1
|
Haggag HS, Aboukhatwa SM, Nafie MS, Paul A, Sharafeldin N, Oliver AW, El-Hamamsy MH. Design and synthesis of quinazolin-4-one derivatives as potential anticancer agents and investigation of their interaction with RecQ helicases. Bioorg Chem 2024; 144:107086. [PMID: 38219478 DOI: 10.1016/j.bioorg.2023.107086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The upregulation of RecQ helicases has been associated with cancer cell survival and resistance to chemotherapy, making them appealing targets for therapeutic intervention. In this study, twenty-nine novel quinazolinone derivatives were designed and synthesized. The anti-proliferative activity of all compounds was evaluated against 60 cancer cell lines at the National Cancer Institute Developmental Therapeutic Program, with six compounds (11f, 11g, 11k, 11n, 11p, and 11q) being promoted to a five-dose screen. Compound 11g demonstrated high cytotoxic activity against all examined cell lines. The compounds were further assayed for Bloom syndrome (BLM) helicase inhibition, where 11g, 11q, and 11u showed moderate activity. These compounds were counter-screened against WRN and RECQ1 helicases, where 11g moderately inhibited both enzymes. An ATP competition assay confirmed that the compounds bound to the ATP site of RecQ helicases, and molecular docking simulations were used to study the binding mode within the active site of BLM, WRN, and RECQ1 helicases. Compound 11g induced apoptosis in both HCT-116 and MDA-MB-231 cell lines, but also caused an G2/M phase cell cycle arrest in HCT-116 cells. This data revealed the potential of 11g as a modulator of cell cycle dynamics and supports its interaction with RecQ helicases. In addition, compound 11g displayed non-significant toxicity against FCH normal colon cells at doses up to 100 µM, which confirming its high safety margin and selectivity on cancer cells. Overall, these findings suggest compound 11g as a potential pan RecQ helicase inhibitor with high anticancer potency and a favorable safety margin and selectivity.
Collapse
Affiliation(s)
- Hanan S Haggag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Shaimaa M Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago 60608, IL, USA
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, (P. O. Box 27272), Sharjah, United Arab Emirates; Chemistry Department (Biochemistry Program), Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Anju Paul
- Genome Damage and Stability Centre, Science Park Road, University of Sussex Falmer, Brighton BN1 9RQ, UK
| | - Nabaweya Sharafeldin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Antony W Oliver
- Genome Damage and Stability Centre, Science Park Road, University of Sussex Falmer, Brighton BN1 9RQ, UK
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
2
|
Kumar A, Rajaram H. Insights into the presence of multiple RecQ helicases in the ancient cyanobacterium, Nostoc sp. strain PCC7120: bioinformatics and expression analysis approach. Mol Genet Genomics 2023; 298:37-47. [PMID: 36264383 DOI: 10.1007/s00438-022-01963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/09/2022] [Indexed: 01/11/2023]
Abstract
Owing to their crucial role in genome maintenance, RecQ helicases are ubiquitous and present across organisms. Though the multiplicity of RecQ helicases is well known in higher organisms, it is rare among bacteria. The ancient cyanobacterium Nostoc sp. strain PCC7120 was found to have three annotated RecQ helicases. This study aims at understanding its structural differences and evolution through bioinformatics approach and functionality through expression analysis studies. Nostoc RecQ helicases were found to be transcriptionally regulated by LexA and DNA damage inducing stresses. Bioinformatic analysis revealed that all three RecQ helicases of Nostoc possess helicases_C and Zn+2-binding domains. Two of the helicases (AnRecQ and AnRecQ2) lacked the complete RQC and HRDC domains, and AnRecQ2 had an additional Phosphoribosyl transferase domain (Pribosyltran), also seen in RecQ-like helicase (RqlH) protein of Mycobacterium smegmatis. AnRecQ1, which was similar to most bacterial RecQ helicases, differed in having a long C-terminal tail. STRING analysis revealed that the proteins also differed in their predicted protein interactome. Phylogenetic analysis suggested that the multiple recQ genes may have been acquired through duplication and acquisition of additional domains from the smallest of the RecQ helicases (AnRecQ) to cater multiple functions required to deal with the harsh environmental conditions. In course of evolution, however, the multiplicity was lost with the modern-day bacteria and lower eukaryotes which retained fewer RecQ helicases, while further duplication of the acquired RECQ occurred in higher animals and plants to deal with cellular complexity.
Collapse
Affiliation(s)
- Arvind Kumar
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Trombay, 400085, India
| | - Hema Rajaram
- Cyanobacterial Stress Biology and Biotechnology Section, Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Trombay, 400085, India. .,Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
3
|
Checkpoint functions of RecQ helicases at perturbed DNA replication fork. Curr Genet 2021; 67:369-382. [PMID: 33427950 DOI: 10.1007/s00294-020-01147-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 01/17/2023]
Abstract
DNA replication checkpoint is a cell signaling pathway that is activated in response to perturbed replication. Although it is crucial for maintaining genomic integrity and cell survival, the exact mechanism of the checkpoint signaling remains to be understood. Emerging evidence has shown that RecQ helicases, a large family of helicases that are conserved from bacteria to yeasts and humans, contribute to the replication checkpoint as sensors, adaptors, or regulation targets. Here, we highlight the multiple functions of RecQ helicases in the replication checkpoint in four model organisms and present additional evidence that fission yeast RecQ helicase Rqh1 may participate in the replication checkpoint as a sensor.
Collapse
|
4
|
Futami K, Furuichi Y. RECQL1 and WRN DNA repair helicases: potential therapeutic targets and proliferative markers against cancers. Front Genet 2015; 5:441. [PMID: 25620975 PMCID: PMC4288340 DOI: 10.3389/fgene.2014.00441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
RECQL1 and WRN helicases in the human RecQ helicase family participate in maintaining genome stability, DNA repair, replication, and recombination pathways in the cell cycle. They are expressed highly in rapidly proliferating cells and tumor cells, suggesting that they have important roles in the replication of a genome. Although mice deficient in these helicases are indistinguishable from wild-type mice, their embryonic fibroblasts are sensitive to DNA damage. In tumor cells, silencing the expression of RECQL1 or WRN helicase by RNA interference induces mitotic catastrophe that eventually kills tumor cells at the mitosis stage of the cell cycle. By contrast, the same gene silencing by cognate small RNA (siRNA) never kills normal cells, although cell growth is slightly delayed. These findings indicate that RECQL1 and WRN helicases are ideal molecular targets for cancer therapy. The molecular mechanisms underlying these events has been studied extensively, which may help development of anticancer drugs free from adverse effects by targeting DNA repair helicases RECQL1 and WRN. As expected, the anticancer activity of conventional genotoxic drugs is significantly augmented by combined treatment with RECQL1- or WRN-siRNAs that prevents DNA repair in cancer cells. In this review, we focus on studies that clarified the mechanisms that lead to the specific killing of cancer cells and introduce efforts to develop anticancer RecQ-siRNA drugs free from adverse effects.
Collapse
|
5
|
Malhotra S, Sowdhamini R. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. BMC Bioinformatics 2012; 13:165. [PMID: 22800292 PMCID: PMC3472317 DOI: 10.1186/1471-2105-13-165] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 03/26/2012] [Indexed: 01/28/2023] Open
Abstract
Background Precise DNA-protein interactions play most important and vital role in maintaining the normal physiological functioning of the cell, as it controls many high fidelity cellular processes. Detailed study of the nature of these interactions has paved the way for understanding the mechanisms behind the biological processes in which they are involved. Earlier in 2000, a systematic classification of DNA-protein complexes based on the structural analysis of the proteins was proposed at two tiers, namely groups and families. With the advancement in the number and resolution of structures of DNA-protein complexes deposited in the Protein Data Bank, it is important to revisit the existing classification. Results On the basis of the sequence analysis of DNA binding proteins, we have built upon the protein centric, two-tier classification of DNA-protein complexes by adding new members to existing families and making new families and groups. While classifying the new complexes, we also realised the emergence of new groups and families. The new group observed was where β-propeller was seen to interact with DNA. There were 34 SCOP folds which were observed to be present in the complexes of both old and new classifications, whereas 28 folds are present exclusively in the new complexes. Some new families noticed were NarL transcription factor, Z-α DNA binding proteins, Forkhead transcription factor, AP2 protein, Methyl CpG binding protein etc. Conclusions Our results suggest that with the increasing number of availability of DNA-protein complexes in Protein Data Bank, the number of families in the classification increased by approximately three fold. The folds present exclusively in newly classified complexes is suggestive of inclusion of proteins with new function in new classification, the most populated of which are the folds responsible for DNA damage repair. The proposed re-visited classification can be used to perform genome-wide surveys in the genomes of interest for the presence of DNA-binding proteins. Further analysis of these complexes can aid in developing algorithms for identifying DNA-binding proteins and their family members from mere sequence information.
Collapse
Affiliation(s)
- Sony Malhotra
- National Centre for Biological Sciences, UAS-GKVK Campus, Bangalore 560 065, India
| | | |
Collapse
|
6
|
Bernstein KA, Shor E, Sunjevaric I, Fumasoni M, Burgess RC, Foiani M, Branzei D, Rothstein R. Sgs1 function in the repair of DNA replication intermediates is separable from its role in homologous recombinational repair. EMBO J 2009; 28:915-25. [PMID: 19214189 DOI: 10.1038/emboj.2009.28] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 01/13/2009] [Indexed: 01/04/2023] Open
Abstract
Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund-Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation-of-function alleles of SGS1 that suppress the slow growth of top3Delta and rmi1Delta cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild-type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1-D664Delta, unlike sgs1Delta, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication-associated X-shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1-D664Delta allele exhibits increased spontaneous RPA foci, suggesting that the persistent X-structures may contain single-stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.
Collapse
Affiliation(s)
- Kara A Bernstein
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kwan KY, Greenwald RJ, Mohanty S, Sharpe AH, Shaw AC, Wang JC. Development of autoimmunity in mice lacking DNA topoisomerase 3beta. Proc Natl Acad Sci U S A 2007; 104:9242-7. [PMID: 17517607 PMCID: PMC1890479 DOI: 10.1073/pnas.0703587104] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mice lacking DNA topoisomerase 3beta are predisposed to a shortened lifespan, infertility, and lesions in multiple organs resulting from inflammatory responses. Examination of the immune system of 6- and 52-week-old top3beta(-/-) mice revealed no significant aberrations in their central and peripheral tolerance or in T lymphocyte activation. However, the older but not the younger cohort shows a high incidence of serum autoantibodies relative to their TOP3beta(+/+) age-mates. The mutant mice also show an increase in numerical aberrations of chromosomes in splenocytes and bone marrow cells, as well as an increase in apoptotic cells in the thymus. Thus, it appears plausible that the inflammatory lesions in top3beta(-/-) mice are caused by the development of autoimmunity as they age: Chromosomal abnormalities in top3beta(-/-) mice might lead to a persistent increase in apoptotic cells, which might in turn lead to the progression of autoimmunity.
Collapse
Affiliation(s)
- Kelvin Y. Kwan
- *Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
| | - Rebecca J. Greenwald
- Immunology Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Subhasis Mohanty
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520
| | - Arlene H. Sharpe
- Immunology Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Albert C. Shaw
- Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520
- To whom correspondence may be addressed. E-mail: or
| | - James C. Wang
- *Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
8
|
Bordi L, Gioia C, Lalle E, Piselli P, Poccia F, Capobianchi MR, Amendola A. Differential Expression of Werner and Bloom Syndrome Genes in the Peripheral Blood of HIV-1 Infected Patients. Hum Immunol 2007; 68:91-9. [PMID: 17321898 DOI: 10.1016/j.humimm.2006.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 11/21/2006] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV)-induced immunodeficiency and immune-system aging share some analogies. Since Werner (WRN) and Bloom (BLM) helicases are crucial in cell repair and aging, their peripheral blood mononuclear cells (PBMC) mRNA levels were compared in HIV-1 infected patients and in normal donors. The mean levels of WRN mRNA were 3.7-fold higher in PBMCs from HIV-1 infected individuals in comparison to healthy donors, whereas BLM mRNA mean levels were slightly higher, although not significantly. WRN increase was positively correlated to CD4 and CD8 T-cell numbers, and also the percentage of naive T lymphocytes, and was observed also in T-cell subsets. Interestingly, a general trend toward increased WRN mRNA levels in individuals with lower viral load was observed, without association with patient age, time of seroconversion, and on/off antiretroviral therapy regimen. On the whole, this study shows that WRN and BLM are differentially modulated in HIV infection, as WRN--but not BLM--is significantly increased, suggesting that mechanisms different from defect or loss of helicase function, observed in WRN and BLM syndromes, may be at the basis of T-cell aging in HIV infection.
Collapse
Affiliation(s)
- Licia Bordi
- Laboratory of Virology, National Institute for Infectious Diseases, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Marple T, Kim TM, Hasty P. Embryonic stem cells deficient for Brca2 or Blm exhibit divergent genotoxic profiles that support opposing activities during homologous recombination. Mutat Res 2006; 602:110-20. [PMID: 16997331 DOI: 10.1016/j.mrfmmm.2006.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/11/2006] [Accepted: 08/12/2006] [Indexed: 11/21/2022]
Abstract
The breast cancer susceptibility protein, Brca2 and the RecQ helicase, Blm (Bloom syndrome mutated) are tumor suppressors that maintain genome integrity, at least in part, through homologous recombination (HR). Brca2 facilitates HR by interacting with Rad51 in multiple regions, the BRC motifs encoded by exon 11 and a single domain encoded by exon 27; however, the exact importance of these regions is not fully understood. Blm also interacts with Rad51 and appears to suppress HR in most circumstances; however, its yeast homologue Sgs1 facilitates HR in response to some genotoxins. To better understand the biological importance of these two proteins, we performed a genotoxic screen on mouse embryonic stem (ES) cells impaired for either Brca2 or Blm to establish their genotoxic profiles (a cellular dose-response to a wide range of agents). This is the first side-by-side comparison of these two proteins in an identical genetic background. We compared cells deleted for Brca2 exon 27 to cells reduced for Blm expression and find that the Brca2- and Blm-impaired cells exhibit genotoxic profiles that reflect opposing activities during HR. Cells deleted for Brca2 exon 27 are hypersensitive to gamma-radiation, streptonigrin, mitomycin C and camptothecin and mildly resistant to ICRF-193 which is similar to HR defective cells null for Rad54. By contrast, Blm-impaired cells are hypersensitive to ICRF-193, mildly resistant to camptothecin and mitomycin C and more strongly resistant to hydroxyurea. These divergent profiles support the notion that Brca2 and Blm perform opposing functions during HR in mouse ES cells.
Collapse
Affiliation(s)
- Teresa Marple
- The Department of Molecular Medicine and Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, 15355 Lambda Drive San Antonio, TX 78245-3207, USA
| | | | | |
Collapse
|
10
|
Amor-Guéret M. Bloom syndrome, genomic instability and cancer: the SOS-like hypothesis. Cancer Lett 2006; 236:1-12. [PMID: 15950375 DOI: 10.1016/j.canlet.2005.04.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/12/2005] [Indexed: 12/15/2022]
Abstract
Bloom syndrome (BS) displays one of the strongest known correlations between chromosomal instability and an increased risk of malignancy at an early age. The prevention of genomic instability and cancer depends on a complex network of pathways induced in response to DNA damage and stalled replication forks, including cell-cycle checkpoints, DNA repair, and apoptosis. Several studies have demonstrated that BLM is involved in the cellular response to DNA damage and stalled replication forks. BLM interacts physically and functionally with several proteins involved in the maintenance of genome integrity and BLM is redistributed and/or phosphorylated in response to several genotoxic stresses. The data concerning the relationship between BLM and these cellular pathways are summarized and the role of BLM in the rescue of arrested replication forks is discussed. Moreover, I speculate that BLM deficiency is lethal, and that BLM-deficient cells escaping apoptotic death do so by constitutively inducing a bacterial SOS-like response including the induction of alternative replication pathway(s) dependent on recombination, contributing to the mutator and hyper-Rec phenotypes characteristic of BS cells. This mechanism may be dependent on the RAD51 gene family, and involved in carcinogenesis in the general population.
Collapse
Affiliation(s)
- Mounira Amor-Guéret
- UMR 2027 CNRS, Institut Curie, Group Instabilité Génétique et Cancérogenèse, Bâtiment 110, Centre Universitaire, 91405 Orsay Cedex, France.
| |
Collapse
|
11
|
Abstract
Cell cycle checkpoints are essential for maintaining genomic integrity. Human topoisomerase II binding protein 1 (TopBP1) shares sequence similarity with budding yeast Dpb11, fission yeast Rad4/Cut5, and Xenopus Cut5, all of which are required for DNA replication and cell cycle checkpoints. Indeed, we have shown that human TopBP1 participates in the activation of replication checkpoint and DNA damage checkpoints, following hydroxyurea treatment and ionizing radiation. In this study, we address the physiological function of TopBP1 in S phase by using small interfering RNA. In the absence of exogenous DNA damage, TopBP1 is recruited to replicating chromatin. However, TopBP1 does not appear to be essential for DNA replication. TopBP1-deficient cells have increased H2AX phosphorylation and ATM-Chk 2 activation, suggesting the accumulation of DNA double-strand breaks in the absence of TopBP1. This leads to formation of gaps and breaks at fragile sites, 4N accumulation, and aberrant cell division. We propose that the cellular function of TopBP1 is to monitor ongoing DNA replication. By ensuring proper DNA replication, TopBP1 plays a critical role in the maintenance of genomic stability during normal S phase as well as following genotoxic stress.
Collapse
Affiliation(s)
- Ja-Eun Kim
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
12
|
Laun P, Ramachandran L, Jarolim S, Herker E, Liang P, Wang J, Weinberger M, Burhans DT, Suter B, Madeo F, Burhans WC, Breitenbach M. A comparison of the aging and apoptotic transcriptome of Saccharomyces cerevisiae. FEMS Yeast Res 2005; 5:1261-72. [PMID: 16168721 DOI: 10.1016/j.femsyr.2005.07.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/16/2005] [Accepted: 07/22/2005] [Indexed: 11/24/2022] Open
Abstract
In this paper, we present the results of global transcript analysis by the microarray technique of senescent and apoptotic yeast cells. We compared young daughter and old mother cells isolated by elutriation centrifugation, and non-apoptotic and apoptotic cells induced either by a temperature shift of the cdc48(S565G) temperature-sensitive mutant or of the orc2-1 temperature-sensitive mutant. The majority of all genes found to be differentially regulated in these three physiological situations was upregulated, indicating that a cellular death process was initiated rather than an unspecific shut-down of gene expression due to immediate killing. The functional classes of genes upregulated in all three conditions were largely the same, although individual genes were in many cases not identical. The largest group of genes involved were nuclear genes coding for mitochondrial components or functions, which is understandable given the fact that apoptosis can be triggered by mitochondrially generated oxygen radicals and that mitochondria play an important role in the execution of apoptosis. Other functional classes consisted of genes involved in DNA damage response, in cell cycle regulation and checkpoints, in DNA repair, and in membrane lipid and cell wall synthesis. These functional classes represent the response of the cell to the known cellular insults, which occur during aging and apoptosis. As we have shown previously, final-stage senescent yeast mother cells (of the wild-type) are apoptotic.
Collapse
Affiliation(s)
- Peter Laun
- Department of Cell Biology, Salzburg University, Hellbrunnerstr. 34, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zinkel SS, Hurov KE, Ong C, Abtahi FM, Gross A, Korsmeyer SJ. A Role for Proapoptotic BID in the DNA-Damage Response. Cell 2005; 122:579-91. [PMID: 16122425 DOI: 10.1016/j.cell.2005.06.022] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 05/12/2005] [Accepted: 06/13/2005] [Indexed: 01/26/2023]
Abstract
The BCL-2 family of apoptotic proteins encompasses key regulators proximal to irreversible cell damage. The BH3-only members of this family act as sentinels, interconnecting specific death signals to the core apoptotic pathway. Our previous data demonstrated a role for BH3-only BID in maintaining myeloid homeostasis and suppressing leukemogenesis. In the absence of Bid, mice accumulate chromosomal aberrations and develop a fatal myeloproliferative disorder resembling chronic myelomonocytic leukemia. Here, we describe a role for BID in preserving genomic integrity that places BID at an early point in the path to determine the fate of a cell. We show that BID plays an unexpected role in the intra-S phase checkpoint downstream of DNA damage distinct from its proapoptotic function. We further demonstrate that this role is mediated through BID phosphorylation by the DNA-damage kinase ATM. These results establish a link between proapoptotic Bid and the DNA-damage response.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Ataxia Telangiectasia Mutated Proteins
- BH3 Interacting Domain Death Agonist Protein
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Transformed
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Damage/drug effects
- DNA Damage/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Genes, cdc/drug effects
- Genes, cdc/physiology
- Genomic Instability/genetics
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Male
- Mice
- Mice, Knockout
- Mutagens/pharmacology
- Myeloid Progenitor Cells/metabolism
- NIH 3T3 Cells
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Structure, Tertiary/genetics
- S Phase/genetics
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Sandra S Zinkel
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
RecQ family helicases play important roles in coordinating genome maintenance pathways in living cells. In the absence of functional RecQ proteins, cells exhibit a variety of phenotypes, including increased mitotic recombination, elevated chromosome missegregation, hypersensitivity to DNA-damaging agents, and defects in meiosis. Mutations in three of the five human RecQ family members give rise to genetic disorders associated with a predisposition to cancer and premature aging, highlighting the importance of RecQ proteins and their cellular activities for human health. Current evidence suggests that RecQ proteins act at multiple steps in DNA replication, including stabilization of replication forks and removal of DNA recombination intermediates, in order to maintain genome integrity. The cellular basis of RecQ helicase function may be explained through interactions with multiple components of the DNA replication and recombination machinery. This review focuses on biochemical and structural aspects of the RecQ helicases and how these features relate to their known cellular function, specifically in preventing excessive recombination.
Collapse
Affiliation(s)
- Richard J Bennett
- Department of Microbiology and Immunology, University of California, San Francisco, California, USA
| | | |
Collapse
|
15
|
Bordi L, Amendola A, Ciccosanti F, Abbate I, Camilloni G, Capobianchi MR. Expression of Werner and Bloom syndrome genes is differentially regulated by in vitro HIV-1 infection of peripheral blood mononuclear cells. Clin Exp Immunol 2004; 138:251-8. [PMID: 15498034 PMCID: PMC1809202 DOI: 10.1111/j.1365-2249.2004.02622.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In HIV infection, continuous immune activation leads to accelerated ageing of the adaptive immune system, similar to that observed in elderly people. We investigated the expression of WRN and BLM (genes involved in disorders characterized by premature ageing, genomic instability and cancer predisposition) in peripheral blood mononuclear cells (PBMC) activated in vitro with phytohaemagglutinin (PHA) and infected with different HIV-1 strains. The steady state levels of mRNA were analysed by reverse transcription-polymerase chain reaction (RT-PCR), and protein expression was assayed using immunocytochemistry and Western blot techniques. In uninfected PBMC, PHA stimulation induced an increase in BLM mRNA and protein expression, while WRN expression remained virtually unchanged. When PBMC were infected in vitro with a lymphotropic HIV-1 strain, the level of BLM mRNA showed a peak at 24 h of infection, followed by a decline to uninfected culture levels. A similar result failed to be seen using an R5-tropic HIV-1 strain. In accordance with mRNA expression, in HIV-infected cultures PBMC were stained more frequently and more intensely by a BLM-specific antibody as compared to uninfected cultures, staining peaking at 24. Conversely, WRN expression was not modulated by HIV-1. The proportion of cells showing BLM up-regulation, established by immunocytochemical staining, was much greater than the proportion of productively infected PBMC, as established by proviral DNA measurement. This result indicates that BLM up-regulation is probably a result of an indirect bystander cell effect. Activation of the BLM gene in infected PBMC suggests that premature ageing could be a further immunopathogenetic mechanism involved in HIV-induced immunodeficiency, and points to a possible new candidate target for innovative therapeutic intervention.
Collapse
Affiliation(s)
- L Bordi
- National Institute for Infectious Diseases 'L. Spallanzani', Università di Roma 'La Sapienza', Istitito di Biologia e Patologia Molecolare CNR, Rome, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Schmidt KH, Kolodner RD. Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol Cell Biol 2004; 24:3213-26. [PMID: 15060145 PMCID: PMC381612 DOI: 10.1128/mcb.24.8.3213-3226.2004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rrm3 DNA helicase of Saccharomyces cerevisiae interacts with proliferating cell nuclear antigen and is required for replication fork progression through ribosomal DNA repeats and subtelomeric and telomeric DNA. Here, we show that rrm3 srs2 and rrm3 sgs1 mutants, in which two different DNA helicases have been inactivated, exhibit a severe growth defect and undergo frequent cell death. Cells lacking Rrm3 and Srs2 arrest in the G(2)/M phase of the cell cycle with 2N DNA content and frequently contain only a single nucleus. The phenotypes of rrm3 srs2 and rrm3 sgs1 mutants were suppressed by disrupting early steps of homologous recombination. These observations identify Rrm3 as a new member of a network of pathways, involving Sgs1 and Srs2 helicases and Mus81 endonuclease, suggested to act during repair of stalled replication forks.
Collapse
Affiliation(s)
- Kristina H Schmidt
- Ludwig Institute for Cancer Research, University of California-San Diego School of Medicine, La Jolla, California 92093, USA
| | | |
Collapse
|
17
|
Rassool FV, North PS, Mufti GJ, Hickson ID. Constitutive DNA damage is linked to DNA replication abnormalities in Bloom's syndrome cells. Oncogene 2003; 22:8749-57. [PMID: 14647470 DOI: 10.1038/sj.onc.1206970] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bloom's syndrome (BS) is an autosomal recessive disorder associated with an elevated incidence of cancers. The gene mutated in BS, BLM, encodes a RecQ helicase family member. BS cells exhibit genomic instability, including excessive homologous recombination and chromosomal aberrations. We reported previously that BS cells also demonstrate increased error-prone nonhomologous endjoining, which could contribute to genomic instability in these cells. Here, we show that BS cells display an abnormality in the timing of replication of both early-replicating genes and late-replicating loci such as chromosomal fragile sites. This delayed replication is associated with a constitutively increased frequency of sites of DNA damage and repair, as determined by the presence of DNA repair factors such as RAD51 and Ku86. In addition, another RecQ family helicase, WRN, also localizes to these repair sites. The presence of these repair sites correlates with the temporal appearance of cyclin B1 expression, indicative of the cells having progressed beyond mid-S phase in the cell division cycle. Critically, these defects in BS cells are the direct result of loss of BLM function, because BS cells phenotypically 'reverted' following transfection with the BLM cDNA no longer show such defects. Thus, our data indicate that constitutive DNA damage is coupled to delayed DNA replication in BS cells.
Collapse
Affiliation(s)
- Feyruz V Rassool
- Department of Haematological Medicine, The Rayne Institute, Guy's, King's and Thomas' School of Medicine, 123 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | |
Collapse
|
18
|
Dou SX, Wang PY, Xu HQ, Xi XG. The DNA binding properties of the Escherichia coli RecQ helicase. J Biol Chem 2003; 279:6354-63. [PMID: 14665634 DOI: 10.1074/jbc.m311272200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecQ helicase family is highly conserved from bacteria to men and plays a conserved role in the preservation of genome integrity. Its deficiency in human cells leads to a marked genomic instability that is associated with premature aging and cancer. To determine the thermodynamic parameters for the interaction of Escherichia coli RecQ helicase with DNA, equilibrium binding studies have been performed using the thermodynamic rigorous fluorescence titration technique. Steady-state fluorescence anisotropy measurements of fluorescein-labeled oligonucleotides revealed that RecQ helicase bound to DNA with an apparent binding stoichiometry of 1 protein monomer/10 nucleotides. This stoichiometry was not altered in the presence of AMPPNP (adenosine 5'-(beta,gamma-imido) triphosphate) or ADP. Analyses of RecQ helicase interactions with oligonucleotides of different lengths over a wide range of pH, NaCl, and nucleic acid concentrations indicate that the RecQ helicase has a single strong DNA binding site with an association constant at 25 degrees C of K=6.7 +/- 0.95 x 10(6) M(-1) and a cooperativity parameter of omega=25.5 +/- 1.2. Both single-stranded DNA and double-stranded DNA bind competitively to the same site. The intrinsic affinities are salt-dependent, and the formation of DNA-helicase complex is accompanied by a net release of 3-4 ions. Allosteric effects of nucleotide cofactors on RecQ binding to DNA were observed only for single-stranded DNA in the presence of 1.5 mM AMPPNP, whereas both AMPPNP and ADP had no detectable effect on double-stranded DNA binding over a large range of nucleotide cofactor concentrations.
Collapse
Affiliation(s)
- Shuo-Xing Dou
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
19
|
Jeong YS, Kang YL, Lim KH, Lee MH, Lee J, Koo HS. Deficiency of Caenorhabditis elegans RecQ5 homologue reduces life span and increases sensitivity to ionizing radiation. DNA Repair (Amst) 2003; 2:1309-19. [PMID: 14642561 DOI: 10.1016/j.dnarep.2003.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gene expression and RNA interference phenotypes were investigated for a Caenorhabditis elegans homologue (Ce-RCQ-5) of human RecQ5 protein. Expression of the mRNA was observed by in situ hybridization from earliest embryogenesis and gradually decreased during late embryogenesis. Ce-RCQ-5 was immuno-localized in the nuclei of embryos, germ cells, and oocytes and also in the nuclei of various somatic cells of larvae and adults. Despite ubiquitous expression in postembryonic cells, RCQ-5 protein expression was highest in intestinal cells, which was confirmed by tagging the gene expression with green fluorescence protein. When endogenous Ce-rcq-5 gene expression was inhibited by RNA interference, no clear phenotypes were observed during development. However, C. elegans life span was reduced by 37% due to RNA interference of rcq-5 gene, suggesting its possible role in maintenance of genomic stability, as has been ascribed to other RecQ family DNA helicases. In addition, C. elegans became significantly more sensitive to ionizing radiation after inhibition of rcq-5 gene expression, indicating an involvement of C. elegans RCQ-5 in a cellular response to DNA damage, possibly in DNA repair.
Collapse
Affiliation(s)
- Yun Seong Jeong
- Department of Biochemistry, College of Science, Yonsei University, 120-749, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
20
|
Davalos AR, Campisi J. Bloom syndrome cells undergo p53-dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks. ACTA ACUST UNITED AC 2003; 162:1197-209. [PMID: 14517203 PMCID: PMC2173967 DOI: 10.1083/jcb.200304016] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bloom syndrome (BS) is a hereditary disorder characterized by pre- and postnatal growth retardation, genomic instability, and cancer. BLM, the gene defective in BS, encodes a DNA helicase thought to participate in genomic maintenance. We show that BS human fibroblasts undergo extensive apoptosis after DNA damage specifically when DNA replication forks are stalled. Damage during S, but not G1, caused BLM to rapidly form foci with gammaH2AX at replication forks that develop DNA breaks. These BLM foci recruited BRCA1 and NBS1. Damaged BS cells formed BRCA1/NBS1 foci with markedly delayed kinetics. Helicase-defective BLM showed dominant-negative activity with respect to apoptosis, but not BRCA1/NBS1 recruitment, suggesting catalytic and structural roles for BLM. Strikingly, inactivation of p53 prevented the death of damaged BS cells and delayed recruitment of BRCA1/NBS1. These findings suggest that BLM is an early responder to damaged replication forks. Moreover, p53 eliminates cells that rapidly assemble BRCA1/NBS1 without BLM, suggesting that BLM is essential for timely BRCA1/NBS1 function.
Collapse
Affiliation(s)
- Albert R Davalos
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, CA 94720, USA
| | | |
Collapse
|
21
|
Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2003; 36:617-56. [PMID: 12429704 DOI: 10.1146/annurev.genet.36.060402.113540] [Citation(s) in RCA: 633] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA checkpoints play a significant role in cancer pathology, perhaps most notably in maintaining genome stability. This review summarizes the genetic and molecular mechanisms of checkpoint activation in response to DNA damage. The major checkpoint proteins common to all eukaryotes are identified and discussed, together with how the checkpoint proteins interact to induce arrest within each cell cycle phase. Also discussed are the molecular signals that activate checkpoint responses, including single-strand DNA, double-strand breaks, and aberrant replication forks. We address the connection between checkpoint proteins and damage repair mechanisms, how cells recover from an arrest response, and additional roles that checkpoint proteins play in DNA metabolism. Finally, the connection between checkpoint gene mutation and genomic instability is considered.
Collapse
Affiliation(s)
- Kara A Nyberg
- Molecular and Cellular Biology Department, University of Arizona, Tucson, Arizona, 85721, USA.
| | | | | | | |
Collapse
|
22
|
Khazi FR, Edmondson AC, Nielsen BL. An Arabidopsis homologue of bacterial RecA that complements an E. coli recA deletion is targeted to plant mitochondria. Mol Genet Genomics 2003; 269:454-63. [PMID: 12768414 DOI: 10.1007/s00438-003-0859-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2002] [Accepted: 04/28/2003] [Indexed: 11/30/2022]
Abstract
Homologous recombination results in the exchange and rearrangement of DNA, and thus generates genetic variation in living organisms. RecA is known to function in all bacteria as the central enzyme catalyzing strand transfer and has functional homologues in eukaryotes. Most of our knowledge of homologous recombination in eukaryotes is limited to processes in the nucleus. The mitochondrial genomes of higher plants contain repeated sequences that are known to undergo frequent rearrangements and recombination events. However, very little is known about the proteins involved or the biochemical mechanisms of DNA recombination in plant mitochondria. We provide here the first report of an Arabidopsis thaliana homologue of Escherichia coli RecA that is targeted to mitochondria. The mt recA gene has a putative mitochondrial presequence identified from the A. thaliana genome database. This nuclear gene encodes a predicted product that shows highest sequence homology to chloroplast RecA and RecA proteins from proteobacteria. When fused to the GFP coding sequence, the predicted presequence was able to target the fusion protein to isolated mitochondria but not to chloroplasts. The mitochondrion-specific localization of the mt recA gene product was confirmed by Western analysis using polyclonal antibodies raised against a synthetic peptide from a unique region of the mature mtRecA. The Arabidopsis mt recA gene partially complemented a recA deletion in E. coli, enhancing survival after exposure to DNA-damaging agents. These results suggest a possible role for mt recA in homologous recombination and/or repair in Arabidopsis mitochondria.
Collapse
Affiliation(s)
- F R Khazi
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | | | | |
Collapse
|
23
|
Abstract
Organisms with renewable tissues use a network of genetic pathways and cellular responses to prevent cancer. The main mammalian tumour-suppressor pathways evolved from ancient mechanisms that, in simple post-mitotic organisms, act predominantly to regulate embryogenesis or to protect the germline. The shift from developmental and/or germline maintenance in simple organisms to somatic maintenance in complex organisms might have evolved at a cost. Recent evidence indicates that some mammalian tumour-suppressor mechanisms contribute to ageing. How might this have happened, and what are its implications for our ability to control cancer and ageing?
Collapse
Affiliation(s)
- Judith Campisi
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Road, Berkeley, California 94720, USA.
| |
Collapse
|
24
|
Pichierri P, Rosselli F, Franchitto A. Werner's syndrome protein is phosphorylated in an ATR/ATM-dependent manner following replication arrest and DNA damage induced during the S phase of the cell cycle. Oncogene 2003; 22:1491-500. [PMID: 12629512 DOI: 10.1038/sj.onc.1206169] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Werner's syndrome (WS) is an autosomal recessive disorder, characterized at the cellular level by genomic instability in the form of variegated translocation mosaicism and extensive deletions. Individuals with WS prematurely develop multiple age-related pathologies and exhibit increased incidence of cancer. WRN, the gene defective in WS, encodes a 160-kDa protein (WRN), which has 3'-5'exonuclease, DNA helicase and DNA-dependent ATPase activities. WRN-defective cells are hypersensitive to certain genotoxic agents that cause replication arrest and/or double-strand breaks at the replication fork, suggesting a pivotal role for WRN in the protection of the integrity of the genoma during the DNA replication process. Here, we show that WRN is phosphorylated through an ATR/ATM dependent pathway in response to replication blockage. However, we provide evidence that WRN phosphorylation is not essential for its subnuclear relocalization after replication arrest. Finally, we show that WRN and ATR colocalize after replication fork arrest, suggesting that WRN and the ATR kinase collaborate to prevent genome instability during the S phase.
Collapse
Affiliation(s)
- Pietro Pichierri
- CNRS, UPR2169 'Genetic Instability and Cancer', Institut Gustave Roussy, France
| | | | | |
Collapse
|
25
|
Dollfus H, Porto F, Caussade P, Speeg-Schatz C, Sahel J, Grosshans E, Flament J, Sarasin A. Ocular manifestations in the inherited DNA repair disorders. Surv Ophthalmol 2003; 48:107-22. [PMID: 12559331 DOI: 10.1016/s0039-6257(02)00400-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Deoxyribonucleic acid (DNA) repair is a fundamental process designed to keep the integrity of genomic DNA that is continuously challenged by intrinsic or environmental induced alterations. Numerous genes involved in DNA repair have been cloned and are involved in different DNA repair pathways: base excision repair, nucleotide excision repair, mismatch repair, DNA recombination. Inherited conditions due to mutations in DNA repair genes include mainly: xeroderma pigmentosum, Cockayne syndrome, Trichothiodystrophy, Bloom syndrome, Rothmund-Thomson syndrome, and Werner syndrome. Minor to major ocular manifestations occur in these syndromes. For example, eyelid skin cancers in xeroderma pigmentosum and retinal dystrophy in Cockayne syndrome are major features of these syndromes. This review focuses on the DNA repair pathways, the general and ocular features of the related syndromes, the laboratory tests useful for diagnosis, and the general processes implied with DNA repair (ultraviolet sensitivity, carcinogenesis, apoptosis, oxydative stress, and premature aging).
Collapse
Affiliation(s)
- Hélène Dollfus
- Fédération de Génétique Médicale, Clinique Ophtalmologique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Clarke DJ. Establishment of dependence relationships between genome replication and mitosis. J Cell Biochem 2003; 88:95-103. [PMID: 12461778 DOI: 10.1002/jcb.10324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although budding yeast cell biology and genetics provided a powerful system to isolate S-phase checkpoint mutants, initial studies relied on a defect not likely to be relevant in higher eukaryotes. The first mutants were isolated for their inability to restrain mitotic spindle elongation in S-phase. Since most eukaryotes do not assemble spindles until prometaphase the validity of this approach might have been questioned. However, these early studies were designed with a highly valid assumption in mind; that checkpoints have a variety of targets, but comprise conserved kinase cascades that make up these signaling pathways. The task that lies ahead is to determine targets of the S-phase checkpoint relevant to mammals. One step forward might be the realization that the budding yeast S-phase checkpoint prevents loss of sister chromatid cohesion while DNA replication is ongoing. If this mechanism is conserved in mammals, it could prove vital for chromosome segregation fidelity.
Collapse
Affiliation(s)
- Duncan J Clarke
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, 420 Washington Avenue SE, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
27
|
Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M. DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 2002; 277:50934-40. [PMID: 12384494 DOI: 10.1074/jbc.m210479200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome is a rare autosomal recessive disorder involving the premature appearance of features reminiscent of human aging. Werner syndrome occurs by mutation of the WRN gene, encoding a DNA helicase. WRN contributes to the induction of the p53 tumor suppressor protein by various DNA damaging agents. Here we show that UV exposure leads to extensive translocation of WRN from the nucleolus to nucleoplasmic foci in a dose-dependent manner. Ionizing radiation also induces WRN translocation, albeit milder, partially through activation of the ATM kinase. The nucleoplasmic foci to which WRN is recruited display partial colocalization with PML nuclear bodies. The translocation of WRN into nucleoplasmic foci is significantly enhanced by the protein deacetylase inhibitor, Trichostatin A. Moreover, Trichostatin A delays the re-entry of WRN into the nucleolus at late times after irradiation. WRN is acetylated in vivo, and this is markedly stimulated by the acetyltransferase p300. Importantly, p300 augments the translocation of WRN into nucleoplasmic foci. These findings support the notion that WRN plays a role in the cellular response to DNA damage and suggest that the activity of WRN is modulated by DNA damage-induced post-translational modifications of WRN and possibly WRN-interacting proteins.
Collapse
Affiliation(s)
- Gil Blander
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
RecQ family DNA helicases are defined as proteins sharing a homologous region with Escherichia coli RecQ and are basically regarded as enzymes involved in recombination. Humans have five RecQ family members, and deficiencies in three of them, BLM, WRN, and RTS, cause Bloom's, Werner's, and Rothmund-Thomson syndromes, respectively, each characterized by genomic instability and cancer predisposition. In this context, an important function of the RecQ homologs appears to be the unwinding of intermediates of recombination, thereby preventing its uncontrolled execution. As a consequence, their deficiencies give rise to elevated levels of recombination (the hyper-recombination phenotype), which result in chromosomal aberrations including loss of heterozygosity, a common chromosomal change associated with malignancies. Thus, those helicases qualify as caretaker-type tumor suppressor proteins. In addition, BLM and WRN deficiencies have been shown to attenuate p53-mediated apoptosis, suggesting that they also belong to the gatekeeper class of tumor suppressor proteins.
Collapse
Affiliation(s)
- Hiroaki Nakayama
- Kyushu University (Emeritus), Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
29
|
Abstract
Genomic instability is one of the major features of cancer cells. The clinical phenotypes associated with several human diseases have been linked to recurrent DNA rearrangements and dysfunction of DNA replication processes that involve unstable genomic regions. Analysis of these rearrangements, which are frequently submicroscopic and can lead to loss or gain of dosage-sensitive genes or gene disruption, requires the development of sensitive, high-resolution techniques. This will lead to a better understanding of the mechanisms underlying genome instability and a greater awareness of the role of chromosomal rearrangements in disease. A new technology that involves molecular combing, a method that permits straightening and aligning molecules of genomic DNA, should make possible a detailed analysis of genomic events at the level of single DNA molecules. Such a single molecule approach could help to elucidate important properties that are masked in bulk studies.
Collapse
Affiliation(s)
- Sandrine Caburet
- Unité de Stabilité des Génomes, Dépt de Structure et Dynamique des Génomes, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | |
Collapse
|
30
|
von Kobbe C, Karmakar P, Dawut L, Opresko P, Zeng X, Brosh RM, Hickson ID, Bohr VA. Colocalization, physical, and functional interaction between Werner and Bloom syndrome proteins. J Biol Chem 2002; 277:22035-44. [PMID: 11919194 DOI: 10.1074/jbc.m200914200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RecQ helicase family comprises a conserved group of proteins implicated in several aspects of DNA metabolism. Three of the family members are defective in heritable diseases characterized by abnormal growth, premature aging, and predisposition to malignancies. These include the WRN and BLM gene products that are defective in Werner and Bloom syndromes, disorders which share many phenotypic and cellular characteristics including spontaneous genomic instability. Here, we report a physical and functional interaction between BLM and WRN. These proteins were coimmunoprecipitated from a nuclear matrix-solubilized fraction, and the purified recombinant proteins were shown to interact directly. Moreover, BLM and WRN colocalized to nuclear foci in three human cell lines. Two regions of WRN that mediate interaction with BLM were identified, and one of these was localized to the exonuclease domain of WRN. Functionally, BLM inhibited the exonuclease activity of WRN. This is the first demonstration of a physical and functional interaction between RecQ helicases. Our observation that RecQ family members interact provides new insights into the complex phenotypic manifestations resulting from the loss of these proteins.
Collapse
Affiliation(s)
- Cayetano von Kobbe
- Laboratory of Molecular Gerontology, NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson-Sali T, Hsieh TS. Preferential cleavage of plasmid-based R-loops and D-loops by Drosophila topoisomerase IIIbeta. Proc Natl Acad Sci U S A 2002; 99:7974-9. [PMID: 12048241 PMCID: PMC123005 DOI: 10.1073/pnas.122007999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The topoisomerase (topo) III enzymes are found in organisms ranging from bacteria to humans, yet the precise cellular function of these enzymes remains to be determined. We previously found that Drosophila topo IIIbeta can relax plasmid DNA only if the DNA is first hypernegatively supercoiled. To investigate the possibility that topo IIIbeta requires a single-stranded region for its relaxation activity, we formed R-loops and D-loops in plasmids. In addition to containing a single-stranded region, these R-loops and D-loops have the advantage of being covalently closed and supercoiled, thus allowing us to assay for supercoil relaxation. We found that topo IIIbeta preferentially cleaves, rather than relaxes, these substrates. The cleavage of the R-loops and D-loops, which is primarily in the form of nicking, occurs to a greater extent at a temperature that is lower than the optimal temperature for relaxation of hypernegatively supercoiled plasmid. In addition, the cleavage can be readily reversed by high salt or high temperature, and the products fail to enter the gel in the absence of proteinase K treatment and are not observed with an active-site Y332F mutant of topo IIIbeta, indicating that the cleavage is mediated by a topoisomerase. We mapped the cleavage to the unpaired strand within the loop region and found that the cleavage occurs along the length of the unpaired strand. These studies suggest that the topo III enzyme behaves as a structure-specific endonuclease in vivo, providing a reversible DNA cleavage activity that is specific for unpaired regions in the DNA.
Collapse
Affiliation(s)
- Tina Wilson-Sali
- Department of Biochemistry, Duke University Medical Center, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
32
|
Grompone G, Seigneur M, Ehrlich SD, Michel B. Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp. Mol Microbiol 2002; 44:1331-9. [PMID: 12028381 DOI: 10.1046/j.1365-2958.2002.02962.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Certain replication mutations lead in Escherichia coli to a specific reaction named replication fork reversal: at blocked forks, annealing of the nascent strands and pairing of the template strands form a four-way junction. RuvABC-catalysed resolution of this Holliday junction causes chromosome double-strand breaks (DSBs) in a recBC context and therefore creates a requirement for the recombination proteins RecBC for viability. In the present work, two mutants were tested for replication fork reversal: a dnaEts mutant and a dnaNts mutant, affected in the alpha (polymerase) and beta (processivity clamp) subunits of DNA polymerase III holoenzyme respectively. In the dnaEts recB strain, RuvABC-dependent DSBs caused by the dnaEts mutation occurred at 37 degrees C or 42 degrees C, indicating the occurrence of replication fork reversal upon partial or complete inactivation of the DNA polymerase alpha subunit. DSB formation was independent of RecA, RecQ and the helicase function of PriA. In the dnaNts recB mutant, RuvABC-dependent DSB caused by the dnaNts mutation occurred only at semi-permissive temperature, 37 degrees C, indicating the occurrence of replication fork reversal in conditions in which the remaining activity of the beta clamp is sufficient for viability. In contrast, the dnaNts mutation did not cause chromosome breakage at 42 degrees C, a temperature at which DnaN is totally inactive and the dnaNts mutant is inviable. We propose that a residual activity of the DNA polymerase III beta clamp is required for replication fork reversal in the dnaNts mutant.
Collapse
Affiliation(s)
- Gianfranco Grompone
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas, France
| | | | | | | |
Collapse
|
33
|
Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B. The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 2002; 115:1611-22. [PMID: 11950880 DOI: 10.1242/jcs.115.8.1611] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During mouse meiosis, the early prophase RAD51/DMC1 recombination protein sites, which are associated with the chromosome cores and which serve as markers for ongoing DNA-DNA interactions, are in ten-fold excess of the eventual reciprocal recombinant events. Most, if not all, of these early interactions are eliminated as prophase progresses. The manner in which these sites are eliminated is the focus of this investigation. We report that these sites acquire replication protein A, RPA and the Escherichia coliMUTS homologue, MSH4p, and somewhat later the Bloom helicase, BLM, while simultaneously losing the RAD51/DMC1 component. Eventually the RPA component is also lost and BLM sites remain. At that time, the MUTL homologue, MLH1p,which is essential for reciprocal recombination in the mouse, appears in numbers and locations that correspond to the distribution of reciprocal recombination events. However, the MLH1 foci do not appear to coincide with the remaining BLM sites. The MLH1p is specifically localized to electron-microscope-defined recombination nodules. We consider the possibility that the homology-search RAD51/DMC1 complexes are involved in homologous chromosome synapsis but that most of these early DNA-DNA interactions are later resolved by the anti-recombination RPA/MSH4/BLM-topoisomerase complex,thereby preventing the formation of superfluous reciprocal recombinant events.
Collapse
Affiliation(s)
- Peter B Moens
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Franchitto A, Pichierri P. Bloom's syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest. J Cell Biol 2002; 157:19-30. [PMID: 11916980 PMCID: PMC2173275 DOI: 10.1083/jcb.200110009] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bloom's syndrome (BS) is a rare genetic disorder characterized by a broad range of symptoms and, most importantly, a predisposition to many types of cancers. Cells derived from patients with BS exhibit an elevated rate of somatic recombination and hypermutability, supporting a role for bleomycin (BLM) in the maintenance of genomic integrity. BLM is thought to participate in several DNA transactions, the failure of which could give raise to genomic instability, and to interact with many proteins involved in replication, recombination, and repair. In this study, we show that BLM function is specifically required to properly relocalize the RAD50/MRE11/NBS1 (RMN) complex at sites of replication arrest, but is not essential in the activation of BRCA1 either after stalled replication forks or gamma-rays. We also provide evidence that BLM is phosphorylated after replication arrest in an Ataxia and RAD3-related protein (ATR)-dependent manner and that phosphorylation is not required for subnuclear relocalization. Therefore, in ATR dominant negative mutant cells, the assembly of the RMN complex in nuclear foci after replication blockage is almost completely abolished. Together, these results suggest a relationship between BLM, ATR, and the RMN complex in the response to replication arrest, proposing a role for BLM protein and RMN complex in the resolution of stalled replication forks.
Collapse
Affiliation(s)
- Annapaola Franchitto
- Laboratorio di Citogenetica Molecolare e Mutagenesi, DABAC, Università della Tuscia, 01100 Viterbo, Italy
| | | |
Collapse
|
35
|
Abstract
It has recently become clear that the recombinational repair of stalled replication forks is the primary function of homologous recombination systems in bacteria. In spite of the rapid progress in many related lines of inquiry that have converged to support this view, much remains to be done. This review focuses on several key gaps in understanding. Insufficient data currently exists on: (a) the levels and types of DNA damage present as a function of growth conditions, (b) which types of damage and other barriers actually halt replication, (c) the structures of the stalled/collapsed replication forks, (d) the number of recombinational repair paths available and their mechanistic details, (e) the enzymology of some of the key reactions required for repair, (f) the role of certain recombination proteins that have not yet been studied, and (g) the molecular origin of certain in vivo observations associated with recombinational DNA repair during the SOS response. The current status of each of these topics is reviewed.
Collapse
Affiliation(s)
- M M Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA.
| |
Collapse
|
36
|
Marintcheva B, Weller SK. A tale of two HSV-1 helicases: roles of phage and animal virus helicases in DNA replication and recombination. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:77-118. [PMID: 11642367 DOI: 10.1016/s0079-6603(01)70014-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Helicases play essential roles in many important biological processes such as DNA replication, repair, recombination, transcription, splicing, and translation. Many bacteriophages and plant and animal viruses encode one or more helicases, and these enzymes have been shown to play many roles in their respective viral life cycles. In this review we concentrate primarily on the roles of helicases in DNA replication and recombination with special emphasis on the bacteriophages T4, T7, and A as model systems. We explore comparisons between these model systems and the herpesviruses--primarily herpes simplex virus. Bacteriophage utilize various pathways of recombination-dependent DNA replication during the replication of their genomes. In fact the study of recombination in the phage systems has greatly enhanced our understanding of the importance of recombination in the replication strategies of bacteria, yeast, and higher eukaryotes. The ability to "restart" the replication process after a replication fork has stalled or has become disrupted for other reasons is a critical feature in the replication of all organisms studied. Phage helicases and other recombination proteins play critical roles in the "restart" process. Parallels between DNA replication and recombination in phage and in the herpesviruses is explored. We and others have proposed that recombination plays an important role in the life cycle of the herpesviruses, and in this review, we discuss models for herpes simplex virus type 1 (HSV-1) DNA replication. HSV-1 encodes two helicases. UL9 binds specifically to the origins of replication and is believed to initiate HSV DNA replication by unwinding at the origin; the heterotrimeric helicase-primase complex, encoded by UL5, UL8, and UL52 genes, is believed to unwind duplex viral DNA at replication forks. Structure-function analyses of UL9 and the helicase-primase are discussed with attention to the roles these proteins might play during HSV replication.
Collapse
Affiliation(s)
- B Marintcheva
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
37
|
Kim YC, Lee MH, Ryu SS, Kim JH, Koo HS. Coaction of DNA topoisomerase IIIalpha and a RecQ homologue during the germ-line mitosis in Caenorhabditis elegans. Genes Cells 2002; 7:19-27. [PMID: 11856370 DOI: 10.1046/j.1356-9597.2001.00496.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Among the four RecQ homologues predicted from the Caenorhabditis elegans genomic DNA sequence, T04A11.6 is most similar to Bloom syndrome's protein in humans. To investigate a possible interaction of the protein with topoisomerase IIIalpha (TOP3alpha), as observed between TOP3 and RecQ homologues in yeast and human, the top3alpha gene expression was suppressed by RNA interference (RNAi) in the him-6(e1104) C. elegans strain which is mutated in T04A11.6 (F. Mueller & C. Wicky, personal communication). RESULTS Germ cells in the gonads of the progeny him-6(e1104);top3alpha(RNAi) showed severe chromosomal abnormalities and were arrested during mitosis with a subsequent failure in meiotic entry. Most of the aberrant chromosomes were stained by the TUNEL assay but not by the SYTO12 dye, suggesting extensive DNA breaks not associated with apoptosis. The phenotypes in the germ cells of him-6(e1104);top3alpha(RNAi) were also observed in the progeny produced by double RNA interference of the top3alpha and him-6 gene expression, though at a reduced level. The over-expressed TOP3alpha and Him-6 proteins showed specific physical interaction in vitro, in agreement with the genetic interaction in C. elegans. CONCLUSION In C. elegans, TOP3alpha and the RecQ homologue (T04A11.6) contribute to genome stability during germ-line mitosis, probably by acting in a complex.
Collapse
Affiliation(s)
- You-Chan Kim
- Department of Biochemistry, College of Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | |
Collapse
|
38
|
Hofmann AF, Harris SD. The Aspergillus nidulans musN gene encodes a RecQ helicase that interacts with the PI-3K-related kinase UVSB. Genetics 2001; 159:1595-604. [PMID: 11779799 PMCID: PMC1461902 DOI: 10.1093/genetics/159.4.1595] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In Aspergillus nidulans, the uvsB gene encodes a member of the PI-3K-related kinase family of proteins. We have recently shown that UVSB is required for multiple aspects of the DNA damage response. Since the musN227 mutation is capable of partially suppressing defects caused by uvsB mutations, we sought to understand the mechanism underlying the suppression by cloning the musN gene. Here, we report that musN encodes a RecQ helicase with homology to S. pombe rqh1, S. cerevisiae sgs1, and human BLM and WRN. Phenotypic characterization of musN mutant alleles reveals that MUSN participates in the response to a variety of genotoxic agents. The slow growth and genotoxin sensitivity of a musN null mutant can be partially suppressed by a defect in homologous recombination caused by the uvsC114 mutation. In addition, we present evidence suggesting that MUSN may promote recovery from the DNA damage response. We suggest that a block to recovery caused by the musN227 mutation, coupled with the modest accumulation of recombination intermediates, can suppress defects caused by uvsB mutations. Finally, we report that another RecQ helicase, ORQA, performs a function that partially overlaps that of MUSN.
Collapse
Affiliation(s)
- A F Hofmann
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA
| | | |
Collapse
|
39
|
Chakraverty RK, Kearsey JM, Oakley TJ, Grenon M, de La Torre Ruiz MA, Lowndes NF, Hickson ID. Topoisomerase III acts upstream of Rad53p in the S-phase DNA damage checkpoint. Mol Cell Biol 2001; 21:7150-62. [PMID: 11585898 PMCID: PMC99890 DOI: 10.1128/mcb.21.21.7150-7162.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deletion of the Saccharomyces cerevisiae TOP3 gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2 content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391-8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Delta strains. We show that top3Delta mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion, top3Delta strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Delta mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.
Collapse
Affiliation(s)
- R K Chakraverty
- Imperial Cancer Research Fund Laboratories, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The stalling of DNA replication forks that occurs as a consequence of encountering DNA damage is a critical problem for cells. RecG protein is involved in the processing of stalled replication forks, and acts by reversing the fork past the damage to create a four-way junction that allows template switching and lesion bypass. We have determined the crystal structure of RecG bound to a DNA substrate that mimics a stalled replication fork. The structure not only reveals the elegant mechanism used by the protein to recognize junctions but has also trapped the protein in the initial stage of fork reversal. We propose a mechanism for how forks are processed by RecG to facilitate replication fork restart. In addition, this structure suggests that the mechanism and function of the two largest helicase superfamilies are distinct.
Collapse
Affiliation(s)
- M R Singleton
- ICRF Clare Hall Laboratories, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3LD, United Kingdom
| | | | | |
Collapse
|
41
|
Bennett RJ, Wang JC. Association of yeast DNA topoisomerase III and Sgs1 DNA helicase: studies of fusion proteins. Proc Natl Acad Sci U S A 2001; 98:11108-13. [PMID: 11553789 PMCID: PMC58691 DOI: 10.1073/pnas.201387098] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sgs1 protein of the budding yeast Saccharomyces cerevisiae is a member of the RecQ DNA helicase family that includes the human Bloom, Werner, and Rothmund-Thompson syndrome proteins. The N-terminal region outside the central DNA helicase core of Sgs1, particularly the part containing the first 100 amino acid residues of the 1,447-residue protein, is known to be functionally important and has been implicated in Sgs1-DNA topoisomerase III (Top3) interaction. We show in this work that the functionality of a truncated Sgs1 lacking its N-terminal 106 residues can be restored by replacing the truncated region with Top3. Fusion of Top3 to a mutant Sgs1 with a Val-29 to Glu substitution, which interferes with Sgs1-Top3 interaction, similarly restores the functionality of the mutant Sgs1(V29E) protein. The Top3-Sgs1(Delta1-106) and Top3-Sgs1(V29E) fusion proteins behave like wild-type Sgs1 in complementing several aspects of the sgs1 phenotype, including the hypersensitivity of sgs1 cells to methyl methanesulfonate and hydroxyurea. Complementation by the fusion proteins required both the topoisomerase activity of Top3 and the helicase activity of the Sgs1 polypeptide. These results suggest that the sole function of the N-terminal 106 amino acid residues of Sgs1 is for Top3 binding, and that the coordinated actions of Sgs1 and Top3 are important in cellular processes such as the processing of DNA after exposure of cells to DNA-damaging agents.
Collapse
Affiliation(s)
- R J Bennett
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
42
|
Langland G, Kordich J, Creaney J, Goss KH, Lillard-Wetherell K, Bebenek K, Kunkel TA, Groden J. The Bloom's syndrome protein (BLM) interacts with MLH1 but is not required for DNA mismatch repair. J Biol Chem 2001; 276:30031-5. [PMID: 11325959 DOI: 10.1074/jbc.m009664200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bloom's syndrome (BS) is a rare autosomal recessive disorder characterized by pre- and postnatal growth deficiency, immunodeficiency, and a tremendous predisposition to a wide variety of cancers. Cells from BS individuals are characterized by a high incidence of chromosomal gaps and breaks, elevated sister chromatid exchange, quadriradial formations, and locus-specific mutations. BS is the consequence of mutations that lead to loss of function of BLM, a gene encoding a helicase with homology to the RecQ helicase family. To delineate the role of BLM in DNA replication, recombination, and repair we used a yeast two-hybrid screen to identify potential protein partners of the BLM helicase. The C terminus of BLM interacts directly with MLH1 in the yeast-two hybrid assay; far Western analysis and co-immunoprecipitations confirmed the interaction. Cell extracts deficient in BLM were competent for DNA mismatch repair. These data suggest that the BLM helicase and MLH1 function together in replication, recombination, or DNA repair events independent of single base mismatch repair.
Collapse
Affiliation(s)
- G Langland
- Department of Molecular Genetics, Biochemistry, and Microbiology and the Howard Hughes Medical Institute, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The present review on aging research in Switzerland describes ongoing gerontological and geriatric research in the field of both basic science and clinical research. Although Switzerland is situated at the rear end of the scale in regard of size or number of inhabitants, the number of high quality research groups per inhabitant positions it amongst the leading countries in the Western world. Being a small country Switzerland counts only five universities with clinical affiliations. Aging research in Switzerland therefore does not cover all areas of this rapidly developing discipline but some of the scientific contributions are mirrored in highest scored journals or others focus on topics that clearly bridge geriatric research and research on cellular and molecular mechanisms of aging.
Collapse
Affiliation(s)
- I Irminger-Finger
- Department of Geriatrics, Louis Jeantet Laboratory of Aging, University of Geneva, 2 ch. Petit-Bel-Air, 1225 Chene-Bourg, Geneva, Switzerland.
| | | |
Collapse
|
44
|
Michel B, Flores MJ, Viguera E, Grompone G, Seigneur M, Bidnenko V. Rescue of arrested replication forks by homologous recombination. Proc Natl Acad Sci U S A 2001; 98:8181-8. [PMID: 11459951 PMCID: PMC37419 DOI: 10.1073/pnas.111008798] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA synthesis is an accurate and very processive phenomenon; nevertheless, replication fork progression on chromosomes can be impeded by DNA lesions, DNA secondary structures, or DNA-bound proteins. Elements interfering with the progression of replication forks have been reported to induce rearrangements and/or render homologous recombination essential for viability, in all organisms from bacteria to human. Arrested replication forks may be the target of nucleases, thereby providing a substrate for double-strand break repair enzyme. For example in bacteria, direct fork breakage was proposed to occur at replication forks blocked by a bona fide replication terminator sequence, a specific site that arrests bacterial chromosome replication. Alternatively, an arrested replication fork may be transformed into a recombination substrate by reversal of the forked structures. In reversed forks, the last duplicated portions of the template strands reanneal, allowing the newly synthesized strands to pair. In bacteria, this reaction was proposed to occur in replication mutants, in which fork arrest is caused by a defect in a replication protein, and in UV irradiated cells. Recent studies suggest that it may also occur in eukaryote organisms. We will review here observations that link replication hindrance with DNA rearrangements and the possible underlying molecular processes.
Collapse
Affiliation(s)
- B Michel
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | | | | | |
Collapse
|
45
|
Kwan KY, Wang JC. Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan. Proc Natl Acad Sci U S A 2001; 98:5717-21. [PMID: 11331780 PMCID: PMC33279 DOI: 10.1073/pnas.101132498] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Targeted gene disruption in the murine TOP3beta gene-encoding DNA topoisomerase IIIbeta was carried out. In contrast to the embryonic lethality of mutant mice lacking DNA topoisomerase IIIalpha, top3beta(-/-) nulls are viable and grow to maturity with no apparent defects. Mice lacking DNA topoisomerase IIIbeta have a shorter life expectancy than their wild-type littermates, however. The mean lifespan of the top3beta(-/-) mice is about 15 months, whereas that of their wild-type littermates is longer than 2 years. Mortality of the top3beta(-/-) nulls appears to correlate with lesions in multiple organs, including hypertrophy of the spleen and submandibular lymph nodes, glomerulonephritis, and perivascular infiltrates in various organs. Because the DNA topoisomerase III isozymes are likely to interact with helicases of the RecQ family, enzymes that include the determinants of human Bloom, Werner, and Rothmund-Thomson syndromes, the shortened lifespan of top3beta(-/-) mice points to the possibility that the DNA topoisomerase III isozymes might be involved in the pathogenesis of progeroid syndromes caused by defective RecQ helicases.
Collapse
Affiliation(s)
- K Y Kwan
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
46
|
Affiliation(s)
- P Schär
- Institute of Medical Radiobiology, University of Zürich and Paul Scherrer Institute, CH-8008, Zürich, Switzerland.
| |
Collapse
|
47
|
Abstract
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence.
Collapse
Affiliation(s)
- N Rhind
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | |
Collapse
|