1
|
Myronidi I, Ring A, Wu F, Ljungdahl PO. ER-localized Shr3 is a selective co-translational folding chaperone necessary for amino acid permease biogenesis. J Cell Biol 2023; 222:e202208060. [PMID: 37477900 PMCID: PMC10359922 DOI: 10.1083/jcb.202208060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 04/16/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
Proteins with multiple membrane-spanning segments (MS) co-translationally insert into the endoplasmic reticulum (ER) membrane of eukaryotic cells. Shr3, an ER membrane-localized chaperone in Saccharomyces cerevisiae, is required for the functional expression of a family of 18 amino acid permeases (AAP) comprised of 12 MS. We have used comprehensive scanning mutagenesis and deletion analysis of Shr3 combined with a modified split-ubiquitin approach to probe chaperone-substrate interactions in vivo. Shr3 selectively interacts with nested C-terminal AAP truncations in marked contrast to similar truncations of non-Shr3 substrate sugar transporters. Shr3-AAP interactions initiate with the first four MS of AAP and successively strengthen but weaken abruptly when all 12 MS are present. Shr3-AAP interactions are based on structural rather than sequence-specific interactions involving membrane and luminal domains of Shr3. The data align with Shr3 engaging nascent N-terminal chains of AAP, functioning as a scaffold to facilitate folding as translation completes.
Collapse
Affiliation(s)
- Ioanna Myronidi
- Department of Molecular Biosciences, The Wenner-Gren Institute, SciLifeLab, Stockholm University, Stockholm, Sweden
| | - Andreas Ring
- Department of Molecular Biosciences, The Wenner-Gren Institute, SciLifeLab, Stockholm University, Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, SciLifeLab, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, SciLifeLab, Stockholm University, Stockholm, Sweden
| |
Collapse
|
2
|
Diallinas G, Martzoukou O. Transporter membrane traffic and function: lessons from a mould. FEBS J 2019; 286:4861-4875. [DOI: 10.1111/febs.15078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Affiliation(s)
- George Diallinas
- Department of Biology National and Kapodistrian University of Athens Greece
| | - Olga Martzoukou
- Department of Biology National and Kapodistrian University of Athens Greece
| |
Collapse
|
3
|
Abstract
We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.
Collapse
|
4
|
Gabriel I, Milewski S. Characterization of recombinant homocitrate synthase from Candida albicans. Protein Expr Purif 2015; 125:7-18. [PMID: 26363118 DOI: 10.1016/j.pep.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
Abstract
LYS21 and LYS22 genes from Candida albicans encoding isoforms of homocitrate synthase (HCS), an enzyme catalyzing the first committed step in the l-lysine biosynthetic pathway, were cloned and expressed as N-oligoHistagged fusion proteins in Escherichia coli. The purified gene products revealed HCS activity, i.e. catalyzed the condensation of α-ketoglutarate with acetyl-coenzyme A to yield homocitrate. The recombinant enzymes were purified to homogeneity and characterized for their physical properties and substrate specificities. As determined by size-exclusion chromatography (SEC) and native page electrophoresis, both isoenzymes adopt multiple quaternary structures, with the homotetrameric one being the most abundant. The KM (acetyl-CoA)=0.8±0.15mM and KM (α-ketoglutarate)=0.113±0.02mM for His6CaLys21p and KM (acetyl-CoA)=0.48±0.09mM and KM (α-ketoglutarate)=0.152±0.03mM values for His6CaLys22p were determined. Both enzyme versions were inhibited by l-Lys, i.e. the end product of the α-aminoadipate pathway but Lys22p was more sensitive than Lys21p, with Ki (L-Lys)=128±8μM for His6CaLys21p and Ki (L-Lys)=4.37±0.68μM for His6CaLys22p. The isoforms of C. albicans HCS exhibited differential sensitivity to several l-Lys analogues. Most notably, dl-α-difluoromethyllysine strongly inhibited His6CaLys22p (IC50 32±3μM) but was not inhibitory at all towards His6CaLys21p. Differential sensitivity of recombinant C. albicans Δlys21/LYS22, LYS21/Δlys22 and Δlys21/Δlys22 mutant strains to lysine analog, 2-aminoethyl-l-cysteine and biochemical properties of homocitrate synthase isoforms suggest different roles of two HCS isoenzymes in α-aminoadipate pathway.
Collapse
Affiliation(s)
- Iwona Gabriel
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233 Gdansk, Poland.
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Gdansk University of Technology, 11/12 Narutowicza Str., 80-233 Gdansk, Poland
| |
Collapse
|
5
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
6
|
Apostolaki A, Harispe L, Calcagno-Pizarelli AM, Vangelatos I, Sophianopoulou V, Arst HN, Peñalva MA, Amillis S, Scazzocchio C. Aspergillus nidulans CkiA is an essential casein kinase I required for delivery of amino acid transporters to the plasma membrane. Mol Microbiol 2012; 84:530-49. [PMID: 22489878 PMCID: PMC3491690 DOI: 10.1111/j.1365-2958.2012.08042.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Type I casein kinases are highly conserved among Eukaryotes. Of the two Aspergillus nidulans casein kinases I, CkiA is related to the δ/ε mammalian kinases and to Saccharomyces cerevisiæ Hrr25p. CkiA is essential. Three recessive ckiA mutations leading to single residue substitutions, and downregulation using a repressible promoter, result in partial loss-of-function, which leads to a pleiotropic defect in amino acid utilization and resistance to toxic amino acid analogues. These phenotypes correlate with miss-routing of the YAT plasma membrane transporters AgtA (glutamate) and PrnB (proline) to the vacuole under conditions that, in the wild type, result in their delivery to the plasma membrane. Miss-routing to the vacuole and subsequent transporter degradation results in a major deficiency in the uptake of the corresponding amino acids that underlies the inability of the mutant strains to catabolize them. Our findings may have important implications for understanding how CkiA, Hrr25p and other fungal orthologues regulate the directionality of transport at the ER-Golgi interface.
Collapse
Affiliation(s)
- Angeliki Apostolaki
- Institut de Génétique et Microbiologie, Université Paris-Sud (XI), UMR 8621 CNRS 91450 Orsay, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kowalski D, Pendyala L, Daignan-Fornier B, Howell SB, Huang RY. Dysregulation of purine nucleotide biosynthesis pathways modulates cisplatin cytotoxicity in Saccharomyces cerevisiae. Mol Pharmacol 2008; 74:1092-100. [PMID: 18612078 PMCID: PMC2574737 DOI: 10.1124/mol.108.048256] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We found previously that inactivation of the FCY2 gene, encoding a purine-cytosine permease, or the HPT1 gene, encoding the hypoxanthine guanine phosphoribosyl transferase, enhances cisplatin resistance in yeast cells. Here, we report that in addition to fcy2Delta and hpt1Delta mutants in the salvage pathway of purine nucleotide biosynthesis, mutants in the de novo pathway that disable the feedback inhibition of AMP and GMP biosynthesis also enhanced cisplatin resistance. An activity-enhancing mutant of the ADE4 gene, which constitutively synthesizes AMP and excretes hypoxanthine, and a GMP kinase mutant (guk1), which accumulates GMP and feedback inhibits Hpt1 function, both enhanced resistance to cisplatin. In addition, overexpression of the ADE4 gene in wild-type cells, which increases de novo synthesis of purine nucleotides, also resulted in elevated cisplatin resistance. Cisplatin cytotoxicity in wild-type cells was abolished by low concentration of extracellular purines (adenine, hypoxanthine, and guanine) but not cytosine. Inhibition of cytotoxicity by exogenous adenine was accompanied by a reduction of DNA-bound cisplatin in wild-type cells. As a membrane permease, Fcy2 may mediate limited cisplatin transport because cisplatin accumulation in whole cells was slightly affected in the fcy2Delta mutant. However, the fcy2Delta mutant had a greater effect on the amount of DNA-bound cisplatin, which decreased to 50 to 60% of that in the wild-type cells. Taken together, our results indicate that dysregulation of the purine nucleotide biosynthesis pathways and the addition of exogenous purines can modulate cisplatin cytotoxicity in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- David Kowalski
- Department of Cancer Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
8
|
Kafasla P, Bouzarelou D, Frillingos S, Sophianopoulou V. The proline permease of Aspergillus nidulans: Functional replacement of the native cysteine residues and properties of a cysteine-less transporter. Fungal Genet Biol 2007; 44:615-26. [PMID: 17350864 DOI: 10.1016/j.fgb.2007.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/30/2022]
Abstract
The major proline transporter (PrnB) of Aspergillus nidulans belongs to the Amino acid Polyamine Organocation (APC) transporter superfamily. Members of this family have not been subjected to systematic structure-function relationship studies. In this report, we examine the functional replacement of the three native Cys residues (Cys54, Cys352 and Cys530) of PrnB and the properties of an engineered Cys-less PrnB protein, as background for employing a Cys-scanning mutagenesis approach. We show that simultaneous replacement of Cys54 with Ala, Cys352 with Ala and Cys530 with Ser results in a functional Cys-less PrnB transporter. We also introduce the use of a biotin-acceptor domain tag to quantitate protein levels of the engineered PrnB mutants by Western blot analysis. Finally, by using the background of the Cys-less PrnB transporter, we evaluate the functional importance of amino acids Q219, K245 and F248 of PrnB, which our previous data had suggested to be involved in the mechanism of PrnB-mediated proline uptake. In the current study, we show that K245 and F248 but not Q219 are critical for PrnB-mediated proline uptake.
Collapse
Affiliation(s)
- Panagiota Kafasla
- Institute of Biology, National Center for Scientific Research Demokritos, Aghia Paraskevi, 153 10 Athens, Greece
| | | | | | | |
Collapse
|
9
|
Andréasson C, Heessen S, Ljungdahl PO. Regulation of transcription factor latency by receptor-activated proteolysis. Genes Dev 2006; 20:1563-8. [PMID: 16778074 PMCID: PMC1482476 DOI: 10.1101/gad.374206] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The transcription factor Stp1 is endoproteolytically processed in response to extracellular amino acids by the plasma membrane SPS (Ssy1-Ptr3-Ssy5)-sensor. Processed Stp1, lacking a cytoplasmic retention motif, enters the nucleus and induces amino acid transporter gene expression. The SPS-sensor component Ssy5 is a chymotrypsin-like protease with a Pro-domain and a catalytic domain. The Pro-domain, required for protease maturation, is autolytically cleaved from the catalytic domain but remains associated, forming an inactive protease complex that binds Stp1. Stp1 is processed only after amino acid-induced signals cause the dissociation of the inhibitory Pro-domain. Our findings demonstrate that gene expression can be controlled by regulating the enzymatic activity of an intracellular endoprotease.
Collapse
|
10
|
Erpapazoglou Z, Kafasla P, Sophianopoulou V. The product of the SHR3 orthologue of Aspergillus nidulans has restricted range of amino acid transporter targets. Fungal Genet Biol 2006; 43:222-33. [PMID: 16531082 DOI: 10.1016/j.fgb.2005.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 11/07/2005] [Accepted: 11/21/2005] [Indexed: 11/23/2022]
Abstract
The shrA gene of Aspergillus nidulans codes for a structural and functional homologue of Shr3p, a yeast ER membrane protein, which plays a crucial role in the secretory pathway of yeast amino acid permeases. shrA is a single-copy gene, whose expression is early activated during germination of A. nidulans conidiospores. ShrA is localized in the ER of the fungal cells and partially complements the shr3delta phenotype. Differently from Saccharomyces cerevisiae, where SHr3p is necessary for membrane localization of the majority of amino acid permeases, deletion of the shrA locus in A. nidulans impairs a limited number of amino acid uptake activities, including those responsible for proline and aspartate transport. Strongly reduced membrane levels of a PrnB-sGFP fusion in a shrAdelta background clearly suggest a direct role of ShrA in the topogenesis of the proline specific transporter.
Collapse
Affiliation(s)
- Z Erpapazoglou
- Institute of Biology, National Center for Scientific Research, Demokritos (NCSR D), Aghia Paraskevi, 153 10 Athens, Greece
| | | | | |
Collapse
|
11
|
Martínez P, Ljungdahl PO. Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol Cell Biol 2005; 25:9435-46. [PMID: 16227594 PMCID: PMC1265835 DOI: 10.1128/mcb.25.21.9435-9446.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Candida albicans possesses a plasma membrane-localized sensor of extracellular amino acids. Here, we show that in response to amino acids, this sensor induces the proteolytic processing of two latent transcription factors, Stp1 and Stp2. Processing removes negative regulatory motifs present in the N-terminal domains of these factors. Strikingly, Stp1 and Stp2 exhibit a clear dichotomy in the genes they transactivate. The shorter active form of Stp2 activates genes required for amino acid uptake. The processed form of Stp1 activates genes required for degradation of extracellular protein and uptake of peptides, and cells lacking Stp1 do not express the secreted aspartyl protease SAP2 or the oligopeptide transporter OPT1. Consequently, stp1 null mutants are unable to grow on media with protein as the sole nitrogen source. Cells expressing the STP1* allele that encodes a protein lacking the inhibitory N-terminal domain constitutively express SAP2 and OPT1 even in the absence of extracellular proteins or peptides. Also, we show that Stp1 levels, but not Stp2 levels, are downregulated in the presence of millimolar concentrations of extracellular amino acids. These results define the hierarchy of regulatory mechanisms that differentially control two discrete pathways for the assimilation of nitrogen.
Collapse
Affiliation(s)
- Paula Martínez
- Ludwig Institute for Cancer Research, Box 240, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
12
|
Kota J, Ljungdahl PO. Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. ACTA ACUST UNITED AC 2004; 168:79-88. [PMID: 15623581 PMCID: PMC2171667 DOI: 10.1083/jcb.200408106] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The integral endoplasmic reticulum (ER) membrane protein Shr3p is required for proper plasma membrane localization of amino acid permeases (AAPs) in yeast. In the absence of Shr3p AAPs are uniquely retained in the ER with each of their twelve membrane-spanning segments correctly inserted in the membrane. Here, we show that the membrane domain of Shr3p specifically prevents AAPs from aggregating, and thus, plays a critical role in assisting AAPs to fold and correctly attain tertiary structures required for ER exit. Also, we show that the integral ER proteins, Gsf2p, Pho86p, and Chs7p, function similarly to Shr3p. In cells individually lacking one of these components only their cognate substrates, hexose transporters, phosphate transporters, and chitin synthase-III, respectively, aggregate and consequently fail to exit the ER membrane. These findings indicate that polytopic membrane proteins depend on specialized membrane-localized chaperones to prevent inappropriate interactions between membrane-spanning segments as they insert and fold in the lipid bilayer of the ER membrane.
Collapse
Affiliation(s)
- Jhansi Kota
- Ludwig Institute for Cancer Research, S-17177 Stockholm, Sweden
| | | |
Collapse
|
13
|
Martínez P, Ljungdahl PO. An ER packaging chaperone determines the amino acid uptake capacity and virulence of Candida albicans. Mol Microbiol 2004; 51:371-84. [PMID: 14756779 DOI: 10.1046/j.1365-2958.2003.03845.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Candida albicans CSH3 gene encodes a functional and structural homologue of Shr3p, a yeast protein that is specifically required for proper uptake and sensing of extracellular amino acids in Saccharomyces cerevisiae. A Candida csh3delta/csh3delta null mutant has a reduced capacity to take up amino acids, and is unable to switch morphologies on solid and in liquid media in response to inducing amino acids. CSH3/csh3delta heterozygous strains display normal amino acid induced morphological switching. However, although heterozygous cells apparently sense and properly react to amino acid induced signals they cannot take up amino acids at wild-type rates. Strikingly, both CSH3/csh3delta heterozygous and csh3delta/csh3delta homozygous strains are unable to efficiently mount virulent infections in a mouse model. The haploinsufficiency phenotypes indicate that both CSH3 alleles contribute to maintain high-capacity amino acid uptake in wild-type strains. These results strongly suggest that C. albicans cells use amino acids, presumably as nitrogen sources, during growth in mammalian hosts.
Collapse
Affiliation(s)
- Paula Martínez
- Ludwig Institute for Cancer Research, Box 24, SE-17177 Stockholm, Sweden
| | | |
Collapse
|
14
|
Current awareness on yeast. Yeast 2001; 18:577-84. [PMID: 11284013 DOI: 10.1002/yea.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|