic and telomeric DNA but also to telomere dysfunction and chromosome instability. This previously unexplored link between αIISp and telomere function is important in developing an understanding of maintenance of genomic stability after ICL damage. In FA cells, these defects in chromosome instability after ICL damage can be corrected when levels of αIISp are returned to normal by knocking down μ-calpain, a protease which cleaves αIISp. These studies suggest a new direction for correcting a number of the phenotypic defects in FA and could serve as a basis for therapeutic intervention. More in depth, examination of the interactions of αIISp with other proteins in the nucleus is of major importance in development of insights into the interacting key elements involved in the diverse processes occurring in the nucleus and the consequences loss of αIISp has on them.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, 185 South Orange Avenue, Newark, New Jersey, 07103
| |
Collapse
|
23
|
Stankewich MC, Moeckel GW, Ji L, Ardito T, Morrow JS. Isoforms of Spectrin and Ankyrin Reflect the Functional Topography of the Mouse Kidney. PLoS One 2016; 11:e0142687. [PMID: 26727517 PMCID: PMC4703142 DOI: 10.1371/journal.pone.0142687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 10/26/2015] [Indexed: 11/24/2022] Open
Abstract
The kidney displays specialized regions devoted to filtration, selective reabsorption, and electrolyte and metabolite trafficking. The polarized membrane pumps, channels, and transporters responsible for these functions have been exhaustively studied. Less examined are the contributions of spectrin and its adapter ankyrin to this exquisite functional topography, despite their established contributions in other tissues to cellular organization. We have examined in the rodent kidney the expression and distribution of all spectrins and ankyrins by qPCR, Western blotting, immunofluorescent and immuno electron microscopy. Four of the seven spectrins (αΙΙ, βΙ, βΙΙ, and βΙΙΙ) are expressed in the kidney, as are two of the three ankyrins (G and B). The levels and distribution of these proteins vary widely over the nephron. αΙΙ/βΙΙ is the most abundant spectrin, found in glomerular endothelial cells; on the basolateral membrane and cytoplasmic vesicles in proximal tubule cells and in the thick ascending loop of Henle; and less so in the distal nephron. βΙΙΙ spectrin largely replaces βΙΙ spectrin in podocytes, Bowman’s capsule, and throughout the distal tubule and collecting ducts. βΙ spectrin is only marginally expressed; its low abundance hinders a reliable determination of its distribution. Ankyrin G is the most abundant ankyrin, found in capillary endothelial cells and all tubular segments. Ankyrin B populates Bowman’s capsule, podocytes, the ascending thick loop of Henle, and the distal convoluted tubule. Comparison to the distribution of renal protein 4.1 isoforms and various membrane proteins indicates a complex relationship between the spectrin scaffold, its adapters, and various membrane proteins. While some proteins (e.g. ankyrin B, βΙΙΙ spectrin, and aquaporin 2) tend to share a similar distribution, there is no simple mapping of different spectrins or ankyrins to most membrane proteins. The implications of this data are discussed.
Collapse
Affiliation(s)
- Michael C. Stankewich
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
- * E-mail:
| | - Gilbert W. Moeckel
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
| | - Lan Ji
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
| | - Thomas Ardito
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
| | - Jon S. Morrow
- Department of Pathology, Yale School of Medicine, New Haven, CT, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, United States of America
| |
Collapse
|
24
|
Kim JH, Kwon SJ, Stankewich MC, Huh GY, Glantz SB, Morrow JS. Reactive protoplasmic and fibrous astrocytes contain high levels of calpain-cleaved alpha 2 spectrin. Exp Mol Pathol 2015; 100:1-7. [PMID: 26551084 DOI: 10.1016/j.yexmp.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Calpain, a family of calcium-dependent neutral proteases, plays important roles in neurophysiology and pathology through the proteolytic modification of cytoskeletal proteins, receptors and kinases. Alpha 2 spectrin (αII spectrin) is a major substrate for this protease family, and the presence of the αII spectrin breakdown product (αΙΙ spectrin BDP) in a cell is evidence of calpain activity triggered by enhanced intracytoplasmic Ca(2+) concentrations. Astrocytes, the most dynamic CNS cells, respond to micro-environmental changes or noxious stimuli by elevating intracytoplasmic Ca(2+) concentration to become activated. As one measure of whether calpains are involved with reactive glial transformation, we examined paraffin sections of the human cerebral cortex and white matter by immunohistochemistry with an antibody specific for the calpain-mediated αΙΙ spectrin BDP. We also performed conventional double immunohistochemistry as well as immunofluorescent studies utilizing antibodies against αΙΙ spectrin BDP as well as glial fibrillary acidic protein (GFAP). We found strong immunopositivity in selected protoplasmic and fibrous astrocytes, and in transitional forms that raise the possibility of some of fibrous astrocytes emerging from protoplasmic astrocytes. Immunoreactive astrocytes were numerous in brain sections from cases with severe cardiac and/or respiratory diseases in the current study as opposed to our previous study of cases without significant clinical conditions that failed to reveal such remarkable immunohistochemical alterations. Our study suggests that astrocytes become αΙΙ spectrin BDP immunopositive in various stages of activation, and that spectrin cleavage product persists even in fully reactive astrocytes. Immunohistochemistry for αΙΙ spectrin BDP thus marks reactive astrocytes, and highlights the likelihood that calpains and their proteolytic processing of spectrin participate in the morphologic and physiologic transition from resting protoplasmic astrocytes to reactive fibrous astrocytes.
Collapse
Affiliation(s)
- Jung H Kim
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA.
| | - Soojung J Kwon
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Michael C Stankewich
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Gi-Yeong Huh
- Department of Forensic Medicine, School of Medicine, Pusan National University, Pusan, Korea
| | - Susan B Glantz
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| | - Jon S Morrow
- Department of Pathology, Yale Univ. School of Medicine, 310 Cedar Street, New Haven, CT 06510-8023, USA
| |
Collapse
|
25
|
Gurel PS, Hatch AL, Higgs HN. Connecting the cytoskeleton to the endoplasmic reticulum and Golgi. Curr Biol 2015; 24:R660-R672. [PMID: 25050967 DOI: 10.1016/j.cub.2014.05.033] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A tendency in cell biology is to divide and conquer. For example, decades of painstaking work have led to an understanding of endoplasmic reticulum (ER) and Golgi structure, dynamics, and transport. In parallel, cytoskeletal researchers have revealed a fantastic diversity of structure and cellular function in both actin and microtubules. Increasingly, these areas overlap, necessitating an understanding of both organelle and cytoskeletal biology. This review addresses connections between the actin/microtubule cytoskeletons and organelles in animal cells, focusing on three key areas: ER structure and function; ER-to-Golgi transport; and Golgi structure and function. Making these connections has been challenging for several reasons: the small sizes and dynamic characteristics of some components; the fact that organelle-specific cytoskeletal elements can easily be obscured by more abundant cytoskeletal structures; and the difficulties in imaging membranes and cytoskeleton simultaneously, especially at the ultrastructural level. One major concept is that the cytoskeleton is frequently used to generate force for membrane movement, with two potential consequences: translocation of the organelle, or deformation of the organelle membrane. While initially discussing issues common to metazoan cells in general, we subsequently highlight specific features of neurons, since these highly polarized cells present unique challenges for organellar distribution and dynamics.
Collapse
Affiliation(s)
- Pinar S Gurel
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Anna L Hatch
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover NH 03755, USA.
| |
Collapse
|
26
|
Essential role of class II PI3K-C2α in platelet membrane morphology. Blood 2015; 126:1128-37. [DOI: 10.1182/blood-2015-03-636670] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/15/2015] [Indexed: 11/20/2022] Open
Abstract
Key Points
PI3K-C2α controls platelet membrane structure and remodeling. PI3K-C2α is a key regulator of a basal housekeeping PI3P pool in platelets.
Collapse
|
27
|
Kobeissy FH, Liu MC, Yang Z, Zhang Z, Zheng W, Glushakova O, Mondello S, Anagli J, Hayes RL, Wang KK. Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain Injury Conditions. Mol Neurobiol 2015; 52:696-709. [PMID: 25270371 PMCID: PMC4383741 DOI: 10.1007/s12035-014-8898-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/10/2014] [Indexed: 12/22/2022]
Abstract
A major consequence of traumatic brain injury (TBI) is the rapid proteolytic degradation of structural cytoskeletal proteins. This process is largely reflected by the interruption of axonal transport as a result of extensive axonal injury leading to neuronal cell injury. Previous work from our group has described the extensive degradation of the axonally enriched cytoskeletal αII-spectrin protein which results in molecular signature breakdown products (BDPs) indicative of injury mechanisms and to specific protease activation both in vitro and in vivo. In the current study, we investigated the integrity of βII-spectrin protein and its proteolytic profile both in primary rat cerebrocortical cell culture under apoptotic, necrotic, and excitotoxic challenge and extended to in vivo rat model of experimental TBI (controlled cortical impact model). Interestingly, our results revealed that the intact 260-kDa βII-spectrin is degraded into major fragments (βII-spectrin breakdown products (βsBDPs)) of 110, 108, 85, and 80 kDa in rat brain (hippocampus and cortex) 48 h post-injury. These βsBDP profiles were further characterized and compared to an in vitro βII-spectrin fragmentation pattern of naive rat cortex lysate digested by calpain-2 and caspase-3. Results revealed that βII-spectrin was degraded into major fragments of 110/85 kDa by calpain-2 activation and 108/80 kDa by caspase-3 activation. These data strongly support the hypothesis that in vivo activation of multiple protease system induces structural protein proteolysis involving βII-spectrin proteolysis via a specific calpain and/or caspase-mediated pathway resulting in a signature, protease-specific βsBDPs that are dependent upon the type of neural injury mechanism. This work extends on previous published work that discusses the interplay spectrin family (αII-spectrin and βII-spectrin) and their susceptibility to protease proteolysis and their implication to neuronal cell death mechanisms.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Ming Cheng Liu
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Zhihui Yang
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Zhiqun Zhang
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Wenrong Zheng
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| | - Olena Glushakova
- Banyan Laboratory, Banyan Biomarkers, Inc., Alachua, FL 32615,
USA
| | - Stefania Mondello
- Department of Neurosciences, University of Messina, 98125
Messina, Italy
| | - John Anagli
- Banyan Laboratory, Banyan Biomarkers, Inc., Alachua, FL 32615,
USA
| | - Ronald L. Hayes
- Banyan Laboratory, Banyan Biomarkers, Inc., Alachua, FL 32615,
USA
| | - Kevin K.W. Wang
- Center for Neuroproteomics & Biomarkers Research, Department
of Psychiatry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Silverman-Gavrila RV, Silverman-Gavrila LB, Bilal KH, Bendeck MP. Spectrin alpha is important for rear polarization of the microtubule organizing center during migration and spindle pole assembly during division of neointimal smooth muscle cells. Cytoskeleton (Hoboken) 2015; 72:157-70. [DOI: 10.1002/cm.21222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 01/31/2015] [Accepted: 04/07/2015] [Indexed: 01/18/2023]
Affiliation(s)
| | | | - Khawaja Hasan Bilal
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Canada
| | - Michelle P. Bendeck
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Toronto Canada
| |
Collapse
|
29
|
Clarkson YL, Perkins EM, Cairncross CJ, Lyndon AR, Skehel PA, Jackson M. β-III spectrin underpins ankyrin R function in Purkinje cell dendritic trees: protein complex critical for sodium channel activity is impaired by SCA5-associated mutations. Hum Mol Genet 2014; 23:3875-82. [PMID: 24603075 PMCID: PMC4065159 DOI: 10.1093/hmg/ddu103] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/21/2014] [Accepted: 03/03/2014] [Indexed: 01/05/2023] Open
Abstract
Beta III spectrin is present throughout the elaborate dendritic tree of cerebellar Purkinje cells and is required for normal neuronal morphology and cell survival. Spinocerebellar ataxia type 5 (SCA5) and spectrin associated autosomal recessive cerebellar ataxia type 1 are human neurodegenerative diseases involving progressive gait ataxia and cerebellar atrophy. Both disorders appear to result from loss of β-III spectrin function. Further elucidation of β-III spectrin function is therefore needed to understand disease mechanisms and identify potential therapeutic options. Here, we report that β-III spectrin is essential for the recruitment and maintenance of ankyrin R at the plasma membrane of Purkinje cell dendrites. Two SCA5-associated mutations of β-III spectrin both reduce ankyrin R levels at the cell membrane. Moreover, a wild-type β-III spectrin/ankyrin-R complex increases sodium channel levels and activity in cell culture, whereas mutant β-III spectrin complexes fail to enhance sodium currents. This suggests impaired ability to form stable complexes between the adaptor protein ankyrin R and its interacting partners in the Purkinje cell dendritic tree is a key mechanism by which mutant forms of β-III spectrin cause ataxia, initially by Purkinje cell dysfunction and exacerbated by subsequent cell death.
Collapse
Affiliation(s)
- Yvonne L Clarkson
- The Centre for Integrative Physiology and Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK and
| | - Emma M Perkins
- The Centre for Integrative Physiology and Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK and
| | | | - Alastair R Lyndon
- School of Life Sciences, Heriot-Watt University, John Muir Building, Riccarton, Edinburgh EH14 4AS, UK
| | - Paul A Skehel
- The Centre for Integrative Physiology and Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK and
| | - Mandy Jackson
- The Centre for Integrative Physiology and Euan MacDonald Centre for Motor Neuron Disease Research, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK and
| |
Collapse
|
30
|
Zhang R, Zhang C, Zhao Q, Li D. Spectrin: structure, function and disease. SCIENCE CHINA-LIFE SCIENCES 2013; 56:1076-85. [PMID: 24302288 DOI: 10.1007/s11427-013-4575-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/20/2013] [Indexed: 01/23/2023]
Abstract
Spectrin is a large, cytoskeletal, and heterodimeric protein composed of modular structure of α and β subunits, it typically contains 106 contiguous amino acid sequence motifs called "spectrin repeats". Spectrin is crucial for maintaining the stability and structure of the cell membrane and the shape of a cell. Moreover, it contributes to diverse cell functions such as cell adhesion, cell spreading, and the cell cycle. Mutations of spectrin lead to various human diseases such as hereditary hemolytic anemia, type 5 spinocerebellar ataxia, cancer, as well as others. This review focuses on recent advances in determining the structure and function of spectrin as well as its role in disease.
Collapse
Affiliation(s)
- Rui Zhang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | | | | | | |
Collapse
|
31
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
32
|
Fodrin in centrosomes: implication of a role of fodrin in the transport of gamma-tubulin complex in brain. PLoS One 2013; 8:e76613. [PMID: 24098540 PMCID: PMC3788121 DOI: 10.1371/journal.pone.0076613] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/27/2013] [Indexed: 11/19/2022] Open
Abstract
Gamma-tubulin is the major protein involved in the nucleation of microtubules from centrosomes in eukaryotic cells. It is present in both cytoplasm and centrosome. However, before centrosome maturation prior to mitosis, gamma-tubulin concentration increases dramatically in the centrosome, the mechanism of which is not known. Earlier it was reported that cytoplasmic gamma-tubulin complex isolated from goat brain contains non-erythroid spectrin/fodrin. The major role of erythroid spectrin is to help in the membrane organisation and integrity. However, fodrin or non-erythroid spectrin has a distinct pattern of localisation in brain cells and evidently some special functions over its erythroid counterpart. In this study, we show that fodrin and γ-tubulin are present together in both the cytoplasm and centrosomes in all brain cells except differentiated neurons and astrocytes. Immunoprecipitation studies in purified centrosomes from brain tissue and brain cell lines confirm that fodrin and γ-tubulin interact with each other in centrosomes. Fodrin dissociates from centrosome just after the onset of mitosis, when the concentration of γ-tubulin attains a maximum at centrosomes. Further it is observed that the interaction between fodrin and γ-tubulin in the centrosome is dependent on actin as depolymerisation of microfilaments stops fodrin localization. Image analysis revealed that γ-tubulin concentration also decreased drastically in the centrosome under this condition. This indicates towards a role of fodrin as a regulatory transporter of γ-tubulin to the centrosomes for normal progression of mitosis.
Collapse
|
33
|
Interaction of Plasmodium falciparum knob-associated histidine-rich protein (KAHRP) with erythrocyte ankyrin R is required for its attachment to the erythrocyte membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:185-92. [PMID: 24090929 DOI: 10.1016/j.bbamem.2013.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 11/20/2022]
Abstract
The malaria parasite Plasmodium falciparum exports a large number of proteins into the erythrocyte cytoplasm during the asexual intraerythrocytic stage of its life cycle. A subset of these proteins interacts with erythrocyte membrane skeletal proteins and grossly alters the structure and function of the membrane. Several of the exported proteins, such as PfEMP1, PfEMP3, RESA and KAHRP, interact with the preponderant erythrocyte skeleton protein, spectrin. Here we have searched for possible interaction of these four malaria proteins with another major erythrocyte skeleton protein, ankyrin R. We have shown that KAHRP, but none of the other three, binds to ankyrin R. We have mapped the binding site for ankyrin R to a 79-residue segment of the KAHRP sequence, and the reciprocal binding site for KAHRP in ankyrin R to a subdomain (D3) of the 89kDa ankyrin R membrane-binding domain. Interaction of intact ankyrin R with KAHRP was inhibited by the free D3 subdomain. When, moreover, red cells loaded with the soluble D3 subdomain were infected with P. falciparum, KAHRP secreted by the intraerythrocytic parasite no longer migrated to the host cell membrane, but remained diffusely distributed throughout the cytosol. Our findings suggest a potentially important role for interaction of KAHRP with red cell membrane skeleton in promoting the adhesion of malaria-infected red cells to endothelial surfaces, a central element in the pathophysiology of malaria.
Collapse
|
34
|
Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol 2013; 14:382-92. [PMID: 23698585 DOI: 10.1038/nrm3588] [Citation(s) in RCA: 391] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coat protein complex I (COPI) and COPII are required for bidirectional membrane trafficking between the endoplasmic reticulum (ER) and the Golgi. While these core coat machineries and other transport factors are highly conserved across species, high-resolution imaging studies indicate that the organization of the ER-Golgi interface is varied in eukaryotic cells. Regulation of COPII assembly, in some cases to manage distinct cellular cargo, is emerging as one important component in determining this structure. Comparison of the ER-Golgi interface across different systems, particularly mammalian and plant cells, reveals fundamental elements and distinct organization of this interface. A better understanding of how these interfaces are regulated to meet varying cellular secretory demands should provide key insights into the mechanisms that control efficient trafficking of proteins and lipids through the secretory pathway.
Collapse
Affiliation(s)
- Federica Brandizzi
- DOE Plant Research Laboratory and Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
35
|
Egea G, Serra-Peinado C, Salcedo-Sicilia L, Gutiérrez-Martínez E. Actin acting at the Golgi. Histochem Cell Biol 2013; 140:347-60. [PMID: 23807268 DOI: 10.1007/s00418-013-1115-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2013] [Indexed: 01/08/2023]
Abstract
The organization, assembly and remodeling of the actin cytoskeleton provide force and tracks for a variety of (endo)membrane-associated events such as membrane trafficking. This review illustrates in different cellular models how actin and many of its numerous binding and regulatory proteins (actin and co-workers) participate in the structural organization of the Golgi apparatus and in trafficking-associated processes such as sorting, biogenesis and motion of Golgi-derived transport carriers.
Collapse
Affiliation(s)
- Gustavo Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, C/Casanova, 143, 08036, Barcelona, Spain.
| | | | | | | |
Collapse
|
36
|
Ryan L, Lamarre B, Diu T, Ravi J, Judge PJ, Temple A, Carr M, Cerasoli E, Su B, Jenkinson HF, Martyna G, Crain J, Watts A, Ryadnov MG. Anti-antimicrobial peptides: folding-mediated host defense antagonists. J Biol Chem 2013; 288:20162-72. [PMID: 23737519 PMCID: PMC3711284 DOI: 10.1074/jbc.m113.459560] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial or host defense peptides are innate immune regulators found in all multicellular organisms. Many of them fold into membrane-bound α-helices and function by causing cell wall disruption in microorganisms. Herein we probe the possibility and functional implications of antimicrobial antagonism mediated by complementary coiled-coil interactions between antimicrobial peptides and de novo designed antagonists: anti-antimicrobial peptides. Using sequences from native helical families such as cathelicidins, cecropins, and magainins we demonstrate that designed antagonists can co-fold with antimicrobial peptides into functionally inert helical oligomers. The properties and function of the resulting assemblies were studied in solution, membrane environments, and in bacterial culture by a combination of chiroptical and solid-state NMR spectroscopies, microscopy, bioassays, and molecular dynamics simulations. The findings offer a molecular rationale for anti-antimicrobial responses with potential implications for antimicrobial resistance.
Collapse
Affiliation(s)
- Lloyd Ryan
- National Physical Laboratory, Teddington, Middlesex TW11 0WL, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Papal S, Cortese M, Legendre K, Sorusch N, Dragavon J, Sahly I, Shorte S, Wolfrum U, Petit C, El-Amraoui A. The giant spectrin βV couples the molecular motors to phototransduction and Usher syndrome type I proteins along their trafficking route. Hum Mol Genet 2013; 22:3773-88. [PMID: 23704327 DOI: 10.1093/hmg/ddt228] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin βV, the mammalian β-heavy spectrin, as a myosin VIIa- and rhodopsin-interacting partner in photoreceptor cells. Spectrin βV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other β spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin βV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin βV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin βV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of α and β subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin βV can also form homodimers, which likely supports its αII-independent βV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin βV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin βV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin- and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks.
Collapse
Affiliation(s)
- Samantha Papal
- Institut Pasteur, Unité de génétique et physiologie de l'audition, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cerella C, Dicato M, Diederich M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013; 13:225-34. [DOI: 10.1016/j.mito.2012.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/12/2012] [Accepted: 06/19/2012] [Indexed: 02/04/2023]
|
39
|
Fétaud-Lapierre V, Pastor CM, Jorge-Costa M, Hochstrasser DF, Morel DR, Frossard JL, Lescuyer P. Time-course proteomic analysis of taurocholate-induced necrotizing acute pancreatitis. J Proteomics 2013; 85:12-27. [PMID: 23624238 DOI: 10.1016/j.jprot.2013.04.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/28/2013] [Accepted: 04/14/2013] [Indexed: 01/29/2023]
Abstract
UNLABELLED Acute pancreatitis is an inflammatory disease of the pancreas, which varies greatly in course and severity. Severe forms are associated with serious local and/or systemic complications, and eventually death. The pathobiology of acute pancreatitis is complex. Animal models have been developed to investigate pathobiological processes and identify factors determining disease course. We performed a time-course proteomic analysis using a rat model of severe necrotizing acute pancreatitis induced by taurocholate perfusion in the pancreatic ducts. Results showed that levels of proteins associated to a given biological process changed in a coordinated fashion after disease onset. It was possible to follow the response of a particular pathobiological process to pancreatitis induction and to compare the course of protein pathways. Proteins involved in acinar cell secretion were found to follow a different kinetics than other cellular processes. After an initial decrease, secretory pathway-associated proteins raised again at 18 h post-induction. This phenomenon coincided with a burst in the expression of pancreatitis-associated protein (REG3A), an acute phase protein produced by the exocrine pancreas, and with the decrease of classical markers of pancreatic injury, suggesting that the expression of proteins associated to the secretory pathway may be a modulating factor of pancreas injury. BIOLOGICAL SIGNIFICANCE Acute pancreatitis (AP) is a complex inflammatory disease, the pathobiology of which is not yet fully understood. Various animal models, relying on different mechanisms of disease induction, have been developed in order to investigate pathobiological processes of AP. In this study, we performed a time-course proteomic analysis to investigate changes of the pancreas proteome occurring in an experimental model of AP induced by perfusion of taurocholate, a bile acid, into the pancreatic duct. This experimental model is characterized by a severe disease with pancreatic necrosis and systemic inflammation. The objectives of this study were to determine the kinetics of functionally related proteins in the early steps of the experimental disease in order to identify protein pathways playing key roles in AP pathobiology and to correlate these data with parameters classically used to assess disease severity. The present work provides for the first time an overview of protein expression in the pancreas during the course of taurocholate-induced necrotizing AP. We believe that correlation of these results with data obtained using proteomic or biochemical approaches in various experimental models of AP will help in highlighting new features, generating hypotheses and constitute therefore a strong and reliable basis for further targeted investigations.
Collapse
Affiliation(s)
- Vanessa Fétaud-Lapierre
- Biomedical Proteomics Research Group, Department of Human Protein Science, Geneva Faculty of Medicine, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
40
|
Zhang P, Herbig U, Coffman F, Lambert MW. Non-erythroid alpha spectrin prevents telomere dysfunction after DNA interstrand cross-link damage. Nucleic Acids Res 2013; 41:5321-40. [PMID: 23571757 PMCID: PMC3664817 DOI: 10.1093/nar/gkt235] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Telomere integrity is critical for telomere function and genomic stability. We previously demonstrated that non-erythroid α-spectrin (αIISp) is present in mammalian cell nuclei where it is important in repair of DNA interstrand cross-links (ICLs) and chromosome stability. We now demonstrate that αIISp is also important for telomere maintenance after ICL damage. It localizes to telomeres in S phase after ICL damage where it has enhanced association with TRF1 and TRF2 and is required for recruitment of the ICL repair protein, XPF, to damage-induced foci at telomeres. In telomerase-positive normal cells depleted of αIISp by siRNA or in Fanconi anemia, complementation group A (FA-A) cells, where αIISp levels are 35–40% of normal, ICL damage results in failure of XPF to localize to telomeres, markedly increased telomere dysfunction-induced foci, followed by catastrophic loss of telomeres. Restoration of αIISp levels to normal in FA-A cells corrects these deficiencies. Our studies demonstrate that αIISp is critical for repair of DNA ICLs at telomeres, likely by facilitating the recruitment of repair proteins similar, but not identical, to its proposed role in repair of DNA ICLs in genomic DNA and that this function in turn is critical for telomere maintenance after DNA ICL damage.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pathology and Laboratory Medicine, UMDNJ - New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07042, USA
| | | | | | | |
Collapse
|
41
|
Li J, Kil C, Considine K, Smarkucki B, Stankewich MC, Balgley B, Vortmeyer AO. Intrinsic indicators for specimen degradation. J Transl Med 2013; 93:242-53. [PMID: 23212099 DOI: 10.1038/labinvest.2012.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Variable degrees of molecular degradation occur in human surgical specimens before clinical examination and severely affect analytical results. We therefore initiated an investigation to identify protein markers for tissue degradation assessment. We exposed 4 cell lines and 64 surgical/autopsy specimens to defined periods of time at room temperature before procurement (experimental cold ischemic time (CIT)-dependent tissue degradation model). Using two-dimensional fluorescence difference gel electrophoresis in conjunction with mass spectrometry, we performed comparative proteomic analyses on cells at different CIT exposures and identified proteins with CIT-dependent changes. The results were validated by testing clinical specimens with western blot analysis. We identified 26 proteins that underwent dynamic changes (characterized by continuous quantitative changes, isoelectric changes, and/or proteolytic cleavages) in our degradation model. These changes are strongly associated with the length of CIT. We demonstrate these proteins to represent universal tissue degradation indicators (TDIs) in clinical specimens. We also devised and implemented a unique degradation measure by calculating the quantitative ratio between TDIs' intact forms and their respective degradation-modified products. For the first time, we have identified protein TDIs for quantitative measurement of specimen degradation. Implementing these indicators may yield a potentially transformative platform dedicated to quality control in clinical specimen analyses.
Collapse
Affiliation(s)
- Jie Li
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Frenkel-Morgenstern M, Valencia A. Novel domain combinations in proteins encoded by chimeric transcripts. ACTA ACUST UNITED AC 2013; 28:i67-74. [PMID: 22689780 PMCID: PMC3371848 DOI: 10.1093/bioinformatics/bts216] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Motivation: Chimeric RNA transcripts are generated by different mechanisms including pre-mRNA trans-splicing, chromosomal translocations and/or gene fusions. It was shown recently that at least some of chimeric transcripts can be translated into functional chimeric proteins. Results: To gain a better understanding of the design principles underlying chimeric proteins, we have analyzed 7,424 chimeric RNAs from humans. We focused on the specific domains present in these proteins, comparing their permutations with those of known human proteins. Our method uses genomic alignments of the chimeras, identification of the gene–gene junction sites and prediction of the protein domains. We found that chimeras contain complete protein domains significantly more often than in random data sets. Specifically, we show that eight different types of domains are over-represented among all chimeras as well as in those chimeras confirmed by RNA-seq experiments. Moreover, we discovered that some chimeras potentially encode proteins with novel and unique domain combinations. Given the observed prevalence of entire protein domains in chimeras, we predict that certain putative chimeras that lack activation domains may actively compete with their parental proteins, thereby exerting dominant negative effects. More generally, the production of chimeric transcripts enables a combinatorial increase in the number of protein products available, which may disturb the function of parental genes and influence their protein–protein interaction network. Availability: our scripts are available upon request. Contact:avalencia@cnio.es Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Milana Frenkel-Morgenstern
- Structural Biology and BioComputing Program, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | | |
Collapse
|
43
|
Salcedo-Sicilia L, Granell S, Jovic M, Sicart A, Mato E, Johannes L, Balla T, Egea G. βIII spectrin regulates the structural integrity and the secretory protein transport of the Golgi complex. J Biol Chem 2012; 288:2157-66. [PMID: 23233669 DOI: 10.1074/jbc.m112.406462] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A spectrin-based cytoskeleton is associated with endomembranes, including the Golgi complex and cytoplasmic vesicles, but its role remains poorly understood. Using new generated antibodies to specific peptide sequences of the human βIII spectrin, we here show its distribution in the Golgi complex, where it is enriched in the trans-Golgi and trans-Golgi network. The use of a drug-inducible enzymatic assay that depletes the Golgi-associated pool of PI4P as well as the expression of PH domains of Golgi proteins that specifically recognize this phosphoinositide both displaced βIII spectrin from the Golgi. However, the interference with actin dynamics using actin toxins did not affect the localization of βIII spectrin to Golgi membranes. Depletion of βIII spectrin using siRNA technology and the microinjection of anti-βIII spectrin antibodies into the cytoplasm lead to the fragmentation of the Golgi. At ultrastructural level, Golgi fragments showed swollen distal Golgi cisternae and vesicular structures. Using a variety of protein transport assays, we show that the endoplasmic reticulum-to-Golgi and post-Golgi protein transports were impaired in βIII spectrin-depleted cells. However, the internalization of the Shiga toxin subunit B to the endoplasmic reticulum was unaffected. We state that βIII spectrin constitutes a major skeletal component of distal Golgi compartments, where it is necessary to maintain its structural integrity and secretory activity, and unlike actin, PI4P appears to be highly relevant for the association of βIII spectrin the Golgi complex.
Collapse
Affiliation(s)
- Laia Salcedo-Sicilia
- Department de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tian N, Leshchyns'ka I, Welch JH, Diakowski W, Yang H, Schachner M, Sytnyk V. Lipid raft-dependent endocytosis of close homolog of adhesion molecule L1 (CHL1) promotes neuritogenesis. J Biol Chem 2012; 287:44447-63. [PMID: 23144456 DOI: 10.1074/jbc.m112.394973] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify βII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between CHL1 and βII spectrin accompanies CHL1 endocytosis. Inhibition of the association of CHL1 with lipid rafts by pharmacological disruption of lipid rafts or by mutation of cysteine 1102 within the intracellular domain of CHL1 reduces endocytosis of CHL1. Endocytosis of CHL1 is also reduced by nifedipine, an inhibitor of the L-type voltage-dependent Ca(2+) channels. CHL1-dependent neurite outgrowth is reduced by inhibitors of lipid raft assembly, inhibitors of voltage-dependent Ca(2+) channels, and overexpression of CHL1 with mutated cysteine Cys-1102. Our results suggest that ligand-induced and lipid raft-dependent regulation of CHL1 adhesion via Ca(2+)-dependent remodeling of the CHL1-βII spectrin complex and CHL1 endocytosis are required for CHL1-dependent neurite outgrowth.
Collapse
Affiliation(s)
- Nan Tian
- Zentrum für Molekulare Neurobiologie, Universitätskrankenhaus Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
NSP 5a3a is a novel structural protein found to be over-expressed in certain cancer cell lines in-vitro such as Hela, Saos-2, and MCF-7 while barely detectable levels in normal body tissues except for Testis. This particular isoform has been known to interact with cyto- nuclear proteins B23, known to be involved in multi-faceted cellular processes such as cell division, apoptosis, ribosome biogenesis, and rRNA processing, as well as with hnRNP-L, known to be involved with RNA metabolism and rRNA processing. A previous preliminary investigation of NSP 5a3a as a potential target in Head and Neck Carcinoma revealed a novel p73 dependent mechanism through which NSP 5a3a induced apoptosis in Head and Neck cell lines when over-expressed in-vitro. Our present investigation further elucidated a novel dual axis signaling point by which NSP 5a3a induces apoptosis in Head and Neck cell line HN30 through p73-DAXX and TRAF2-TRADD. Interestingly, this novel mechanism appears independent of canonical caspases involved in the intrinsic mitochondrial pathway as well as those in the death receptor pathway thru TRAF2 and TRADD.
Collapse
|
46
|
Lee WL, Shyur LF. Deoxyelephantopin impedes mammary adenocarcinoma cell motility by inhibiting calpain-mediated adhesion dynamics and inducing reactive oxygen species and aggresome formation. Free Radic Biol Med 2012; 52:1423-36. [PMID: 22342517 DOI: 10.1016/j.freeradbiomed.2012.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 01/13/2012] [Accepted: 01/21/2012] [Indexed: 01/28/2023]
Abstract
We previously showed that deoxyelephantopin (DET), a plant sesquiterpene lactone, exhibits more profound suppression than paclitaxel (PTX) of lung metastasis of mammary adenocarcinoma TS/A cells in mice. Proteomics studies suggest that DET affects actin cytoskeletal protein networks and downregulates calpain-mediated proteolysis of several actin-associated proteins, whereas PTX mainly interferes with microtubule proteins. Here, DET was observed to significantly deregulate adhesion formation in TS/A cells, probably through inhibition of m-calpain activity. Epithelial growth factor (EGF)-mediated activation of Rho GTPase Rac1 and formation of lamellipodia in TS/A cells were remarkably suppressed by DET treatment. Further, DET impaired vesicular trafficking of EGF and induced protein carbonylation and formation of centrosomal aggregates in TS/A cells. DET-induced reactive oxygen species were observed to be the upstream stimulus for the formation of centrosomal ubiquitinated protein aggregates that might subsequently restrict cancer cell motility. PTX, however, caused dramatic morphological changes, interfered with microtubule networking, and moderately inhibited calpain-mediated cytoskeletal and focal adhesion protein cleavage in TS/A cells. This study provides novel mechanistic insights into the pharmacological action of DET against metastatic mammary cell migration and suggests that modulation of oxidative stress might be a potential strategy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Wai-Leng Lee
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Taiwan, Republic of China
| | | |
Collapse
|
47
|
Tjota M, Lee SK, Wu J, Williams JA, Khanna MR, Thomas GH. Annexin B9 binds to β(H)-spectrin and is required for multivesicular body function in Drosophila. J Cell Sci 2012; 124:2914-26. [PMID: 21878499 DOI: 10.1242/jcs.078667] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role of the cytoskeleton in protein trafficking is still being defined. Here, we describe a relationship between the small Ca(2+)-dependent membrane-binding protein Annexin B9 (AnxB9), apical β(Heavy)-spectrin (β(H)) and the multivesicular body (MVB) in Drosophila. AnxB9 binds to a subset of β(H) spliceoforms, and loss of AnxB9 results in an increase in basolateral β(H) and its appearance on cytoplasmic vesicles that overlap with the MVB markers Hrs, Vps16 and EPS15. Similar colocalizations are seen when β(H)-positive endosomes are generated either by upregulation of β(H) in pak mutants or through the expression of the dominant-negative version of β(H). In common with other mutations disrupting the MVB, we also show that there is an accumulation of ubiquitylated proteins and elevated EGFR signaling in the absence of AnxB9 or β(H). Loss of AnxB9 or β(H) function also causes the redistribution of the DE-Cadherin (encoded by shotgun) to endosomal vesicles, suggesting a rationale for the previously documented destabilization of the zonula adherens in karst (which encodes β(H)) mutants. Reduction of AnxB9 results in degradation of the apical-lateral boundary and the appearance of the basolateral proteins Coracle and Dlg on internal vesicles adjacent to β(H). These results indicate that AnxB9 and β(H) are intimately involved in endosomal trafficking to the MVB and play a role in maintaining high-fidelity segregation of the apical and lateral domains.
Collapse
Affiliation(s)
- Monika Tjota
- Department of Biology, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
48
|
Hollomon DW. Do we have the tools to manage resistance in the future? PEST MANAGEMENT SCIENCE 2012; 68:149-154. [PMID: 22223198 DOI: 10.1002/ps.2291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Pesticide resistance is a major factor affecting world food and fibre production, but that has been contained so far by the availability of diverse modes of action. Overcoming resistance by switching to a new mode of action is a concept easily grasped by growers but threatened by losses through resistance and new registration requirements. Opportunities for innovation and development of a diversity of novel modes of action exist through harnessing recent advances, fundamental to all eukaryotes and largely funded for medical rather than agricultural objectives, in understanding cell biology and development. The cystoskeleton, cell wall synthesis, signal transduction and RNAi are discussed as examples where new targets are now exposed. However, new modes of action will be delivered not only by sprayer or seed treatment but also through transgenic crops, although these still need to be transferred from experiment to practice. Improvements in modelling protein structures and target-site changes, supplemented by rapid diagnostics to detect resistance early, will improve resistance risk management and integrate chemical, biopesticide, transgenic and conventional breeding around the concept of diversity in modes of action. However, before agronomy can translate this into practical antiresistance strategies, there is a need to direct more resources to the biochemistry and cell biology of pests, diseases and weeds to translate these new discoveries into key tools needed to manage resistance in the future.
Collapse
|
49
|
Stankewich MC, Cianci CD, Stabach PR, Ji L, Nath A, Morrow JS. Cell organization, growth, and neural and cardiac development require αII-spectrin. J Cell Sci 2011; 124:3956-66. [PMID: 22159418 DOI: 10.1242/jcs.080374] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spectrin α2 (αII-spectrin) is a scaffolding protein encoded by the Spna2 gene and constitutively expressed in most tissues. Exon trapping of Spna2 in C57BL/6 mice allowed targeted disruption of αII-spectrin. Heterozygous animals displayed no phenotype by 2 years of age. Homozygous deletion of Spna2 was embryonic lethal at embryonic day 12.5 to 16.5 with retarded intrauterine growth, and craniofacial, neural tube and cardiac anomalies. The loss of αII-spectrin did not alter the levels of αI- or βI-spectrin, or the transcriptional levels of any β-spectrin or any ankyrin, but secondarily reduced by about 80% the steady state protein levels of βII- and βIII-spectrin. Residual βII- and βIII-spectrin and ankyrins B and G were concentrated at the apical membrane of bronchial and renal epithelial cells, without impacting cell morphology. Neuroepithelial cells in the developing brain were more concentrated and more proliferative in the ventricular zone than normal; axon formation was also impaired. Embryonic fibroblasts cultured on fibronectin from E14.5 (Spna2(-/-)) animals displayed impaired growth and spreading, a spiky morphology, and sparse lamellipodia without cortical actin. These data indicate that the spectrin-ankyrin scaffold is crucial in vertebrates for cell spreading, tissue patterning and organ development, particularly in the developing brain and heart, but is not required for cell viability.
Collapse
Affiliation(s)
- Michael C Stankewich
- Department of Pathology, Yale University School of Medicine, 310 Cedar St. BML 150, New Haven, CT 06520, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Zhao KN, Masci PP, Lavin MF. Disruption of spectrin-like cytoskeleton in differentiating keratinocytes by PKCδ activation is associated with phosphorylated adducin. PLoS One 2011; 6:e28267. [PMID: 22163289 PMCID: PMC3233558 DOI: 10.1371/journal.pone.0028267] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 11/04/2011] [Indexed: 02/01/2023] Open
Abstract
Spectrin is a central component of the cytoskeletal protein network in a variety of erythroid and non-erythroid cells. In keratinocytes, this protein has been shown to be pericytoplasmic and plasma membrane associated, but its characteristics and function have not been established in these cells. Here we demonstrate that spectrin increases dramatically in amount and is assembled into the cytoskeleton during differentiation in mouse and human keratinocytes. The spectrin-like cytoskeleton was predominantly organized in the granular and cornified layers of the epidermis and disrupted by actin filament inhibitors, but not by anti-mitotic drugs. When the cytoskeleton was disrupted PKCδ was activated by phosphorylation on Thr505. Specific inhibition of PKCδ(Thr505) activation with rottlerin prevented disruption of the spectrin-like cytoskeleton and the associated morphological changes that accompany differentiation. Rottlerin also inhibited specific phosphorylation of the PKCδ substrate adducin, a cytoskeletal protein. Furthermore, knock-down of endogenous adducin affected not only expression of adducin, but also spectrin and PKCδ, and severely disrupted organization of the spectrin-like cytoskeleton and cytoskeletal distribution of both adducin and PKCδ. These results demonstrate that organization of a spectrin-like cytoskeleton is associated with keratinocytes differentiation, and disruption of this cytoskeleton is mediated by either PKCδ(Thr505) phosphorylation associated with phosphorylated adducin or due to reduction of endogenous adducin, which normally connects and stabilizes the spectrin-actin complex.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|