1
|
Ghorbanzadeh S, Khojini JY, Abouali R, Alimardan S, Zahedi M, Tahershamsi Z, Tajbakhsh A, Gheibihayat SM. Clearing the Path: Exploring Apoptotic Cell Clearance in Inflammatory and Autoimmune Disorders for Therapeutic Advancements. Mol Biotechnol 2025; 67:2223-2238. [PMID: 38935260 DOI: 10.1007/s12033-024-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 06/28/2024]
Abstract
Inflammatory and autoimmune disorders, characterized by dysregulated immune responses leading to tissue damage and chronic inflammation, present significant health challenges. This review uniquely focuses on efferocytosis-the phagocyte-mediated clearance of apoptotic cells-and its pivotal role in these disorders. We delve into the intricate mechanisms of efferocytosis' four stages and their implications in disease pathogenesis, distinguishing our study from previous literature. Our findings highlight impaired efferocytosis in conditions like atherosclerosis and asthma, proposing its targeting as a novel therapeutic strategy. We discuss the therapeutic potential of efferocytosis in modulating immune responses and resolving inflammation, offering a new perspective in treating inflammatory disorders.
Collapse
Affiliation(s)
- Shadi Ghorbanzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Science, Bandar Abbas, Iran
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran
| | - Reza Abouali
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases-IRCAD, Università del Piemonte Orientale, Novara, Italy
| | - Sajad Alimardan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Zahedi
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, P.O. Box: 8915173143, Yazd, IR, Iran.
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Ding D, Guo J, Sun H, Yang J. Modulation of host Rab GTPases by Salmonella: mechanisms of immune evasion and intracellular replication. Mol Biol Rep 2025; 52:440. [PMID: 40304792 DOI: 10.1007/s11033-025-10547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Salmonella is one of the major pathogens responsible for foodborne illnesses worldwide, characterized by diverse serotypes and a broad host range. As an intracellular bacterium, Salmonella invades host cells and establishes a protected niche known as the Salmonella-containing vacuoles (SCVs), which provide a suitable environment for intracellular survival. Rab GTPases, key regulators of intracellular membrane trafficking, play a crucial role in the biogenesis and dynamics of SCVs. Through its type III secretion systems (T3SSs), Salmonella delivers a repertoire of effector proteins into host cells, which modulate the activity of Rab GTPases and alter membrane trafficking to facilitate SCVs formation and maintenance. This review summarizes recent advances in understanding how Salmonella effectors manipulate Rab GTPases to promote intracellular survival and evade host innate immune responses.
Collapse
Affiliation(s)
- Dandan Ding
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
3
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
4
|
Takahashi K, Mashima H, Sekine M, Uehara T, Asano T, Sun-Wada GH, Wada Y, Ohnishi H. Rab7 localized on zymogen granules is involved in maturation but not in autophagy or regulated exocytosis in pancreatic acinar cells. Sci Rep 2023; 13:22084. [PMID: 38087030 PMCID: PMC10716180 DOI: 10.1038/s41598-023-49520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023] Open
Abstract
Rab7 is known to function in the autophagy and endocytosis pathways in eukaryocytes and is related to various diseases. We recently reported that Rab7 plays a protective role against acute pancreatitis. However, its physiological function in exocytic cells remains unclear. Therefore, we investigated the role of Rab7 in pancreas-specific Rab7 knockout mice (Rab7Δpan). Immunofluorescence microscopy revealed that Rab7 colocalized with amylase in pancreatic acinar cells of wild-type mice, but not in Rab7Δpan mice. Western blotting confirmed Rab7 localization in the zymogen granule (ZG) membranes of wild-type mice. Cholecystokinin (CCK)-stimulated amylase secretion examined using isolated pancreatic acini was similar in Rab7Δpan and wild-type mice. In contrast, electron microscopy revealed that the diameters of ZGs were shorter and the number of ZGs was larger in the pancreatic acinar cells of Rab7Δpan mice than in those of wild-type mice. However, the number of ZGs decreased in both Rab7Δpan and wild-type mice after 24 h of starvation. In addition, the amount of amylase in the pancreas was decreased in both Rab7Δpan and wild-type mice. These data indicate that Rab7 localized on ZGs plays a crucial role in the maturation of ZGs but not in their autophagy or regulated exocytosis in pancreatic acinar cells.
Collapse
Affiliation(s)
- Kenichi Takahashi
- Department of Gastroenterology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hirosato Mashima
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-Cho, Omiya-Ku, Saitama, 330-8503, Japan.
| | - Masanari Sekine
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-Cho, Omiya-Ku, Saitama, 330-8503, Japan
| | - Takeshi Uehara
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-Cho, Omiya-Ku, Saitama, 330-8503, Japan
| | - Takeharu Asano
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-Cho, Omiya-Ku, Saitama, 330-8503, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hirohide Ohnishi
- Department of Gastroenterology, Jichi Medical University Saitama Medical Center, 1-847 Amanuma-Cho, Omiya-Ku, Saitama, 330-8503, Japan
- Japan Organization of Occupational Health and Safety, Kawasaki, Kanagawa, Japan
| |
Collapse
|
5
|
Božinović K, Nestić D, Grellier E, Raddi N, Cornilleau G, Ambriović-Ristov A, Benihoud K, Majhen D. NGR-bearing human adenovirus type 5 infects cells in flotillin- or caveolin-mediated manner depending on the NGR insertion site. BIOMATERIALS ADVANCES 2023; 155:213681. [PMID: 37944448 DOI: 10.1016/j.bioadv.2023.213681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Human adenoviruses represent attractive candidates for the design of cancer gene therapy vectors. Modification of adenovirus tropism by incorporating a targeting ligand into the adenovirus capsid proteins allows retargeting of adenovirus towards the cells of interest. Human adenovirus type 5 (HAdV-C5) bearing NGR containing peptide (CNGRCVSGCAGRC) inserted into the fiber (AdFNGR) or the hexon (AdHNGR) protein demonstrated an increased transduction of endothelial cells showing expression of aminopeptidase N, also known as CD13, and αvβ3 integrin both present on tumor vasculature, indicating that NGR-bearing adenoviruses could be used as tools for anti-angiogenic cancer therapy. Here we investigated how AdFNGR and AdHNGR infect cells lacking HAdV-C5 primary receptor, coxsackie and adenovirus receptor, and we showed that both AFNGR and AdHNGR enter cells by dynamin- and lipid raft-mediated endocytosis, while clathrin is not required for endocytosis of these viruses. We present evidence that productive infection of both AdFNGR and AdHNGR involves lipid rafts, with usage of flotillin-mediated cell entry for AdFNGR and limited role of caveolin in AdHNGR transduction efficiency. Lipid rafts play important role in angiogenesis and process of metastasis. Therefore, the ability of AdFNGR and AdHNGR to use lipid raft-dependent endocytosis, involving respectively flotillin- or caveolin-mediated pathway, could give them an advantage in targeting tumor cells lacking HAdV-C5 primary receptor.
Collapse
Affiliation(s)
- Ksenija Božinović
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Davor Nestić
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Elodie Grellier
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, 94805 Villejuif, France
| | - Najat Raddi
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, 94805 Villejuif, France
| | - Gaétan Cornilleau
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, 94805 Villejuif, France
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Karim Benihoud
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, 94805 Villejuif, France
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; Université Paris-Saclay, CNRS, Institut Gustave Roussy, Metabolic and Systemic Aspects of Oncogenesis for New Therapeutic Approaches, 94805 Villejuif, France.
| |
Collapse
|
6
|
Qiao L, Dong C, Jia W, Ma B. NAA20 recruits Rin2 and promotes triple-negative breast cancer progression by regulating Rab5A-mediated activation of EGFR signaling. Cell Signal 2023; 112:110922. [PMID: 37827343 DOI: 10.1016/j.cellsig.2023.110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with poor prognosis and high mortality. To improve the prognosis and survival of TNBC patients, it is necessary to explore new targets and signaling pathways to develop novel therapies for TNBC treatment. N-α-acetyltransferase 20 (NAA20) is one of the catalytic subunits of N-terminal acetyltransferase (NatB). It has been reported that NAA20 played a critical role in cancer progression. In this study, we found that NAA20 expression was markedly higher in TNBC tissues than in paracancerous normal tissues using The Cancer Genome Atlas (TCGA) analysis. This result was further confirmed by qRT-PCR and immunohistochemistry (IHC). Knockdown of NAA20 significantly inhibited TNBC cell viability by CCK8 and colony formation assays and cell migration and invasion by Transwell assays. Additionally, NAA20 knockdown decreased the expression of EGFR in TNBC cells. Upon stimulation with EGF and knockdown of NAA20, EGFR internalization and degradation were observed by confocal microscopy. The western blot results showed that NAA20 knockdown down-regulated PI3K, AKT, and mTOR phosphorylation. Next, we further explored the underlying molecular mechanisms of NAA20 by co-immunoprecipitation (Co-IP). The results suggested that there was an interacting relationship between NAA20 and Rab5A. Over-expression of NAA20 could potentiate the expression of Rab5A. Furthermore, the knockdown of Rab5A inhibited EGFR expression and the phosphorylation of downstream signaling targets. NAA20 over-expression offset the knockdown effect of Rab5A and activated EGFR signaling. Finally, we constructed a xenograft mouse model transfected TNBC cells to investigate the role of NAA20 in vivo. NAA20 knockdown markedly suppressed tumor growth and decreased tumor volume and weight. In conclusion, our study demonstrated that NAA20, a novel target of TNBC, could promote TNBC progression by regulating Rab5A-mediated activation of EGFR signaling.
Collapse
Affiliation(s)
- Lei Qiao
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Chao Dong
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Wenlei Jia
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, Xinjiang Medical University affiliated Tumor Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830000, China.
| |
Collapse
|
7
|
Ohashi M, Tamura A, Yui N. Exploring Receptor Binding Affinities and Hepatic Cell Association of N-Acetyl-d-Galactosamine-Modified β-Cyclodextrin-Based Polyrotaxanes for Liver-Targeted Therapies. Biomacromolecules 2023; 24:2327-2341. [PMID: 37036902 DOI: 10.1021/acs.biomac.3c00194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Acid-degradable polyrotaxanes (PRXs) containing threading β-cyclodextrins (β-CDs) are promising candidates for therapeutic applications of β-CDs in metabolic diseases with cholesterol overload or imbalance. To improve cellular uptake specificity and efficiency of PRXs in hepatocytes, N-acetyl-d-galactosamine (GalNAc)-modified PRXs were developed to facilitate asialoglycoprotein receptor (ASGR)-mediated endocytosis. Binding affinity studies revealed that the dissociation constant (KD) values between recombinant ASGR and GalNAc-PRXs decreased with an increase in the number of modified GalNAc units. Additionally, the KD values for GalNAc-PRXs were smaller than those for GalNAc-modified β-CD and amylose, suggesting that the PRX backbone structure improves the binding affinity with ASGR. However, the intracellular uptake levels of GalNAc-PRXs in HepG2 cells increased with a decrease in the number of modified GalNAc units, which was opposite to the trend observed in the binding affinity study. We found that GalNAc-PRXs had a large number of GalNAc units localized in recycling endosomes, resulting in the low intracellular uptake. The cholesterol-reducing abilities of GalNAc-PRXs were assessed using cholesterol-overloaded HepG2 cells. GalNAc-PRXs with a small number of GalNAc units were demonstrated to show superior cholesterol-reducing effects compared to previously designed acid-degradable PRX and clinically tested β-CD derivatives. Thus, we conclude that GalNAc modification is a promising molecular design for the therapeutic application of β-CD-threaded PRXs in various metabolic diseases with cholesterol overload or imbalance in the liver.
Collapse
Affiliation(s)
- Moe Ohashi
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Atsushi Tamura
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
8
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
10
|
The Rab GTPase in the heart: Pivotal roles in development and disease. Life Sci 2022; 306:120806. [PMID: 35841978 DOI: 10.1016/j.lfs.2022.120806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
Rab proteins are a family of small GTPases that function as molecular switches of intracellular vesicle formation and membrane trafficking. As a key factor, Rab GTPase participates in autophagy and protein transport and acts as the central hub of membrane trafficking in eukaryotes. The role of Rab GTPase in neurodegenerative disorders, such as Alzheimer's and Parkinson's, has been extensively investigated; however, its implication in cardiovascular embryogenesis and diseases remains largely unknown. In this review, we summarize previous findings and reveal their importance in the onset and progression of cardiac diseases, as well as their emergence as potential therapeutic targets for cardiovascular disease.
Collapse
|
11
|
Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Roles of Receptor Phosphorylation and Rab Proteins in G Protein-Coupled Receptor Function and Trafficking. Mol Pharmacol 2022; 101:144-153. [PMID: 34969830 DOI: 10.1124/molpharm.121.000429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The G protein-coupled receptors form the most abundant family of membrane proteins and are crucial physiologic players in the homeostatic equilibrium, which we define as health. They also participate in the pathogenesis of many diseases and are frequent targets of therapeutic intervention. Considering their importance, it is not surprising that different mechanisms regulate their function, including desensitization, resensitization, internalization, recycling to the plasma membrane, and degradation. These processes are modulated in a highly coordinated and specific way by protein kinases and phosphatases, ubiquitin ligases, protein adaptors, interaction with multifunctional complexes, molecular motors, phospholipid metabolism, and membrane distribution. This review describes significant advances in the study of the regulation of these receptors by phosphorylation and endosomal traffic (where signaling can take place); we revisited the bar code hypothesis and include two additional observations: 1) that different phosphorylation patterns seem to be associated with internalization and endosome sorting for recycling or degradation, and 2) that, surprisingly, phosphorylation of some G protein-coupled receptors appears to be required for proper receptor insertion into the plasma membrane. SIGNIFICANCE STATEMENT: G protein-coupled receptor phosphorylation is an early event in desensitization/signaling switching, endosomal traffic, and internalization. These events seem crucial for receptor responsiveness, cellular localization, and fate (recycling/degradation) with important pharmacological/therapeutic implications. Phosphorylation sites vary depending on the cells in which they are expressed and on the stimulus that leads to such covalent modification. Surprisingly, evidence suggests that phosphorylation also seems to be required for proper insertion into the plasma membrane for some receptors.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - Jesús Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| |
Collapse
|
12
|
Wang X, Wang D, Su F, Li C, Chen M. Immune abnormalities and differential gene expression in the hippocampus and peripheral blood of patients with Alzheimer's disease. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:29. [PMID: 35282083 PMCID: PMC8848377 DOI: 10.21037/atm-21-4974] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/06/2021] [Indexed: 01/14/2023]
Abstract
Background Despite decades of research, no precise mechanisms of Alzheimer's disease (AD) development have been elucidated. This study aimed to investigate novel diagnostic biomarkers in both peripheral blood cells and hippocampus tissue, and the pathogenesis of memory impairment in AD. Methods mRNA microarray data, including hippocampus samples (GSE1297 and GSE5281) and peripheral blood mononuclear cells (PBMCs) (GSE63060 and GSE63061), associated with AD were obtained from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between AD and normal-aging samples were screened through a comprehensive analysis of multiple gene expression spectra after gene reannotation and batch normalization. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to analyze hub genes and to discover potential biomarkers related to AD. Protein-protein interaction (PPI) network maps were constructed to visualize the correlation between possible genes. The CIBERSORT algorithm was built to explore the patterns of PBMC infiltration to investigate the role of inflammation in the pathogenesis of AD. Results The bioinformatics analysis indicated 1,261 DEGs in the hippocampal samples and 290 in PBMCs when comparing patients with AD with normal-aging individuals. We selected 28 genes co-expressed in the hippocampus and PBMCs. A functional analysis of differential genes revealed that they were primarily involved in neuronal death, immune response, and mitochondrial function. Further, immune cell infiltration patterns demonstrated that the levels of naive CD4+ T cells, resting natural killer cells, M0 macrophages, and activated mast cells were higher in the peripheral blood of patients with AD, while resting memory CD4+ T cells were significantly lower. Conclusions The key gene changes present in both the hippocampus and PBMCs highly suggest their utility as an AD biomarker. In addition, according to our present results, immune abnormalities may have an important role in AD pathophysiology. When patients display these peripheral blood immune abnormalities, they may be recognized as being at high risk of developing AD.
Collapse
Affiliation(s)
- Xiaonan Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Di Wang
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Su
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
13
|
von Grabowiecki Y, Phatak V, Aschauer L, Muller PAJ. Rab11-FIP1/RCP Functions as a Major Signalling Hub in the Oncogenic Roles of Mutant p53 in Cancer. Front Oncol 2021; 11:804107. [PMID: 35757381 PMCID: PMC9231559 DOI: 10.3389/fonc.2021.804107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/03/2021] [Indexed: 12/22/2022] Open
Abstract
Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.
Collapse
Affiliation(s)
- Yannick von Grabowiecki
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
| | - Vinaya Phatak
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Avacta Life Sciences, Cambridge, United Kingdom
| | - Lydia Aschauer
- Medical Research Council (MRC) Toxicology Unit, Cambridge, United Kingdom
- Orbit Discovery, Oxford, United Kingdom
| | - Patricia A. J. Muller
- Tumour Suppressors Group, Cancer Research United Kingdom (UK) Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
- Department of Biosciences, Faculty of Science, Durham University, Durham, United Kingdom
- *Correspondence: Patricia A. J. Muller,
| |
Collapse
|
14
|
Tajbakhsh A, Gheibihayat SM, Mortazavi D, Medhati P, Rostami B, Savardashtaki A, Momtazi-Borojeni AA. The Effect of Cigarette Smoke Exposure on Efferocytosis in Chronic Obstructive Pulmonary Disease; Molecular Mechanisms and Treatment Opportunities. COPD 2021; 18:723-736. [PMID: 34865568 DOI: 10.1080/15412555.2021.1978419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cigarette smoking-related inflammation, cellular stresses, and tissue destruction play a key role in lung disease, such as chronic obstructive pulmonary disease (COPD). Notably, augmented apoptosis and impaired clearance of apoptotic cells, efferocytosis, contribute to the chronic inflammatory response and tissue destruction in patients with COPD. Of note, exposure to cigarette smoke can impair alveolar macrophages efferocytosis activity, which leads to secondary necrosis formation and tissue inflammation. A better understanding of the processes behind the effect of cigarette smoke on efferocytosis concerning lung disorders can help to design more efficient treatment approaches and also delay the development of lung disease, such as COPD. To this end, we aimed to seek mechanisms underlying the impairing effect of cigarette smoke on macrophages-mediated efferocytosis in COPD. Further, available therapeutic opportunities for restoring efferocytosis activity and ameliorating respiratory tract inflammation in smokers with COPD were also discussed.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Deniz Mortazavi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Pourya Medhati
- Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behrouz Rostami
- Health & Treatment Center of Rostam, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Iran's National Elites Foundation, Tehran, Iran
| |
Collapse
|
15
|
Song S, Xia X, Qi J, Hu X, Chen Q, Liu J, Ji N, Zhao H. Silmitasertib-induced macropinocytosis promoting DDP intracellular uptake to enhance cell apoptosis in oral squamous cell carcinoma. Drug Deliv 2021; 28:2480-2494. [PMID: 34766543 PMCID: PMC8592591 DOI: 10.1080/10717544.2021.2000677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cisplatin (DDP) is a first-line chemotherapeutic drug applied for the treatment of oral squamous cell carcinoma (OSCC). The anticancer activity of DDP is tightly linked to its intracellular uptake. It is unwise to increase the DDP intake by increasing the dose or shortening the dosing interval because of the severe systemic toxicity (nephrotoxicity, ototoxicity and neurotoxicity) in DDP application. The main uptake pathways of DDP include passive diffusion and active transporter transport. Therefore, finding additional uptake pathways that can improve the effective intracellular concentration of DDP is critical. Macropinocytosis, an endocytic mechanism for extracellular material absorption, contributes to the intracellular uptake of anticancer drugs. No research has been conducted to determine whether macropinocytosis can augment the intracellular uptake of DDP in OSCC cells or not. Based on that, we proved for the first time that silmitasertib (previously CX-4945) could trigger macropinocytosis, which may increase the intracellular uptake of DDP and enhance apoptosis via in vivo and in vitro experiments. We hope that our findings will inspire a new approach for the application of DDP in cancer treatment.
Collapse
Affiliation(s)
- Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiajia Qi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Xiaopei Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Qian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Miao H, Vanderleest TE, Jewett CE, Loerke D, Blankenship JT. Cell ratcheting through the Sbf RabGEF directs force balancing and stepped apical constriction. J Cell Biol 2019; 218:3845-3860. [PMID: 31562231 PMCID: PMC6829657 DOI: 10.1083/jcb.201905082] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 08/05/2019] [Accepted: 08/17/2019] [Indexed: 01/02/2023] Open
Abstract
Miao et al. show that a membrane trafficking pathway centered on Sbf and Rab35 is essential for the irreversibility of pulsed contractile events during apical constriction. Sbf/Rab35 disruption leads to a convoluted cell surface, suggesting that membrane remodeling is essential for the construction of effective actomyosin networks. During Drosophila melanogaster gastrulation, the invagination of the prospective mesoderm is driven by the pulsed constriction of apical surfaces. Here, we address the mechanisms by which the irreversibility of pulsed events is achieved while also permitting uniform epithelial behaviors to emerge. We use MSD-based analyses to identify contractile steps and find that when a trafficking pathway initiated by Sbf is disrupted, contractile steps become reversible. Sbf localizes to tubular, apical surfaces and associates with Rab35, where it promotes Rab GTP exchange. Interestingly, when Sbf/Rab35 function is compromised, the apical plasma membrane becomes deeply convoluted, and nonuniform cell behaviors begin to emerge. Consistent with this, Sbf/Rab35 appears to prefigure and organize the apical surface for efficient Myosin function. Finally, we show that Sbf/Rab35/CME directs the plasma membrane to Rab11 endosomes through a dynamic interaction with Rab5 endosomes. These results suggest that periodic ratcheting events shift excess membrane from cell apices into endosomal pathways to permit reshaping of actomyosin networks and the apical surface.
Collapse
Affiliation(s)
- Hui Miao
- Department of Biological Sciences, University of Denver, Denver, CO
| | | | - Cayla E Jewett
- Department of Biological Sciences, University of Denver, Denver, CO
| | - Dinah Loerke
- Department of Physics, University of Denver, Denver, CO
| | | |
Collapse
|
17
|
Tan L, Cho KJ, Kattan WE, Garrido CM, Zhou Y, Neupane P, Capon RJ, Hancock JF. Acylpeptide hydrolase is a novel regulator of KRAS plasma membrane localization and function. J Cell Sci 2019; 132:jcs.232132. [PMID: 31266814 DOI: 10.1242/jcs.232132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022] Open
Abstract
The primary site for KRAS signaling is the inner leaflet of the plasma membrane (PM). We previously reported that oxanthroquinone G01 (G01) inhibited KRAS PM localization and blocked KRAS signaling. In this study, we identified acylpeptide hydrolase (APEH) as a molecular target of G01. APEH formed a stable complex with biotinylated G01, and the enzymatic activity of APEH was inhibited by G01. APEH knockdown caused profound mislocalization of KRAS and reduced clustering of KRAS that remained PM localized. APEH knockdown also disrupted the PM localization of phosphatidylserine (PtdSer), a lipid critical for KRAS PM binding and clustering. The mislocalization of KRAS was fully rescued by ectopic expression of APEH in knockdown cells. APEH knockdown disrupted the endocytic recycling of epidermal growth factor receptor and transferrin receptor, suggesting that abrogation of recycling endosome function was mechanistically linked to the loss of KRAS and PtdSer from the PM. APEH knockdown abrogated RAS-RAF-MAPK signaling in cells expressing the constitutively active (oncogenic) mutant of KRAS (KRASG12V), and selectively inhibited the proliferation of KRAS-transformed pancreatic cancer cells. Taken together, these results identify APEH as a novel drug target for a potential anti-KRAS therapeutic.
Collapse
Affiliation(s)
- Lingxiao Tan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Walaa E Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christian M Garrido
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Pratik Neupane
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
18
|
Abstract
Microparticles are submicron vesicles shed from aging erythrocytes as a characteristic feature of the red blood cell (RBC) storage lesion. Exposure of pulmonary endothelial cells to RBC-derived microparticles promotes an inflammatory response, but the mechanisms underlying microparticle-induced endothelial cell activation are poorly understood. In the present study, cultured murine lung endothelial cells (MLECs) were treated with microparticles isolated from aged murine packed RBCs or vehicle. Microparticle-treated cells demonstrated increased expression of the adhesion molecules ICAM and E-selectin, as well as the cytokine, IL-6. To identify mechanisms that mediate these effects of microparticles on MLECs, cells were treated with microparticles covalently bound to carboxyfluorescein succinimidyl ester (CFSE) and cellular uptake of microparticles was quantified via flow cytometry. Compared with controls, there was a greater proportion of CFSE-positive MLECs from 15 min up to 24 h, suggesting endocytosis of the microparticles by endothelial cells. Colocalization of microparticles with lysosomes was observed via immunofluorescence, indicating endocytosis and endolysosomal trafficking. This process was inhibited by endocytosis inhibitors. SiRNA knockdown of Rab5 signaling protein in endothelial cells resulted in impaired microparticle uptake as compared with nonsense siRNA-treated cells, as well as an attenuation of the inflammatory response to microparticle treatment. Taken together, these data suggest that endocytosis of RBC-derived microparticles by lung endothelial cells results in endothelial cell activation. This response seems to be mediated, in part, by the Rab5 signaling protein.
Collapse
|
19
|
Soliman M, Kim DS, Kim C, Seo JY, Kim JY, Park JG, Alfajaro MM, Baek YB, Cho EH, Park SI, Kang MI, Chang KO, Goodfellow I, Cho KO. Porcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II. Vet Res 2018; 49:92. [PMID: 30223898 PMCID: PMC6142377 DOI: 10.1186/s13567-018-0584-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.
Collapse
Affiliation(s)
- Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Deok-Song Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Chonsaeng Kim
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ja-Young Seo
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
20
|
Song S, Cong W, Zhou S, Shi Y, Dai W, Zhang H, Wang X, He B, Zhang Q. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci 2018; 14:30-39. [PMID: 32104436 PMCID: PMC7032109 DOI: 10.1016/j.ajps.2018.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/06/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Small GTPase is a kind of GTP-binding protein commonly found in eukaryotic cells. It plays an important role in cytoskeletal reorganization, cell polarity, cell cycle progression, gene expression and many other significant events in cells, such as the interaction with foreign particles. Therefore, it is of great scientific significance to understand the biological properties of small GTPases as well as the GTPase-nano interplay, since more and more nanomedicine are supposed to be used in biomedical field. However, there is no review in this aspect. This review summarizes the small GTPases in terms of the structure, biological function and its interaction with nanoparticles. We briefly introduced the various nanoparticles such as gold/silver nanoparticles, SWCNT, polymeric micelles and other nano delivery systems that interacted with different GTPases. These current nanoparticles exhibited different pharmacological effect modes and various target design concepts in the small GTPases study. This will help to elucidate the conclusion that the therapeutic strategy targeting small GTPases might be a new research direction. It is believed that the in-depth study on the functional mechanism of GTPases can provide insights for the design and study of nanomedicines.
Collapse
Affiliation(s)
- Siyang Song
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.,Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Wenshu Cong
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Shurong Zhou
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Yujie Shi
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Wenbing Dai
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Hua Zhang
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Xueqing Wang
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Bing He
- Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | - Qiang Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.,Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| |
Collapse
|
21
|
Szczepanski A, Owczarek K, Milewska A, Baster Z, Rajfur Z, Mitchell JA, Pyrc K. Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells. Vet Res 2018; 49:55. [PMID: 29970183 PMCID: PMC6029178 DOI: 10.1186/s13567-018-0551-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/14/2018] [Indexed: 01/10/2023] Open
Abstract
Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization.
Collapse
Affiliation(s)
- Artur Szczepanski
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Owczarek
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Milewska
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Baster
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Zenon Rajfur
- Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Judy A Mitchell
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Krzysztof Pyrc
- Virogenetics, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland. .,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
22
|
Tan L, Cho KJ, Neupane P, Capon RJ, Hancock JF. An oxanthroquinone derivative that disrupts RAS plasma membrane localization inhibits cancer cell growth. J Biol Chem 2018; 293:13696-13706. [PMID: 29970615 DOI: 10.1074/jbc.ra118.003907] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/02/2018] [Indexed: 11/06/2022] Open
Abstract
Oncogenic RAS proteins are commonly expressed in human cancer. To be functional, RAS proteins must undergo post-translational modification and localize to the plasma membrane (PM). Therefore, compounds that prevent RAS PM targeting have potential as putative RAS inhibitors. Here we examine the mechanism of action of oxanthroquinone G01 (G01), a recently described inhibitor of KRAS PM localization. We show that G01 mislocalizes HRAS and KRAS from the PM with similar potency and disrupts the spatial organization of RAS proteins remaining on the PM. G01 also inhibited recycling of epidermal growth factor receptor and transferrin receptor, but did not impair internalization of cholera toxin, indicating suppression of recycling endosome function. In searching for the mechanism of impaired endosomal recycling we observed that G01 also enhanced cellular sphingomyelin (SM) and ceramide levels and disrupted the localization of several lipid and cholesterol reporters, suggesting that the G01 molecular target may involve SM metabolism. Indeed, G01 exhibited potent synergy with other compounds that target SM metabolism in KRAS localization assays. Furthermore, G01 significantly abrogated RAS-RAF-MAPK signaling in Madin-Darby canine kidney (MDCK) cells expressing constitutively activated, oncogenic mutant RASG12V. G01 also inhibited the proliferation of RAS-less mouse embryo fibroblasts expressing oncogenic mutant KRASG12V or KRASG12D but not RAS-less mouse embryo fibroblasts expressing oncogenic mutant BRAFV600E. Consistent with these effects, G01 selectively inhibited the proliferation of KRAS-transformed pancreatic, colon, and endometrial cancer cells. Taken together, these results suggest that G01 should undergo further evaluation as a potential anti-RAS therapeutic.
Collapse
Affiliation(s)
- Lingxiao Tan
- From the Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Kwang-Jin Cho
- the Department of Biochemistry and Molecular Biology, Wright State University, Dayton, Ohio 45435, and
| | - Pratik Neupane
- the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J Capon
- the Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - John F Hancock
- From the Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, Houston, Texas 77030,
| |
Collapse
|
23
|
Scheidel N, Kennedy J, Blacque OE. Endosome maturation factors Rabenosyn-5/VPS45 and caveolin-1 regulate ciliary membrane and polycystin-2 homeostasis. EMBO J 2018; 37:embj.201798248. [PMID: 29572244 DOI: 10.15252/embj.201798248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
Primary cilium structure and function relies on control of ciliary membrane homeostasis, regulated by membrane trafficking processes that deliver and retrieve ciliary components at the periciliary membrane. However, the molecular mechanisms controlling ciliary membrane establishment and maintenance, especially in relation to endocytosis, remain poorly understood. Here, using Caenorhabditis elegans, we describe closely linked functions for early endosome (EE) maturation factors RABS-5 (Rabenosyn-5) and VPS-45 (VPS45) in regulating cilium length and morphology, ciliary and periciliary membrane volume, and ciliary signalling-related sensory behaviour. We demonstrate that RABS-5 and VPS-45 control periciliary vesicle number and levels of select EE/endocytic markers (WDFY-2, CAV-1) and the ciliopathy membrane receptor PKD-2 (polycystin-2). Moreover, we show that CAV-1 (caveolin-1) also controls PKD-2 ciliary levels and associated sensory behaviour. These data link RABS-5 and VPS-45 ciliary functions to the processing of periciliary-derived endocytic vesicles and regulation of ciliary membrane homeostasis. Our findings also provide insight into the regulation of PKD-2 ciliary levels via integrated endosomal sorting and CAV-1-mediated endocytosis.
Collapse
Affiliation(s)
- Noémie Scheidel
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Julie Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Oliver E Blacque
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
24
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
25
|
Porcine Hemagglutinating Encephalomyelitis Virus Enters Neuro-2a Cells via Clathrin-Mediated Endocytosis in a Rab5-, Cholesterol-, and pH-Dependent Manner. J Virol 2017; 91:JVI.01083-17. [PMID: 28956766 PMCID: PMC5686734 DOI: 10.1128/jvi.01083-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/07/2017] [Indexed: 12/24/2022] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a highly neurovirulent coronavirus that invades the central nervous system (CNS) in piglets. Although important progress has been made toward understanding the biology of PHEV, many aspects of its life cycle remain obscure. Here we dissected the molecular mechanism underlying cellular entry and intracellular trafficking of PHEV in mouse neuroblastoma (Neuro-2a) cells. We first performed a thin-section transmission electron microscopy (TEM) assay to characterize the kinetics of PHEV, and we found that viral entry and transfer occur via membranous coating-mediated endo- and exocytosis. To verify the roles of distinct endocytic pathways, systematic approaches were used, including pharmacological inhibition, RNA interference, confocal microscopy analysis, use of fluorescently labeled virus particles, and overexpression of a dominant negative (DN) mutant. Quantification of infected cells showed that PHEV enters cells by clathrin-mediated endocytosis (CME) and that low pH, dynamin, cholesterol, and Eps15 are indispensably involved in this process. Intriguingly, PHEV invasion leads to rapid actin rearrangement, suggesting that the intactness and dynamics of the actin cytoskeleton are positively correlated with viral endocytosis. We next investigated the trafficking of internalized PHEV and found that Rab5- and Rab7-dependent pathways are required for the initiation of a productive infection. Furthermore, a GTPase activation assay suggested that endogenous Rab5 is activated by PHEV and is crucial for viral progression. Our findings demonstrate that PHEV hijacks the CME and endosomal system of the host to enter and traffic within neural cells, providing new insights into PHEV pathogenesis and guidance for antiviral drug design. IMPORTANCE Porcine hemagglutinating encephalomyelitis virus (PHEV), a nonsegmented, positive-sense, single-stranded RNA coronavirus, invades the central nervous system (CNS) and causes neurological dysfunction. Neural cells are its targets for viral progression. However, the detailed mechanism underlying PHEV entry and trafficking remains unknown. PHEV is the etiological agent of porcine hemagglutinating encephalomyelitis, which is an acute and highly contagious disease that causes numerous deaths in suckling piglets and enormous economic losses in China. Understanding the viral entry pathway will not only advance our knowledge of PHEV infection and pathogenesis but also open new approaches to the development of novel therapeutic strategies. Therefore, we employed systematic approaches to dissect the internalization and intracellular trafficking mechanism of PHEV in Neuro-2a cells. This is the first report to describe the process of PHEV entry into nerve cells via clathrin-mediated endocytosis in a dynamin-, cholesterol-, and pH-dependent manner that requires Rab5 and Rab7.
Collapse
|
26
|
Gomi H, Osawa H, Uno R, Yasui T, Hosaka M, Torii S, Tsukise A. Canine Salivary Glands: Analysis of Rab and SNARE Protein Expression and SNARE Complex Formation With Diverse Tissue Properties. J Histochem Cytochem 2017; 65:637-653. [PMID: 28914590 DOI: 10.1369/0022155417732527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The comparative structure and expression of salivary components and vesicular transport proteins in the canine major salivary glands were investigated. Histochemical analysis revealed that the morphology of the five major salivary glands-parotid, submandibular, polystomatic sublingual, monostomatic sublingual, and zygomatic glands-was greatly diverse. Immunoblot analysis revealed that expression levels of α-amylase and antimicrobial proteins, such as lysozyme, lactoperoxidase, and lactoferrin, differed among the different glands. Similarly, Rab proteins (Rab3d, Rab11a, Rab11b, Rab27a, and Rab27b) and soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins VAMP4, VAMP8, syntaxin-2, syntaxin-3, syntaxin-4, and syntaxin-6 were expressed at various levels in individual glands. mmunohistochemistry of Rab3d, Rab11b, Rab27b, VAMP4, VAMP8, syntaxin-4, and syntaxin-6 revealed their predominant expression in serous acinar cells, demilunes, and ductal cells. The VAMP4/syntaxin-6 SNARE complex, which is thought to be involved in the maturation of secretory granules in the Golgi field, was found more predominantly in the monostomatic sublingual gland than in the parotid gland. These results suggest that protein expression profiles in canine salivary glands differ among individual glands and reflect the properties of their specialized functions.
Collapse
Affiliation(s)
- Hiroshi Gomi
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiromi Osawa
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Rie Uno
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Tadashi Yasui
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Seiji Torii
- Laboratory of Secretion Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Azuma Tsukise
- Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|
27
|
Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun 2017; 8:466. [PMID: 28878211 PMCID: PMC5587708 DOI: 10.1038/s41467-017-00503-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species are produced transiently in response to cell stimuli, and function as second messengers that oxidize target proteins. Protein-tyrosine phosphatases are important reactive oxygen species targets, whose oxidation results in rapid, reversible, catalytic inactivation. Despite increasing evidence for the importance of protein-tyrosine phosphatase oxidation in signal transduction, the cell biological details of reactive oxygen species-catalyzed protein-tyrosine phosphatase inactivation have remained largely unclear, due to our inability to visualize protein-tyrosine phosphatase oxidation in cells. By combining proximity ligation assay with chemical labeling of cysteine residues in the sulfenic acid state, we visualize oxidized Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2). We find that platelet-derived growth factor evokes transient oxidation on or close to RAB5+/ early endosome antigen 1− endosomes. SHP2 oxidation requires NADPH oxidases (NOXs), and oxidized SHP2 co-localizes with platelet-derived growth factor receptor and NOX1/4. Our data demonstrate spatially and temporally limited protein oxidation within cells, and suggest that platelet-derived growth factor-dependent “redoxosomes,” contribute to proper signal transduction. Protein-tyrosine phosphatases (PTPs) are thought to be major targets of receptor-activated reactive oxygen species (ROS). Here the authors describe a method that allows the localized visualization of oxidized intermediates of PTPs inside cells during signaling, and provide support for the “redoxosome” model.
Collapse
|
28
|
Giovannone AJ, Reales E, Bhattaram P, Fraile-Ramos A, Weimbs T. Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes. Mol Biol Cell 2017; 28:2843-2853. [PMID: 28814500 PMCID: PMC5638587 DOI: 10.1091/mbc.e17-07-0461] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023] Open
Abstract
Monoubiquitination of Stx3 leads to efficient endocytosis from the basolateral plasma membrane and trafficking into the multivesicular body/exosomal pathway. Stx3 plays a role in cargo recruitment into exosomes. This pathway is exploited by HCMV for virion excretion. Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion.
Collapse
Affiliation(s)
- Adrian J Giovannone
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Elena Reales
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Pallavi Bhattaram
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| | - Alberto Fraile-Ramos
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|
29
|
Shioda N, Yabuki Y, Wang Y, Uchigashima M, Hikida T, Sasaoka T, Mori H, Watanabe M, Sasahara M, Fukunaga K. Endocytosis following dopamine D 2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons. Mol Psychiatry 2017; 22:1205-1222. [PMID: 27922607 DOI: 10.1038/mp.2016.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.
Collapse
Affiliation(s)
- N Shioda
- Department of Biofunctional Analysis Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | - Y Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Y Wang
- Department of Pharmacology, Beckman Institute, University of Illinois, Urbana, IL, USA
| | - M Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - H Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - M Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| | - K Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
30
|
Pham CD, Smith CE, Hu Y, Hu JCC, Simmer JP, Chun YHP. Endocytosis and Enamel Formation. Front Physiol 2017; 8:529. [PMID: 28824442 PMCID: PMC5534449 DOI: 10.3389/fphys.2017.00529] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Enamel formation requires consecutive stages of development to achieve its characteristic extreme mineral hardness. Mineralization depends on the initial presence then removal of degraded enamel proteins from the matrix via endocytosis. The ameloblast membrane resides at the interface between matrix and cell. Enamel formation is controlled by ameloblasts that produce enamel in stages to build the enamel layer (secretory stage) and to reach final mineralization (maturation stage). Each stage has specific functional requirements for the ameloblasts. Ameloblasts adopt different cell morphologies during each stage. Protein trafficking including the secretion and endocytosis of enamel proteins is a fundamental task in ameloblasts. The sites of internalization of enamel proteins on the ameloblast membrane are specific for every stage. In this review, an overview of endocytosis and trafficking of vesicles in ameloblasts is presented. The pathways for internalization and routing of vesicles are described. Endocytosis is proposed as a mechanism to remove debris of degraded enamel protein and to obtain feedback from the matrix on the status of the maturing enamel.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| | - Charles E. Smith
- Department of Anatomy and Cell Biology, McGill UniversityMontreal, QC, Canada
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Jan C-C. Hu
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of MichiganAnn Arbor, MI, United States
| | - Yong-Hee P. Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
- Department of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San AntonioSan Antonio, TX, United States
| |
Collapse
|
31
|
Takahashi K, Mashima H, Miura K, Maeda D, Goto A, Goto T, Sun-Wada GH, Wada Y, Ohnishi H. Disruption of Small GTPase Rab7 Exacerbates the Severity of Acute Pancreatitis in Experimental Mouse Models. Sci Rep 2017; 7:2817. [PMID: 28588238 PMCID: PMC5460112 DOI: 10.1038/s41598-017-02988-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 04/21/2017] [Indexed: 01/25/2023] Open
Abstract
Although aberrations of intracellular vesicle transport systems towards lysosomes including autophagy and endocytosis are involved in the onset and progression of acute pancreatitis, the molecular mechanisms underlying such aberrations remain unclear. The pathways of autophagy and endocytosis are closely related, and Rab7 plays crucial roles in both. In this study, we analyzed the function of Rab7 in acute pancreatitis using pancreas-specific Rab7 knockout (Rab7Δpan) mice. In Rab7Δpan pancreatic acinar cells, the maturation steps of both endosomes and autophagosomes were deteriorated, and the lysosomal functions were affected. In experimental models of acute pancreatitis, the histopathological severity, serum amylase concentration and intra-pancreatic trypsin activity were significantly higher in Rab7Δpan mice than in wild-type mice. Furthermore, the autophagy process was blocked in Rab7Δpan pancreas compared with wild-type mice. In addition, larger autophagic vacuoles that colocalize with early endosome antigen 1 (EEA1) but not with lysosomal-associated membrane protein (LAMP)-1 were much more frequently formed in Rab7Δpan pancreatic acinar cells. Accordingly, Rab7 deficiency exacerbates the severity of acute pancreatitis by impairing the autophagic and endocytic pathways toward lysosomes.
Collapse
Affiliation(s)
- Kenichi Takahashi
- Department of Gastroenterology and Hepato-Biliary-Pancreatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hirosato Mashima
- Department of Gastroenterology, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kouichi Miura
- Department of Gastroenterology and Hepato-Biliary-Pancreatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takashi Goto
- Department of Gastroenterology and Hepato-Biliary-Pancreatology, Akita University Graduate School of Medicine, Akita, Japan
| | - Ge-Hong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyoto, Japan
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Hirohide Ohnishi
- Department of Gastroenterology, Saitama Medical Center, Jichi Medical University, Saitama, Japan.
- Japan Organization of Occupational Health and Safety, Kanagawa, Japan.
| |
Collapse
|
32
|
Buckley CM, King JS. Drinking problems: mechanisms of macropinosome formation and maturation. FEBS J 2017; 284:3778-3790. [DOI: 10.1111/febs.14115] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Catherine M. Buckley
- Department of Biomedical Sciences Centre for Membrane Interactions and Dynamics University of Sheffield UK
- Bateson Centre University of Sheffield UK
| | - Jason S. King
- Department of Biomedical Sciences Centre for Membrane Interactions and Dynamics University of Sheffield UK
- Bateson Centre University of Sheffield UK
| |
Collapse
|
33
|
Functional implication of the common evolutionary origin of nuclear pore complex and endomembrane management systems. Semin Cell Dev Biol 2017; 68:10-17. [PMID: 28473267 DOI: 10.1016/j.semcdb.2017.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/24/2022]
Abstract
Nuclear pore complexes (NPCs) are the sole gateway between the cytoplasm and the nucleus serving both as stringent permeability barrier and active transporters between the two compartments of eukaryotic cells. Complete mechanistic understanding of how these two functions are implemented within one and the same transport machine has not been attained to date. Based on several lines of structural evidence, a hypothesis was proposed postulating that NPCs shares common evolutionary origin with other intracellular systems responsible for active management of endomembranes. In this review we attempt to summarize the evidence supporting this hypothesis. The structural data obtained so far is evaluated and supplemented with the analysis of the functional evidence. Based on this analysis, a model is proposed which integrates the knowledge from the field of NPC function with that obtained from other endomembrane management systems in an attempt to shed new light on the mechanism of the NPC active transport.
Collapse
|
34
|
Abstract
Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Patrizia D'Adamo
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
35
|
Pérez-Montesinos G, López-Ortega O, Piedra-Reyes J, Bonifaz LC, Moreno J. Dynamic Changes in the Intracellular Association of Selected Rab Small GTPases with MHC Class II and DM during Dendritic Cell Maturation. Front Immunol 2017; 8:340. [PMID: 28396666 PMCID: PMC5367080 DOI: 10.3389/fimmu.2017.00340] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/09/2017] [Indexed: 01/13/2023] Open
Abstract
Antigen processing for presentation by major histocompatibility complex class II (MHCII) molecules requires the latter to travel through the endocytic pathway together with its chaperons: the invariant chain (Ii) and DM. Nevertheless, the nature of the compartments where MHCII molecules travel to acquire peptides lacks definition regarding molecules involved in intracellular vesicular trafficking, such as Rab small GTPases. We aimed to define which Rab proteins are present during the intracellular transport of MHCII, DM, and Ii through the endocytic pathway on their route to the cell surface during dendritic cell (DC) maturation. We examined, by means of three-color confocal microscopy, the association of MHCII, DM, and Ii with Rab5, Rab7, Rab9, and Rab11 during the maturation of bone marrow-derived or spleen DC in response to LPS as an inflammatory stimulus. Prior to the stage of immature DC, MHCII migrated from diffuse small cytoplasmic vesicles, predominantly Rab5+Rab7- and Rab5+Rab7+ into a pericentriolar Rab5+Rab7+Rab9+ cluster, with Rab11+ areas. As DC reached the mature phenotype, MHCII left the pericentriolar endocytic compartments toward the cell surface in Rab11+ and Rab9+Rab11+ vesicles. The invariant chain and MHCII transport pathways were not identical. DM and MHCII appeared to arrive to pericentriolar endocytic compartments of immature DC through partially different routes. The association of MHCII molecules with distinct Rab GTPases during DC maturation suggests that after leaving the biosynthetic pathway, MHCII sequentially traffic from typical early endosomes to multivesicular late endosomes to finally arrive at the cell surface in Rab11+ recycling-type endosomes. In immature DCs, DM encounters transiently MHCII in the Rab5+Rab7+Rab9+ compartments, to remain there in mature DC.
Collapse
Affiliation(s)
- Gibrán Pérez-Montesinos
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Centro Dermatológico “Dr. Ladislao de la Pascua”, Secretaría de Salud del Distrito Federal, Mexico City, Distrito Federal, Mexico
| | - Orestes López-Ortega
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Jessica Piedra-Reyes
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| | - Laura C. Bonifaz
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
| | - José Moreno
- Research Unit on Autoimmune Diseases, Research Unit on Immunochemistry, Centro México Nacional Siglo XXI, IMSS, Instituto Mexicano del Seguro Social, Mexico City, Distrito Federal, Mexico
- Hospital Juárez de México, Secretaría de Salud, Mexico City, Distrito Federal, Mexico
| |
Collapse
|
36
|
Novel phenotypes of Drosophila spinster locus on the head formation during embryogenesis. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0513-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Drozdz MM, Vaux DJ. Shared mechanisms in physiological and pathological nucleoplasmic reticulum formation. Nucleus 2017; 8:34-45. [PMID: 27797635 PMCID: PMC5287099 DOI: 10.1080/19491034.2016.1252893] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The mammalian nuclear envelope (NE) can develop complex dynamic membrane-bounded invaginations in response to both physiological and pathological stimuli. Since the formation of these nucleoplasmic reticulum (NR) structures can occur during interphase, without mitotic NE breakdown and reassembly, some other mechanism must drive their development. Here we consider models for deformation of the interphase NE, together with the evidence for their potential roles in NR formation.
Collapse
Affiliation(s)
| | - David John Vaux
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Lammers K, Abeln B, Hüsken M, Lehmacher C, Psathaki OE, Alcorta E, Meyer H, Paululat A. Formation and function of intracardiac valve cells in the Drosophila heart. J Exp Biol 2017; 220:1852-1863. [DOI: 10.1242/jeb.156265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/26/2017] [Indexed: 01/20/2023]
Abstract
Drosophila harbors a simple tubular heart that ensures hemolymph circulation within the body. The heart is built by a few different cell types, including cardiomyocytes that define the luminal heart channel and ostia cells that constitute openings in the heart wall allowing hemolymph to enter the heart chamber. Regulation of flow directionality within a tube, such as blood flow in arteries or insect hemolymph within the heart lumen, requires a dedicated gate, valve, or flap-like structure that prevents backflow of fluids. In the Drosophila heart, intracardiac valves provide this directionality of hemolymph streaming, with one valve being present in larvae and three valves in the adult fly. Each valve is built by two specialized cardiomyocytes that exhibit a unique histology. We found that the capacity to open and close the heart lumen relies on a unique myofibrillar setting as well as on the presence of large membranous vesicles. These vesicles are of endocytic origin and probably represent unique organelles of valve cells. Moreover, we characterised the working mode of the cells in real time. Valve cells exhibit a highly flexible shape and during each heartbeat, oscillating shape changes result in closing and opening of the heart channel. Finally, we identified a set of novel valve cell markers useful for future in-depth analyses of cell differentiation in wildtype and mutant animals.
Collapse
Affiliation(s)
- Kay Lammers
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Bettina Abeln
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Mirko Hüsken
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Christine Lehmacher
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | | | - Esther Alcorta
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, C/ Julián Clavería s/n, 33.006 Oviedo, Spain
| | - Heiko Meyer
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| | - Achim Paululat
- University of Osnabrück, Department of Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrueck, Germany
| |
Collapse
|
39
|
Divergent Transcriptional Responses to Physiological and Xenobiotic Stress in Giardia duodenalis. Antimicrob Agents Chemother 2016; 60:6034-45. [PMID: 27458219 DOI: 10.1128/aac.00977-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/19/2016] [Indexed: 12/22/2022] Open
Abstract
Understanding how parasites respond to stress can help to identify essential biological processes. Giardia duodenalis is a parasitic protist that infects the human gastrointestinal tract and causes 200 to 300 million cases of diarrhea annually. Metronidazole, a major antigiardial drug, is thought to cause oxidative damage within the infective trophozoite form. However, treatment efficacy is suboptimal, due partly to metronidazole-resistant infections. To elucidate conserved and stress-specific responses, we calibrated sublethal metronidazole, hydrogen peroxide, and thermal stresses to exert approximately equal pressure on trophozoite growth and compared transcriptional responses after 24 h of exposure. We identified 252 genes that were differentially transcribed in response to all three stressors, including glycolytic and DNA repair enzymes, a mitogen-activated protein (MAP) kinase, high-cysteine membrane proteins, flavin adenine dinucleotide (FAD) synthetase, and histone modification enzymes. Transcriptional responses appeared to diverge according to physiological or xenobiotic stress. Downregulation of the antioxidant system and α-giardins was observed only under metronidazole-induced stress, whereas upregulation of GARP-like transcription factors and their subordinate genes was observed in response to hydrogen peroxide and thermal stressors. Limited evidence was found in support of stress-specific response elements upstream of differentially transcribed genes; however, antisense derepression and differential regulation of RNA interference machinery suggest multiple epigenetic mechanisms of transcriptional control.
Collapse
|
40
|
Lee ZY, Prouteau M, Gotta M, Barral Y. Compartmentalization of the endoplasmic reticulum in the early C. elegans embryos. J Cell Biol 2016; 214:665-76. [PMID: 27597753 PMCID: PMC5021094 DOI: 10.1083/jcb.201601047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022] Open
Abstract
Lee et al. show that the ER in the C. elegans embryo is continuous, but its membrane is compartmentalized, as found in budding yeast and mouse NSCs. This compartmentalization plays a potential role in the polarity of the early embryo. The one-cell Caenorhabditis elegans embryo is polarized to partition fate determinants between the cell lineages generated during its first division. Using fluorescence loss in photobleaching, we find that the endoplasmic reticulum (ER) of the C. elegans embryo is physically continuous throughout the cell, but its membrane is compartmentalized shortly before nuclear envelope breakdown into an anterior and a posterior domain, indicating that a diffusion barrier forms in the ER membrane between these two domains. Using mutants with disorganized ER, we show that ER compartmentalization is independent of the morphological transition that the ER undergoes in mitosis. In contrast, compartmentalization takes place at the position of the future cleavage plane in a par-3–dependent manner. Together, our data indicate that the ER membrane is compartmentalized in cells as diverse as budding yeast, mouse neural stem cells, and the early C. elegans embryo.
Collapse
Affiliation(s)
- Zuo Yen Lee
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| | - Manoël Prouteau
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Monica Gotta
- Department of Cell Physiology and Metabolism, University of Geneva Medical School, CH-1211 Geneva, Switzerland
| | - Yves Barral
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
41
|
Brejchova J, Vosahlikova M, Roubalova L, Parenti M, Mauri M, Chernyavskiy O, Svoboda P. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family. J Bioenerg Biomembr 2016; 48:375-96. [DOI: 10.1007/s10863-016-9667-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
42
|
Subramaniam R, Mukherjee S, Chen H, Keshava S, Neuenschwander P, Shams H. Restoring cigarette smoke-induced impairment of efferocytosis in alveolar macrophages. Mucosal Immunol 2016; 9:873-83. [PMID: 26577570 DOI: 10.1038/mi.2015.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/04/2015] [Indexed: 02/04/2023]
Abstract
Cigarette smoke has been associated with susceptibility to different pulmonary and airway diseases. Impaired alveolar macrophages (AMs) that are major phagocytes in the lung have been associated with patients with airway diseases and active smokers. In the current report, we show that exposure to second-hand cigarette smoke (SHS) significantly reduced efferocytosis in vivo. More importantly, delivery of recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) to the alveolar space restored and refurbished the efferocytosis capability of AMs. Exposure to SHS significantly reduced expression of CD16/32 on AMs, and treatment with GM-CSF not only restored but also significantly increased the expression of CD16/32 on AMs. GM-CSF treatment increased uptake and digestion/removal of apoptotic cells by AMs. The latter was attributed to increased expression of Rab5 and Rab7. Increased efferocytosis of AMs was also tested in a disease condition. AMs from GM-CSF-treated, influenza-infected, SHS-exposed mice showed significantly better efferocytosis activity, and mice had significantly less morbidity compared with phosphate-buffered saline-treated group. GM-CSF-treated mice had increased amphiregulin levels in the lungs, which in addition to efferocytosis of AMs may have attributed to their protection against influenza. These results will have great implications for developing therapeutic approaches by harnessing mucosal innate immunity to treat lung and airway diseases and protect against pneumonia.
Collapse
Affiliation(s)
- R Subramaniam
- Center for Pulmonary and Infectious Diseases Control (CPIDC), The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - S Mukherjee
- Center for Pulmonary and Infectious Diseases Control (CPIDC), The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - H Chen
- Center for Pulmonary and Infectious Diseases Control (CPIDC), The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - S Keshava
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - P Neuenschwander
- Biomedical research, The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| | - H Shams
- Center for Pulmonary and Infectious Diseases Control (CPIDC), The University of Texas Health Science Center at Tyler, Tyler, Texas, USA
| |
Collapse
|
43
|
Basagiannis D, Christoforidis S. Constitutive Endocytosis of VEGFR2 Protects the Receptor against Shedding. J Biol Chem 2016; 291:16892-903. [PMID: 27298320 DOI: 10.1074/jbc.m116.730309] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Indexed: 12/19/2022] Open
Abstract
VEGFR2 plays a fundamental role in blood vessel formation and in life threatening diseases, such as cancer angiogenesis and cardiovascular disorders. Although inactive growth factor receptors are mainly localized at the plasma membrane, VEGFR2 undergoes constitutive endocytosis (in the absence of ligand) and recycling. Intriguingly, the significance of these futile transport cycles of VEGFR2 remains unclear. Here we found that, unexpectedly, the function of constitutive endocytosis of VEGFR2 is to protect the receptor against plasma membrane cleavage (shedding), thereby preserving the functional state of the receptor until the time of activation by VEGF. Inhibition of constitutive endocytosis of VEGFR2, by interference with the function of clathrin, dynamin, or Rab5, increases dramatically the cleavage/shedding of VEGFR2. Shedding of VEGFR2 produces an N-terminal soluble fragment (100 kDa, s100), which is released in the extracellular space, and a residual C-terminal part (130 kDa, p130) that remains integrated at the plasma membrane. The released soluble fragment (s100) co-immunoprecipitates with VEGF, in line with the topology of the VEGF-binding domain at the N terminus of VEGFR2. Increased shedding of VEGFR2 (via inhibition of constitutive endocytosis) results in reduced response to VEGF, consistently with the loss of the VEGF-binding domain from the membrane remnant of VEGFR2. These data suggest that constitutive internalization of VEGFR2 protects the receptor against shedding and provides evidence for an unprecedented mechanism via which endocytosis can regulate the fate and activity of growth factor receptors.
Collapse
Affiliation(s)
- Dimitris Basagiannis
- From the Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina and the Department of Medicine, Laboratory of Biological Chemistry, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Savvas Christoforidis
- From the Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, 45110 Ioannina and the Department of Medicine, Laboratory of Biological Chemistry, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
44
|
Zhang Z, Zehnder B, Damrau C, Urban S. Visualization of hepatitis B virus entry - novel tools and approaches to directly follow virus entry into hepatocytes. FEBS Lett 2016; 590:1915-26. [PMID: 27149321 DOI: 10.1002/1873-3468.12202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis B virus (HBV) is a widespread human pathogen, responsible for chronic infections of ca. 240 million people worldwide. Until recently, the entry pathway of HBV into hepatocytes was only partially understood. The identification of human sodium taurocholate cotransporting polypeptide (NTCP) as a bona fide receptor of HBV has provided us with new tools to investigate this pathway in more details. Combined with advances in virus visualization techniques, approaches to directly visualize HBV cell attachment, NTCP interaction, virion internalization and intracellular transport are now becoming feasible. This review summarizes our current understanding of how HBV specifically enters hepatocytes, and describes possible visualization strategies applicable for a deeper understanding of the underlying cell biological processes.
Collapse
Affiliation(s)
- Zhenfeng Zhang
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Benno Zehnder
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Christine Damrau
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Germany.,German Center of Infectious Diseases (DZIF), Heidelberg, Germany
| |
Collapse
|
45
|
Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 2016; 35:105-118. [PMID: 26727234 DOI: 10.1080/07391102.2015.1134346] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Ras-related protein (Rab-5a) is primarily involved in the regulation of early endosome fusion during endocytosis and takes part in the budding process. During GTP hydrolysis, Rab5a was spotted in the cytoplasmic side of early endosomes in association with the GTP. Previous study suggested that the substitution of alanine with proline at position 30 of Rab5a reduces the GTPase activity around 12-fold, while, with arginine substitution stimulates the intrinsic GTP hydrolysis by 5-fold. Most of the other substitutions at this position show a little or no effect on the GTPase activity. In this paper, structure analysis and molecular dynamics (MD) simulation studies of human Rab5a and its mutants have been extensively carried out. The effect of binding of a non-hydrolyzable GTP analog guanosine-5'-(β, γ)-imidotriphosphate (GppNHp) with Rab5a and its mutants are described. The objective of the current study is to perform a detailed examination of structural flexibility of Rab5a and its mutants p.Ala30Pro and p.Ala30Arg using MD simulations. Our observations suggest that mutant p.Ala30Arg stabilize the protein molecule when bound to GppNHp which offers additional contacts. Despite an in silico approach, this study provides a deep insight into the impact of mutation on the structure, function, stability, and mechanism of binding of GppNHp to the Rab5a at molecular level.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Mohd Aamir
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Dong-Qing Wei
- a School of Chemistry and Chemical Engineering , Henan University of Technology , Henan 450001 , China
| | - Faizan Ahmad
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Science , Jamia Millia Islamia , New Delhi 110025 , India
| |
Collapse
|
46
|
Martins JP, Kennedy PJ, Santos HA, Barrias C, Sarmento B. A comprehensive review of the neonatal Fc receptor and its application in drug delivery. Pharmacol Ther 2016; 161:22-39. [PMID: 27016466 DOI: 10.1016/j.pharmthera.2016.03.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Advances in the understanding of neonatal Fc receptor (FcRn) biology and function have demonstrated that this receptor, primarily identified for the transfer of passive immunity from mother infant, is involved in several biological and immunological processes. In fact, FcRn is responsible for the long half-life of IgG and albumin in the serum, by creating an intracellular protein reservoir, which is protected from lysosomal degradation and, importantly, trafficked across the cell. Such discovery has led researchers to hypothesize the role for this unique receptor in the controlled delivery of therapeutic agents. A great amount of FcRn-based strategies are already under extensive investigation, in which FcRn reveals to have profound impact on the biodistribution and half-life extension of therapeutic agents. This review summarizes the main findings on FcRn biology, function and distribution throughout different tissues, together with the main advances on the FcRn-based therapeutic opportunities and model systems, which indicate that this receptor is a potential target for therapeutic regimen modification.
Collapse
Affiliation(s)
- João Pedro Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Patrick J Kennedy
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS - Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Ipatimup - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, FI -00014 Helsinki, Finland
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, 4585-116 Gandra, Portugal.
| |
Collapse
|
47
|
Parmar HB, Duncan R. A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1-dependent Golgi-plasma membrane trafficking. Mol Biol Cell 2016; 27:1320-31. [PMID: 26941330 PMCID: PMC4831885 DOI: 10.1091/mbc.e15-12-0845] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/23/2016] [Indexed: 12/30/2022] Open
Abstract
A novel sorting motif present in the reovirus p14 fusion–associated small transmembrane protein directs interaction with GTP-Rab11 at the TGN and sorting into AP-1–coated vesicles for trafficking to the plasma membrane. This is the first example of cargo protein interaction with activated Rab11 mediating anterograde trafficking from the TGN. The reovirus fusion–associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell–cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN–plasma membrane transport.
Collapse
Affiliation(s)
- Hirendrasinh B Parmar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada Department of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
48
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
49
|
Hayes CN, Zhang Y, Makokha GN, Hasan MZ, Omokoko MD, Chayama K. Early events in hepatitis B virus infection: From the cell surface to the nucleus. J Gastroenterol Hepatol 2016; 31:302-9. [PMID: 26414381 DOI: 10.1111/jgh.13175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2015] [Indexed: 12/12/2022]
Abstract
While most adults are able to clear acute hepatitis B virus (HBV) infection, chronic HBV infection is recalcitrant to current therapy because of the persistence of covalently closed circular DNA in the nucleus. Complete clearance of the virus in these patients is rare, and long-term therapy with interferon and/or nucleoside analogues may be required in an attempt to suppress viral replication and prevent progressive liver damage. The difficulty of establishing HBV infection in cell culture and experimental organisms has hindered efforts to elucidate details of the HBV life cycle, but it has also revealed the importance of the cellular microenvironment required for HBV binding and entry. Recent studies have demonstrated an essential role of sodium-taurocholate cotransporting polypeptide as a functional receptor in HBV infection, which has facilitated the development of novel infection systems and opened the way for more detailed understanding of the early steps of HBV infection as well as a potential new therapeutic target. However, many gaps remain in understanding of how HBV recognizes and attaches to hepatocytes prior to binding to sodium-taurocholate cotransporting polypeptide, as well as events that are triggered after binding, including entry into the cell, intracellular transport, and passage through the nuclear pore complex. This review summarizes current knowledge of the initial stages of HBV infection leading to the establishment of covalently closed circular DNA in the nucleus.
Collapse
Affiliation(s)
- C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Yizhou Zhang
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Grace Naswa Makokha
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Md Zobaer Hasan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Magot D Omokoko
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.,Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
50
|
Smith G, Tomlinson D, Harrison M, Ponnambalam S. Chapter Eight - Ubiquitin-Mediated Regulation of Cellular Responses to Vascular Endothelial Growth Factors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:313-38. [DOI: 10.1016/bs.pmbts.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|