1
|
Coria AS, Masseroni ML, Díaz Añel AM. Regulation of PKD1-mediated Golgi to cell surface trafficking by Gαq subunits. Biol Cell 2013; 106:30-43. [PMID: 24175919 DOI: 10.1111/boc.201300052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/28/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Heterotrimeric GTP-binding proteins play a key role in cell trafficking regulation. Above all, specific Gβγ subunits have been shown to be a major component of a signal transduction pathway, which also involves phospholipases C (PLC), protein kinases C (PKC) and D (PKD), whose main function is to regulate transport between Golgi and plasma membrane. It was the involvement of PLC which led us to study the role of the other member of this G protein family, the α subunits, in the regulation of membrane fission at the Golgi apparatus. RESULTS Among constitutive active (QL) variants of different G protein α subunit sub-families, only GαqQL subunits were able to induce Golgi fragmentation, a phenotype that mainly reflects a membrane fission increase at this organelle. This phenotype was not observed with a GαqQL palmitoylation mutant, showing the need for a membrane-bounded subunit. Besides, GαqQL-dependent Golgi fission was blocked by specific PLC and PKC inhibitors, and in the presence of a PKD1-kinase dead variant. In addition, GαqQL was the only α subunit capable of inducing PKD1 phosphorylation. Finally, Vesicular Stomatitis Virus thermosensitive mutant glycoprotein (VSVG tsO45) transport assays have demonstrated that GαqQL acts directly on Golgi membranes to regulate trafficking between this organelle and plasma membrane. CONCLUSIONS All these results indicate Gαq subunits for the first time as a regulator of PKD-mediated intracellular trafficking between Golgi apparatus and plasma membrane, opening new perspectives in the understanding of internal trafficking regulation by external signals through G protein-coupled receptors.
Collapse
Affiliation(s)
- A Soledad Coria
- Laboratory of Neurobiology and Cell Biology, Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), CONICET and Universidad Nacional de Córdoba. Friuli 2434, Barrio Parque Vélez Sarsfield, Córdoba 5016, Provincia de Córdoba, Argentina
| | | | | |
Collapse
|
2
|
Lemansky P, Fester I, Smolenova E, Uhländer C, Hasilik A. The cation-independent mannose 6-phosphate receptor is involved in lysosomal delivery of serglycin. J Leukoc Biol 2007; 81:1149-58. [PMID: 17210618 DOI: 10.1189/jlb.0806520] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To clarify the sorting mechanism of the lysosomal/granular proteoglycan serglycin, we treated human promonocytic U937 cells with p-nitrophenyl-beta-D-xyloside (PNP-xyl) and cycloheximide. In the absence of protein synthesis, the carbohydrate moiety of serglycin was synthesized as PNP-xyl-chondroitin sulfate (CS), and most of it was delivered to lysosomes and degraded. Further, an augmented lysosomal targeting of serglycin in the presence of tunicamycin suggested that a sorting/lectin receptor with multiple specificity was involved with an increased capacity for serglycin in the absence of N-glycosylation. Correspondingly, the cation-independent mannose 6-phosphate receptor (CI-MPR) and sortilin were observed to bind to immobilized CS. These receptors were eluted in the presence of 200-400 mM and 100-250 mM NaCl, respectively. After treating the cells with a cross-linking reagent, a portion of the sulfated proteoglycan was coimmunoprecipitated with the CI-MPR but not with sortilin. In the presence of phorbol ester, lysosomal targeting of serglycin and to a lesser extent, of cathepsin D was inhibited. We conclude that the CI-MPR participates in lysosomal and granular targeting of serglycin and basic proteins such as lysozyme associated with the proteoglycan in hematopoietic cells.
Collapse
Affiliation(s)
- Peter Lemansky
- Institut für Physiologische Chemie, Philipps-Universität Marburg, Germany.
| | | | | | | | | |
Collapse
|
3
|
Follo C, Castino R, Nicotra G, Trincheri NF, Isidoro C. Folding, activity and targeting of mutated human cathepsin D that cannot be processed into the double-chain form. Int J Biochem Cell Biol 2007; 39:638-49. [PMID: 17188016 DOI: 10.1016/j.biocel.2006.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 11/02/2006] [Accepted: 11/06/2006] [Indexed: 11/21/2022]
Abstract
The precursor of human cathepsin D (CD) is converted into the single-chain and the double-chain active polypeptides by subsequent proteolysis reactions taking place in the endosomal-lysosomal compartment and involving specific aminoacid sequences. We have mutagenized the region of aminoacids (comprising the beta-hairpin loop) involved in the latter proteolytic maturation step and generated a mutant CD that cannot be converted into the mature double-chain form. This mutant CD expressed in rodent cells reaches the lysosome and is stable as single-chain polypeptide, bears high-mannose type sugars, binds to pepstatin A and is enzymatically active, indicating that it is correctly folded. The present work provides new insights on the aminoacid region involved in the terminal processing of human CD and on the function of the processing beta-hairpin loop.
Collapse
Affiliation(s)
- Carlo Follo
- Laboratory of Molecular Pathology, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | |
Collapse
|
4
|
Li X, Ding J, Liu Y, Brix BJ, Fliegel L. Functional Analysis of Acidic Amino Acids in the Cytosolic Tail of the Na+/H+Exchanger†. Biochemistry 2004; 43:16477-86. [PMID: 15610042 DOI: 10.1021/bi048538v] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian Na(+)/H(+) exchanger is a membrane protein with a C-terminal regulatory cytosolic domain and an N-terminal membrane domain. Na(+)/H(+) exchanger isoform 1 (NHE1) possesses a conserved amino acid sequence of seven consecutive acidic residues in the distal region of the cytosolic tail. We examined the structural and functional role of this acidic sequence. In human NHE1, varying mutations of the sequence (753)EEDEDDD(759) resulted in defective NHE1 activity. Mutation of the core acid sequence, (755)DED(757), or of the entire sequence caused a decrease in the activity of NHE1 in response to acute acid load. This was not due to changes in Na(+) affinity but rather due to decreased maximum velocity of the protein and delayed activation. Mutation of the target sequence did not affect the ability of the cytoplasmic domain to bind carbonic anhydrase II or tescalcin but did affect calmodulin binding. Mutation of the acidic domain also caused altered sensitivity to trypsin and changes in size of the protein in gel-filtration chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results demonstrate that the acidic sequence is critical in maintaining proper conformation of the cytosolic domain, calmodulin binding, and in maintenance of Na(+)/H(+) exchanger activity.
Collapse
Affiliation(s)
- Xiuju Li
- Department of Biochemistry, 347 Medical Science Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
5
|
Gao Y, Hansson M, Calafat J, Tapper H, Olsson I. Sorting soluble tumor necrosis factor (TNF) receptor for storage and regulated secretion in hematopoietic cells. J Leukoc Biol 2004; 76:876-85. [PMID: 15240756 DOI: 10.1189/jlb.1103593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hematopoietic cells contain secretory lysosomes that degranulate at sites of inflammation. We envisage that secretory granules can act as vehicles for targeting inflammatory sites, including malignancies, and thereafter, locally release therapeutically active agents to these sites. Exogenous proteins, such as the soluble tumor necrosis factor receptor 1 (sTNFR1), have been shown previously to be targeted to secretory lysosomes [1]. In this work, we asked whether exogenous, secretory lysosome-targeted proteins were subject to regulated secretion. sTNFR1-transmembrane (tm)-cytosol-sorting signal (Y) and sTNFR1-tm-Y-enhanced green fluorescent protein (egfp) were expressed in rat basophilic leukemia cell clones having different secretory capacities. sTNFR1-tm-Y was targeted directly from the Golgi to secretory lysosomes, followed by generation of membrane-free sTNFR1, whose secretion could be triggered by a Ca2+ ionophore or immunoglobulin E receptor activation. In contrast, sTNFR1-tm-Y-egfp was targeted to the plasma membrane and then subjected to endocytosis and presumably, secretory lysosome targeting, as judged by results from antibody ligation and cell-surface biotinylation. Activation of protein kinase C with phorbol ester promoted ectodomain shedding at the cell surface, resulting in sTNFR1 release from sTNFR1-tm-Y-egfp. These results support a concept for using the storage organelles of hematopoietic cells as vehicles for targeting sites of inflammation with therapeutically active agents.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Biotinylation
- Cell Membrane/metabolism
- Cytoplasmic Granules/metabolism
- Endocytosis
- Enzyme Activation/drug effects
- Exocytosis/physiology
- Golgi Apparatus/metabolism
- Green Fluorescent Proteins
- Hematopoietic System
- Leukemia, Basophilic, Acute/metabolism
- Leukemia, Basophilic, Acute/pathology
- Luminescent Proteins/metabolism
- Lysosomes/metabolism
- Phorbol Esters/pharmacology
- Protein Kinase C/metabolism
- Protein Processing, Post-Translational
- Protein Sorting Signals
- Protein Transport
- Rats
- Receptors, IgE/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Subcellular Fractions
- Tumor Cells, Cultured/metabolism
Collapse
Affiliation(s)
- Ying Gao
- Department of Hematology, C14, BMC, Lund, Sweden
| | | | | | | | | |
Collapse
|
6
|
Carini R, Castino R, De Cesaris MG, Splendore R, Démoz M, Albano E, Isidoro C. Preconditioning-induced cytoprotection in hepatocytes requires Ca(2+)-dependent exocytosis of lysosomes. J Cell Sci 2004; 117:1065-77. [PMID: 14970255 DOI: 10.1242/jcs.00923] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A short period of hypoxia reduces the cytotoxicity produced by a subsequent prolonged hypoxia in isolated hepatocytes. This phenomenon, termed hypoxic preconditioning, is mediated by the activation of adenosine A2A-receptor and is associated with the attenuation of cellular acidosis and Na+ overload normally occurring during hypoxia. Bafilomycin, an inhibitor of the vacuolar H+/ATPase, reverts the latter effects and abrogates the preconditioning-induced cytoprotection. Here we provide evidence that the acquisition of preconditioning-induced cytoprotection requires the fusion with plasma membrane and exocytosis of endosomal-lysosomal organelles. Poisons of the vesicular traffic, such as wortmannin and 3-methyladenine, which inhibit phosphatydilinositol 3-kinase, or cytochalasin D, which disassembles the actin cytoskeleton, prevented lysosome exocytosis and also abolished the preconditioning-associated protection from acidosis and necrosis provoked by hypoxia. Preconditioning was associated with the phosphatydilinositol 3-kinase-dependent increase of cytosolic [Ca2+]. Chelation of free cytosolic Ca2+ in preconditioned cells prevented lysosome exocytosis and the acquisition of cytoprotection. We conclude that lysosome-plasma membrane fusion is the mechanism through which hypoxic preconditioning allows hepatocytes to preserve the intracellular pH and survive hypoxic stress. This process is under the control of phosphatydilinositol 3-kinase and requires the integrity of the cytoskeleton and the rise of intracellular free calcium ions.
Collapse
Affiliation(s)
- Rita Carini
- Laboratory of Pathology, Dipartimento di Scienze Mediche, Università del Piemonte Orientale A. Avogadro, via Solaroli 17, 28100 Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63. Morphologically the multivesicular endosomes also resemble late endosomes, but they store procathepsin L, not the active protease, and they are not the major site for LAMP-1 accumulation. Distinction between the lysosomal proenzyme and active protease thus identifies two populations of multivesicular endosomes in fibroblasts, one a storage compartment and one an enzymatically active compartment. A distinctive targeting pathway using aggregation is utilized to enrich the storage endosomes with a particular lysosomal protease that can potentially activate and be secreted.
Collapse
Affiliation(s)
- John Collette
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, Florida 33101 USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Baldassarre M, Pompeo A, Beznoussenko G, Castaldi C, Cortellino S, McNiven MA, Luini A, Buccione R. Dynamin participates in focal extracellular matrix degradation by invasive cells. Mol Biol Cell 2003; 14:1074-84. [PMID: 12631724 PMCID: PMC151580 DOI: 10.1091/mbc.e02-05-0308] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The degradation of extracellular matrix (ECM) by matrix metalloproteases is crucial in physiological and pathological cell invasion alike. Degradation occurs at specific sites where invasive cells make contact with the ECM via specialized plasma membrane protrusions termed invadopodia. Herein, we show that the dynamin 2 (Dyn2), a GTPase implicated in the control of actin-driven cytoskeletal remodeling events and membrane transport, is necessary for focalized matrix degradation at invadopodia. Dynamin was inhibited by using two approaches: 1) expression of dominant negative GTPase-impaired or proline-rich domain-deleted Dyn2 mutants; and 2) inhibition of the dynamin regulator calcineurin by cyclosporin A. In both cases, the number and extension of ECM degradation foci were drastically reduced. To understand the site and mechanism of dynamin action, the cellular structures devoted to ECM degradation were analyzed by correlative confocal light-electron microscopy. Invadopodia were found to be organized into a previously undescribed ECM-degradation structure consisting of a large invagination of the ventral plasma membrane surface in close spatial relationship with the Golgi complex. Dyn2 seemed to be concentrated at invadopodia.
Collapse
Affiliation(s)
- Massimiliano Baldassarre
- Department of Cell Biology and Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, S. Maria Imbaro (Chieti), 66030 Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The biogenesis of secretory lysosomes, which combine characteristics of both lysosomes and secretory granules, is currently of high interest. In particular, it is not clear whether delivery of membrane proteins to the secretory lysosome requires lysosomal, secretory granule, or some novel targeting determinants. Heterologous expression of P-selectin has established that this membrane protein contains targeting signals for both secretory granules and lysosomes. P-selectin is therefore an ideal probe with which to determine the signals required for targeting to secretory lysosomes. We have exploited subcellular fractionation and immunofluorescence microscopy to monitor targeting of transiently expressed wild-type and mutant horseradish peroxidase (HRP)-P-selectin chimeras to secretory lysosomes of Rbl-2H3 cells. The exposure of the HRP chimeras to intracellular proteolysis was also determined as a third monitor of secretory lysosome targeting. Our data show that HRP-P-selectin accumulates in secretory lysosomes of Rbl-2H3 cells using those cytoplasmic sequences previously found to be sufficient for targeting to conventional lysosomes. This work highlights the similar sorting signals used for targeting of membrane proteins to conventional lysosomes and secretory lysosomes.
Collapse
Affiliation(s)
- Jasber Kaur
- MRC Laboratory for Molecular Cell Biology, Cell Biology Unit, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
10
|
Buccione R, Corda D. Membrane Phosphoinositides as Molecular Targets for the Control of Motility and Invasion of Tumor Cells. TUMORI JOURNAL 2001. [DOI: 10.1177/030089160108700635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Roberto Buccione
- Department of Cell Biology and Oncology, Institute for Pharmacological Research Mario Negri, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | - Daniela Corda
- Department of Cell Biology and Oncology, Institute for Pharmacological Research Mario Negri, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| |
Collapse
|
11
|
Lemansky P, Hasilik A. Chondroitin sulfate is involved in lysosomal transport of lysozyme in U937 cells. J Cell Sci 2001; 114:345-52. [PMID: 11148136 DOI: 10.1242/jcs.114.2.345] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human promonocytes U937 synthesize lysozyme and retain approximately one third of it within lysosomes. Lysozyme is not glycosylated; thus, it cannot be subject to mannose-6-phosphate-dependent targeting to lysosomes. It is a basic protein with a pI of 10.5 and is known to interact with negatively charged macromolecules like proteoglycans. Therefore, we examined whether the latter are involved in the lysosomal targeting of lysozyme in U937 cells. We partially diminished the electronegative charge of newly synthesized proteoglycans by inhibiting their sulfation with chlorate. This increased the rate of secretion of lysozyme. Upon treatment of U937 cells with phorbol esters, the rate of secretion of lysozyme was increased to more than 90%. This coincided with an almost complete redistribution of a [(35)S]sulfate bearing proteoglycan to the secretory pathway. After a brief pulse with [(35)S]sulfate in the control, 80% of the [(35)S]sulfate-bearing proteoglycan was retained within the cells, whereas in the treated cells this proportion was decreased to 13%. The secreted proteoglycan was sensitive to chondroitinase ABC and bound to immobilized lysozyme. This interaction was disrupted by 50–300 mM NaCl. The intracellularly retained proteoglycan was degraded with a half-life of 50–60 minutes and seemed to be directed to lysosomes because in the presence of NH(4)Cl the degradation was strongly inhibited. Our results suggest that the proteoglycan is involved in lysosomal targeting of lysozyme in U937 cells.
Collapse
Affiliation(s)
- P Lemansky
- Philipps-Universität Marburg, Institut für Physiologische Chemie, Karl-von-Frisch-Strasse 1, Germany
| | | |
Collapse
|
12
|
Dragonetti A, Baldassarre M, Castino R, Démoz M, Luini A, Buccione R, Isidoro C. The lysosomal protease cathepsin D is efficiently sorted to and secreted from regulated secretory compartments in the rat basophilic/mast cell line RBL. J Cell Sci 2000; 113 ( Pt 18):3289-98. [PMID: 10954426 DOI: 10.1242/jcs.113.18.3289] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Basophils and mast cells contain a peculiar class of inflammatory granules that discharge their content upon antigen-mediated crosslinking of IgE-membrane receptors. The pathways for granule biogenesis and exocytosis in these cells are still largely obscure. In this study we employed the rat basophilic leukemia (RBL)/mast cell line to verify the hypothesis that inflammatory granules share common bioactive molecules and functional properties with lysosomes. We demonstrate that inflammatory granules, as identified by the monoclonal 5G10 antibody (which recognises an integral membrane protein) or by Toluidine Blue staining, have an intralumenal acidic pH, possess lysosomal enzymes and are accessible by fluid-phase and membrane endocytosis markers. In addition, we studied the targeting, subcellular localisation and regulated secretion of the lysosomal aspartic protease cathepsin D (CD) as affected by IgE receptor stimulation in order to obtain information on the pathways for granule biogenesis and exocytosis. Stimulation with DNP-BSA of specific IgE-primed RBL cells led to a prompt release of processed forms of CD, along with other mature lysosomal hydrolases. This release could be prevented by addition of EGTA, indicating that it was dependent on extracellular calcium influx. Antigen stimulation also induced exocytosis of immature CD forms accumulated by ammonium chloride, suggesting the existence of an intermediate station in the pathway for granule biogenesis still sensitive to regulated exocytosis. The targeting of molecules to secretory granules may occur via either a mannose-6-phosphate-dependent or mannose-6-phosphate-independent pathway. We conclude that endosomes and lysosomes in basophils/mast cells can act as regulated secretory granules or actually identify with them.
Collapse
Affiliation(s)
- A Dragonetti
- Laboratory of Molecular Pathology, Department of Medical Sciences, 'A. Avogadro'University, via Solaroli 17, Italy
| | | | | | | | | | | | | |
Collapse
|