1
|
Polfer R, Furukawa H. Biology, function and structure of the calcium homeostasis modulator family. J Physiol 2024:10.1113/JP285197. [PMID: 39470434 PMCID: PMC12037871 DOI: 10.1113/jp285197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Calcium homeostasis modulators (CALHMs) are the most recently discovered members of the large-pore channel family. They mediate the conductance of ions and larger molecules, such as ATP, and play critical roles in pathways related to Alzheimer's disease, neuroinflammation, neuromodulation, taste perception and innate immune responses. Since the inaugural report on CALHM1 in 2008, significant breakthroughs have revealed their biological roles, ion and ATP channel functions, and structures, positioning the field for further advancements. In this review, we discuss the overall progress and recent developments in understanding the biological roles, functions and molecular structures of CALHM proteins.
Collapse
Affiliation(s)
- Rachel Polfer
- Cold Spring Harbor Laboratory, School of Biological Science at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hiro Furukawa
- Cold Spring Harbor Laboratory, School of Biological Science at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
2
|
Syrjänen JL, Epstein M, Gómez R, Furukawa H. Structure of human CALHM1 reveals key locations for channel regulation and blockade by ruthenium red. Nat Commun 2023; 14:3821. [PMID: 37380652 PMCID: PMC10307800 DOI: 10.1038/s41467-023-39388-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a voltage-dependent channel involved in neuromodulation and gustatory signaling. Despite recent progress in the structural biology of CALHM1, insights into functional regulation, pore architecture, and channel blockade remain limited. Here we present the cryo-EM structure of human CALHM1, revealing an octameric assembly pattern similar to the non-mammalian CALHM1s and the lipid-binding pocket conserved across species. We demonstrate by MD simulations that this pocket preferentially binds a phospholipid over cholesterol to stabilize its structure and regulate the channel activities. Finally, we show that residues in the amino-terminal helix form the channel pore that ruthenium red binds and blocks.
Collapse
Affiliation(s)
- Johanna L Syrjänen
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Max Epstein
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Ricardo Gómez
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
3
|
Kwon JW, Jeon YK, Kim SJ. Bidirectional sensitivity of CALHM1 channel to protons from both sides of plasma membrane. Am J Physiol Cell Physiol 2023; 324:C98-C112. [PMID: 36409172 DOI: 10.1152/ajpcell.00250.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium homeostasis modulator 1 (CALHM1), a newly discovered voltage-dependent nonselective ion channel, has drawn attention for its role in neuronal activity and taste sensation. Its sluggish voltage-dependent activation is facilitated by lowering extracellular Ca2+ concentration ([Ca2+]e). Here, we investigated the effects of extracellular and intracellular pH (pHe and pHi) on human CALHM1. When normalized to the amplitude of the CALHM1 current (ICALHM1) under whole cell patch clamp at symmetrical pH 7.4, ICALHM1 decreased at acidic pHe or pHi, whereas it sharply increased at alkaline pHe or pHi. The effects of pH were preserved in the inside-out configuration. The voltage dependence of ICALHM1 showed leftward and rightward shifts at alkaline and acidic pHe and pHi, respectively. Site-directed mutagenesis of the water-accessible charged residues of the pore and nearby domains revealed that E17, K229, E233, D257, and E259 are nonadditively responsible for facilitation at alkaline pHi. Identification of the pHe-sensing residue was not possible because mutation of putative residues impaired membrane expression, resulting in undetectable ICALHM1. Alkaline pHe-dependent facilitation appeared gradually with depolarization, suggesting that the sensitivity to pHe might be due to H+ diffusion through the open-state CALHM1. At pHe 6.2, decreased [Ca2+]e could not recover the inhibited ICALHM1 but further augmented the increased ICALHM1 at pHe 8.6, suggesting that unidentified common residues might contribute to the [Ca2+]e and acidic pHe. This study is the first, to our knowledge, to demonstrate the remarkable pH sensitivity of CALHM1, which might contribute to the pH-dependent modulation of neuronal excitability or taste sensation.
Collapse
Affiliation(s)
- Jae Won Kwon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Hogg DW, Casatti CC, Belsham DD, Baršytė-Lovejoy D, Lovejoy DA. Distal extracellular teneurin region (teneurin C-terminal associated peptide; TCAP) possesses independent intracellular calcium regulating actions, in vitro: A potential antagonist of corticotropin-releasing factor (CRF). Biochem Biophys Rep 2022; 32:101397. [DOI: 10.1016/j.bbrep.2022.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
|
5
|
Khare N, Maheshwari SK, Rizvi SMD, Albadrani HM, Alsagaby SA, Alturaiki W, Iqbal D, Zia Q, Villa C, Jha SK, Jha NK, Jha AK. Homology Modelling, Molecular Docking and Molecular Dynamics Simulation Studies of CALMH1 against Secondary Metabolites of Bauhinia variegata to Treat Alzheimer's Disease. Brain Sci 2022; 12:brainsci12060770. [PMID: 35741655 PMCID: PMC9220886 DOI: 10.3390/brainsci12060770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Calcium homeostasis modulator 1 (CALHM1) is a protein responsible for causing Alzheimer’s disease. In the absence of an experimentally designed protein molecule, homology modelling was performed. Through homology modelling, different CALHM1 models were generated and validated through Rampage. To carry out further in silico studies, through molecular docking and molecular dynamics simulation experiments, various flavonoids and alkaloids from Bauhinia variegata were utilised as inhibitors to target the protein (CALHM1). The sequence of CALHM1 was retrieved from UniProt and the secondary structure prediction of CALHM1 was done through CFSSP, GOR4, and SOPMA methods. The structure was identified through LOMETS, MUSTER, and MODELLER and finally, the structures were validated through Rampage. Bauhinia variegata plant was used to check the interaction of alkaloids and flavonoids against CALHM1. The protein and protein–ligand complex were also validated through molecular dynamics simulations studies. The model generated through MODELLER software with 6VAM A was used because this model predicted the best results in the Ramachandran plot. Further molecular docking was performed, quercetin was found to be the most appropriate candidate for the protein molecule with the minimum binding energy of −12.45 kcal/mol and their ADME properties were analysed through Molsoft and Molinspiration. Molecular dynamics simulations showed that CALHM1 and CALHM1–quercetin complex became stable at 2500 ps. It may be seen through the study that quercetin may act as a good inhibitor for treatment. With the help of an in silico study, it was easier to analyse the 3D structure of the protein, which may be scrutinized for the best-predicted model. Quercetin may work as a good inhibitor for treating Alzheimer’s disease, according to in silico research using molecular docking and molecular dynamics simulations, and future in vitro and in vivo analysis may confirm its effectiveness.
Collapse
Affiliation(s)
- Noopur Khare
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India; (N.K.); (S.K.M.)
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226021, Uttar Pradesh, India
| | - Sanjiv Kumar Maheshwari
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India; (N.K.); (S.K.M.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 2240, Saudi Arabia;
| | - Hind Muteb Albadrani
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
| | - Danish Iqbal
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
- Correspondence: (D.I.); (A.K.J.)
| | - Qamar Zia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia; (H.M.A.); (S.A.A.); (W.A.); (Q.Z.)
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 15341, Saudi Arabia
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, Uttarakhand, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, Punjab, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, Uttar Pradesh, India; (S.K.J.); (N.K.J.)
- Correspondence: (D.I.); (A.K.J.)
| |
Collapse
|
6
|
Pope L, Minor DL. The Polysite Pharmacology of TREK K 2P Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:51-65. [PMID: 35138610 DOI: 10.1007/978-981-16-4254-8_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
K2P (KCNK) potassium channels form "background" or "leak" currents that have critical roles in cell excitability control in the brain, cardiovascular system, and somatosensory neurons. Similar to many ion channel families, studies of K2Ps have been limited by poor pharmacology. Of six K2P subfamilies, the thermo- and mechanosensitive TREK subfamily comprising K2P2.1 (TREK-1), K2P4.1 (TRAAK), and K2P10.1 (TREK-2) are the first to have structures determined for each subfamily member. These structural studies have revealed key architectural features that underlie K2P function and have uncovered sites residing at every level of the channel structure with respect to the membrane where small molecules or lipids can control channel function. This polysite pharmacology within a relatively small (~70 kDa) ion channel comprises four structurally defined modulator binding sites that occur above (Keystone inhibitor site), at the level of (K2P modulator pocket), and below (Fenestration and Modulatory lipid sites) the C-type selectivity filter gate that is at the heart of K2P function. Uncovering this rich structural landscape provides the framework for understanding and developing subtype-selective modulators to probe K2P function that may provide leads for drugs for anesthesia, pain, arrhythmia, ischemia, and migraine.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, US. .,Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA. .,California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
7
|
Wang F, Fan LH, Li A, Dong F, Hou Y, Schatten H, Sun QY, Ou XH. Effects of various calcium transporters on mitochondrial Ca 2+ changes and oocyte maturation. J Cell Physiol 2021; 236:6548-6558. [PMID: 33704771 DOI: 10.1002/jcp.30327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 11/10/2022]
Abstract
Ca2+ participates in many important cellular processes, but the underlying mechanisms are still poorly understood, especially during oocyte maturation. First, we confirmed that calcium in the culture medium was essential for oocyte maturation. Next, various inhibitors of Ca2+ channels were applied to investigate their roles in mitochondrial Ca2+ changes and oocyte maturation. Our results showed that Trmp7, Orai, T-type Ca2+ channels and Na+ /Ca2+ exchanger complex (NCLX) were important for oocyte maturation. Trmp7 inhibition delayed germinal vesicle breakdown. Orai and NCLX inhibition significantly weakened the distribution of mitochondrial Ca2+ around the nucleus compared to the Ctrl group. Interestingly, even T-type Ca2+ channels-specific inhibitor Mibefradil blocked germinal vesicle breakdown; mitochondrial Ca2+ surrounding the nucleus still was maintained at a high level without spindle formation. Two calcium transporter inhibitors, Thapsigargin and Ruthenium Red, which have been confirmed to inhibit oocyte activation, did not significantly affect oocyte maturation. Increasing the knowledge of calcium transport may provide a basis to build on for improving oocyte in vitro maturation in human assisted reproduction clinics.
Collapse
Affiliation(s)
- Feng Wang
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Li-Hua Fan
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
8
|
Jia Y, Wang X, Chen Y, Qiu W, Ge W, Ma C. Proteomic and Transcriptomic Analyses Reveal Pathological Changes in the Entorhinal Cortex Region that Correlate Well with Dysregulation of Ion Transport in Patients with Alzheimer's Disease. Mol Neurobiol 2021; 58:4007-4027. [PMID: 33904022 DOI: 10.1007/s12035-021-02356-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/10/2021] [Indexed: 01/17/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The earliest neuropathology of AD appears in entorhinal cortex (EC) regions. Therapeutic strategies and preventive measures to protect against entorhinal degeneration would be of substantial value in the early stages of AD. In this study, transcriptome based on the Illumina RNA-seq and proteome based on TMT-labelling were performed for RNA and protein profiling on AD EC samples and non-AD control EC samples. Immunohistochemistry was used to validate proteins expressions. After integrated analysis, 57 genes were detected both in transcriptome and proteome data, including 51 in similar altering trends (7 upregulated, 44 downregulated) and 6 in inverse trends when compared AD vs. control. The top 6 genes (GABRG2, CACNG3, CACNB4, GABRB2, GRIK2, and SLC17A6) within the 51 genes were selected and related to "ion transport". Correlation analysis demonstrated negative relationship of protein expression level with the neuropathologic changes. In conclusion, the integrate transcriptome and proteome analysis provided evidence for dysregulation of ion transport across brain regions in AD, which might be a critical signaling pathway that initiates pathology. This study might provide new insight into the earliest changes occurring in the EC of AD and novel targets for AD prevention and treatment.
Collapse
Affiliation(s)
- Yangjie Jia
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Xia Wang
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Yanyu Chen
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wenying Qiu
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Neuroscience Center, National Human Brain Bank for Development and Function, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng District, Beijing, 100005, China.
| |
Collapse
|
9
|
Bhat EA, Sajjad N, Banawas S, Khan J. Human CALHM5: Insight in large pore lipid gating ATP channel and associated neurological pathologies. Mol Cell Biochem 2021; 476:3711-3718. [PMID: 34089472 DOI: 10.1007/s11010-021-04198-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Recently calcium homeostasis modulators (CALHMs) are identified as ATP release channels play crucial role in functioning of neurons including gustatory signaling and neuronal excitability. Pathologies of Alzheimer's disease and depression have been associated with the dysfunction of CALHMs. Recently, CALHMs has been emerged as an important therapeutic research particularly in neurobiological studies. CALHM1 is most extensively studied among CALHMs and is an ATP and ion channel that is activated by membrane depolarization or removal of extracellular Ca2+. Despite the emerged role of CALHM5 shown by an recently assembled data; however, the neuronal function remains obscure until the first Cryo-EM structure of CALHM5 was recently solved by various research group which acts as a template to study the hidden functional properties of the CALHM5 protein based on structure function mechanism. It provides insight in some of the different pathophysiological roles. CALHM5 structure showed an abnormally large pore channel structure assembled as an undecamer with four transmembrane helices (TM1-TM4), an N-terminal helix (NTH), an extracellular loop region and an intracellular C-terminal domain (CTD) that consists of three α-helices CH1-3. The TM1 and NTH were always poorly defined among all CALHMs; however, these regions were well defined in CALHM5 channel structure. In this context, this review will provide insight in structure, function and mechanism to understand its significant role in pathological diseases particularly in Alzheimer's disease. Moreover, it focuses on CALHM5 structure and recent associated properties based on Cryo-EM research.
Collapse
Affiliation(s)
- Eijaz Ahmed Bhat
- Life Science Institute, Zhejiang University, Hangzhou, Zhejiang, 310058, P.R. China. .,Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| | - Nasreena Sajjad
- Department of Biochemistry, University of Kashmir, Hazratbal, Jammu and Kashmir, India
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Kingdom of Saudi Arabia. .,Health and Basic Sciences Research Center, Majmaah University, Majmaah, 11952, Saudi Arabia. .,Departments of Biomedical Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Kingdom of Saudi Arabia.,Health and Basic Sciences Research Center, Majmaah University, Majmaah, 11952, Saudi Arabia
| |
Collapse
|
10
|
Thakran S, Guin D, Singh P, Singh P, Kukal S, Rawat C, Yadav S, Kushwaha SS, Srivastava AK, Hasija Y, Saso L, Ramachandran S, Kukreti R. Genetic Landscape of Common Epilepsies: Advancing towards Precision in Treatment. Int J Mol Sci 2020; 21:E7784. [PMID: 33096746 PMCID: PMC7589654 DOI: 10.3390/ijms21207784] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Epilepsy, a neurological disease characterized by recurrent seizures, is highly heterogeneous in nature. Based on the prevalence, epilepsy is classified into two types: common and rare epilepsies. Common epilepsies affecting nearly 95% people with epilepsy, comprise generalized epilepsy which encompass idiopathic generalized epilepsy like childhood absence epilepsy, juvenile myoclonic epilepsy, juvenile absence epilepsy and epilepsy with generalized tonic-clonic seizure on awakening and focal epilepsy like temporal lobe epilepsy and cryptogenic focal epilepsy. In 70% of the epilepsy cases, genetic factors are responsible either as single genetic variant in rare epilepsies or multiple genetic variants acting along with different environmental factors as in common epilepsies. Genetic testing and precision treatment have been developed for a few rare epilepsies and is lacking for common epilepsies due to their complex nature of inheritance. Precision medicine for common epilepsies require a panoramic approach that incorporates polygenic background and other non-genetic factors like microbiome, diet, age at disease onset, optimal time for treatment and other lifestyle factors which influence seizure threshold. This review aims to comprehensively present a state-of-art review of all the genes and their genetic variants that are associated with all common epilepsy subtypes. It also encompasses the basis of these genes in the epileptogenesis. Here, we discussed the current status of the common epilepsy genetics and address the clinical application so far on evidence-based markers in prognosis, diagnosis, and treatment management. In addition, we assessed the diagnostic predictability of a few genetic markers used for disease risk prediction in individuals. A combination of deeper endo-phenotyping including pharmaco-response data, electro-clinical imaging, and other clinical measurements along with genetics may be used to diagnose common epilepsies and this marks a step ahead in precision medicine in common epilepsies management.
Collapse
Affiliation(s)
- Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Priyanka Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| | - Suman S. Kushwaha
- Department of Neurology, Institute of Human Behaviour and Allied Sciences, Dilshad Garden, Delhi 110095, India;
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India;
| | - Yasha Hasija
- Department of Bioinformatics, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Srinivasan Ramachandran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
- G N Ramachandran Knowledge Centre, Council of Scientific and Industrial Research (CSIR)—Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; (S.T.); (D.G.); (P.S.); (P.S.); (S.K.); (C.R.); (S.Y.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India;
| |
Collapse
|
11
|
Wang F, Li A, Li QN, Fan LH, Wang ZB, Meng TG, Hou Y, Schatten H, Sun QY, Ou XH. Effects of mitochondria-associated Ca 2+ transporters suppression on oocyte activation. Cell Biochem Funct 2020; 39:248-257. [PMID: 32643225 DOI: 10.1002/cbf.3571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022]
Abstract
Oocyte activation deficiency leads to female infertility. [Ca2+ ]i oscillations are required for mitochondrial energy supplement transition from the resting to the excited state, but the underlying mechanisms are still very little known. Three mitochondrial Ca2+ channels, Mitochondria Calcium Uniporter (MCU), Na+ /Ca2+ Exchanger (NCLX) and Voltage-dependent Ca2+ Channel (VDAC), were deactivated by inhibitors RU360, CGP37157 and Erastin, respectively. Both Erastin and CGP37157 inhibited mitochondrial activity significantly while attenuating [Ca2+ ]i and [Ca2+ ]m oscillations, which caused developmental block of pronuclear formation. Thus, NCLX and VDAC are two mitochondria-associated Ca2+ transporter proteins regulating oocyte activation, which may be used as potential targets to treat female infertility. SIGNIFICANCE OF THE STUDY: NCLX and VDAC are two mitochondria-associated Ca2+ transporter proteins regulating oocyte activation.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ang Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian-Nan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Li-Hua Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tie-Gang Meng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Hou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, USA
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiang-Hong Ou
- Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
12
|
Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol 2020; 12:a035212. [PMID: 31427373 PMCID: PMC7328457 DOI: 10.1101/cshperspect.a035212] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcium signaling is critical to neuronal function and regulates highly diverse processes such as gene transcription, energy production, protein handling, and synaptic structure and function. Because there are many common underlying calcium-mediated pathological features observed across several neurological conditions, it has been proposed that neurodegenerative diseases have an upstream underlying calcium basis in their pathogenesis. With certain diseases such as Alzheimer's, Parkinson's, and Huntington's, specific sources of calcium dysregulation originating from distinct neuronal compartments or channels have been shown to have defined roles in initiating or sustaining disease mechanisms. Herein, we will review the major hallmarks of these diseases, and how they relate to calcium dysregulation. We will then discuss neuronal calcium handling throughout the neuron, with special emphasis on channels involved in neurodegeneration.
Collapse
Affiliation(s)
- Sean Schrank
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Nikki Barrington
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois 60064
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University, North Chicago, Illinois 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, Illinois 60064
- Chicago Medical School, Rosalind Franklin University, North Chicago, Illinois 60064
| |
Collapse
|
13
|
Pope L, Lolicato M, Minor DL. Polynuclear Ruthenium Amines Inhibit K 2P Channels via a "Finger in the Dam" Mechanism. Cell Chem Biol 2020; 27:511-524.e4. [PMID: 32059793 PMCID: PMC7245552 DOI: 10.1016/j.chembiol.2020.01.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
The trinuclear ruthenium amine ruthenium red (RuR) inhibits diverse ion channels, including K2P potassium channels, TRPs, the calcium uniporter, CALHMs, ryanodine receptors, and Piezos. Despite this extraordinary array, there is limited information for how RuR engages targets. Here, using X-ray crystallographic and electrophysiological studies of an RuR-sensitive K2P, K2P2.1 (TREK-1) I110D, we show that RuR acts by binding an acidic residue pair comprising the "Keystone inhibitor site" under the K2P CAP domain archway above the channel pore. We further establish that Ru360, a dinuclear ruthenium amine not known to affect K2Ps, inhibits RuR-sensitive K2Ps using the same mechanism. Structural knowledge enabled a generalizable design strategy for creating K2P RuR "super-responders" having nanomolar sensitivity. Together, the data define a "finger in the dam" inhibition mechanism acting at a novel K2P inhibitor binding site. These findings highlight the polysite nature of K2P pharmacology and provide a new framework for K2P inhibitor development.
Collapse
Affiliation(s)
- Lianne Pope
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Marco Lolicato
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA
| | - Daniel L Minor
- Cardiovascular Research Institute, University of California, San Francisco, CA 93858-2330, USA; Departments of Biochemistry and Biophysics, and Cellular and Molecular Pharmacology, University of California, San Francisco, CA 93858-2330, USA; California Institute for Quantitative Biomedical Research, University of California, San Francisco, CA 93858-2330, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA 93858-2330, USA; Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
14
|
Choi W, Clemente N, Sun W, Du J, Lü W. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 2019; 576:163-167. [PMID: 31776515 DOI: 10.1038/s41586-019-1781-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
Calcium homeostasis modulators (CALHMs) are voltage-gated, Ca2+-inhibited nonselective ion channels that act as major ATP release channels, and have important roles in gustatory signalling and neuronal toxicity1-3. Dysfunction of CALHMs has previously been linked to neurological disorders1. Here we present cryo-electron microscopy structures of the human CALHM2 channel in the Ca2+-free active or open state and in the ruthenium red (RUR)-bound inhibited state, at resolutions up to 2.7 Å. Our work shows that purified CALHM2 channels form both gap junctions and undecameric hemichannels. The protomer shows a mirrored arrangement of the transmembrane domains (helices S1-S4) relative to other channels with a similar topology, such as connexins, innexins and volume-regulated anion channels4-8. Upon binding to RUR, we observed a contracted pore with notable conformational changes of the pore-lining helix S1, which swings nearly 60° towards the pore axis from a vertical to a lifted position. We propose a two-section gating mechanism in which the S1 helix coarsely adjusts, and the N-terminal helix fine-tunes, the pore size. We identified a RUR-binding site near helix S1 that may stabilize this helix in the lifted conformation, giving rise to channel inhibition. Our work elaborates on the principles of CALHM2 channel architecture and symmetry, and the mechanism that underlies channel inhibition.
Collapse
Affiliation(s)
| | | | - Weinan Sun
- Vollum Institute, Oregon Health & Science University, Portland, OR, USA.,Janelia Research Campus, Ashburn, VA, USA
| | - Juan Du
- Van Andel Institute, Grand Rapids, MI, USA.
| | - Wei Lü
- Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
15
|
Rezazadeh M, Hosseinzadeh H, Moradi M, Salek Esfahani B, Talebian S, Parvin S, Gharesouran J. Genetic discoveries and advances in late-onset Alzheimer's disease. J Cell Physiol 2019; 234:16873-16884. [PMID: 30790294 DOI: 10.1002/jcp.28372] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/05/2025]
Abstract
Alzheimer's disease (AD) is a heterogeneous disorder with multiple patterns of clinical manifestations. Recently, due to the advance of linkage studies, next-generation sequencing and genome-wide association studies, a large number of putative risk genes for AD have been identified using acquired genome mega data. The genetic association between three causal genes, including amyloid precursor protein, presenilin1, and presenilin2 in early-onset AD (EOAD), was discovered over the past few decades. These discoveries showed that there should be additional genetic risk factors for both EOAD and late-onset AD (LOAD) to help fully explain the leading molecular mechanisms in a single pathophysiological entity. This study reviews the clinical features and genetic etiology of LOAD and discusses a variety of AD-mediated genes that are involved in cholesterol and lipid metabolism, endocytosis, and immune response according to their mutations for more efficient selection of functional candidate genes for LOAD. New mechanisms and pathways have been identified as a result.
Collapse
Affiliation(s)
- Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohsen Moradi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Salek Esfahani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahrzad Talebian
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shaho Parvin
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Division of Medical Genetics, Tabriz Children's Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
CALHM1/CALHM3 channel is intrinsically sorted to the basolateral membrane of epithelial cells including taste cells. Sci Rep 2019; 9:2681. [PMID: 30804437 PMCID: PMC6390109 DOI: 10.1038/s41598-019-39593-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
The CALHM1/CALHM3 channel in the basolateral membrane of polarized taste cells mediates neurotransmitter release. However, mechanisms regulating its localization remain unexplored. Here, we identified CALHM1/CALHM3 in the basolateral membrane of type II taste cells in discrete puncta localized close to afferent nerve fibers. As in taste cells, CALHM1/CALHM3 was present in the basolateral membrane of model epithelia, although it was distributed throughout the membrane and did not show accumulation in puncta. We identified canonical basolateral sorting signals in CALHM1 and CALHM3: tyrosine-based and dileucine motifs. However, basolateral sorting remained intact in mutated channels lacking those signals, suggesting that non-canonical signals reside elsewhere. Our study demonstrates intrinsic basolateral sorting of CALHM channels in polarized cells, and provides mechanistic insights.
Collapse
|
17
|
Dong Y, Li X, Cheng J, Hou L. Drug Development for Alzheimer's Disease: Microglia Induced Neuroinflammation as a Target? Int J Mol Sci 2019; 20:E558. [PMID: 30696107 PMCID: PMC6386861 DOI: 10.3390/ijms20030558] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common causes of dementia. Its pathogenesis is characterized by the aggregation of the amyloid-β (Aβ) protein in senile plaques and the hyperphosphorylated tau protein in neurofibrillary tangles in the brain. Current medications for AD can provide temporary help with the memory symptoms and other cognitive changes of patients, however, they are not able to stop or reverse the progression of AD. New medication discovery and the development of a cure for AD is urgently in need. In this review, we summarized drugs for AD treatments and their recent updates, and discussed the potential of microglia induced neuroinflammation as a target for anti-AD drug development.
Collapse
Affiliation(s)
- Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| | - Xiaoheng Li
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Jinbo Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing 100850, China.
| | - Lin Hou
- Department of Biochemistry, Medical College, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
18
|
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer's disease & therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1745-1760. [PMID: 30059692 DOI: 10.1016/j.bbamcr.2018.07.018] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/12/2018] [Accepted: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and is characterized by the accumulation of amyloid (Aβ) plaques and neurofibrillary tangles in the brain. Much attention has been given to develop AD treatments based on the amyloid cascade hypothesis; however, none of these drugs had good efficacy at improving cognitive functions in AD patients suggesting that Aβ might not be the disease origin. Thus, there are urgent needs for the development of new therapies that target on the proximal cause of AD. Cellular calcium (Ca2+) signals regulate important facets of neuronal physiology. An increasing body of evidence suggests that age-related dysregulation of neuronal Ca2+ homeostasis may play a proximal role in the pathogenesis of AD as disrupted Ca2+ could induce synaptic deficits and promote the accumulation of Aβ plaques and neurofibrillary tangles. Given that Ca2+ disruption is ubiquitously involved in all AD pathologies, it is likely that using chemical agents or small molecules specific to Ca2+ channels or handling proteins on the plasma membrane and membranes of intracellular organelles to correct neuronal Ca2+ dysregulation could open up a new approach to AD prevention and treatment. This review summarizes current knowledge on the molecular mechanisms linking Ca2+ dysregulation with AD pathologies and discusses the possibility of correcting neuronal Ca2+ disruption as a therapeutic approach for AD.
Collapse
Affiliation(s)
- Benjamin Chun-Kit Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Aston Jiaxi Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.
| |
Collapse
|
19
|
Romanov RA, Lasher RS, High B, Savidge LE, Lawson A, Rogachevskaja OA, Zhao H, Rogachevsky VV, Bystrova MF, Churbanov GD, Adameyko I, Harkany T, Yang R, Kidd GJ, Marambaud P, Kinnamon JC, Kolesnikov SS, Finger TE. Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Sci Signal 2018; 11:11/529/eaao1815. [PMID: 29739879 DOI: 10.1126/scisignal.aao1815] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Conventional chemical synapses in the nervous system involve a presynaptic accumulation of neurotransmitter-containing vesicles, which fuse with the plasma membrane to release neurotransmitters that activate postsynaptic receptors. In taste buds, type II receptor cells do not have conventional synaptic features but nonetheless show regulated release of their afferent neurotransmitter, ATP, through a large-pore, voltage-gated channel, CALHM1. Immunohistochemistry revealed that CALHM1 was localized to points of contact between the receptor cells and sensory nerve fibers. Ultrastructural and super-resolution light microscopy showed that the CALHM1 channels were consistently associated with distinctive, large (1- to 2-μm) mitochondria spaced 20 to 40 nm from the presynaptic membrane. Pharmacological disruption of the mitochondrial respiratory chain limited the ability of taste cells to release ATP, suggesting that the immediate source of released ATP was the mitochondrion rather than a cytoplasmic pool of ATP. These large mitochondria may serve as both a reservoir of releasable ATP and the site of synthesis. The juxtaposition of the large mitochondria to areas of membrane displaying CALHM1 also defines a restricted compartment that limits the influx of Ca2+ upon opening of the nonselective CALHM1 channels. These findings reveal a distinctive organelle signature and functional organization for regulated, focal release of purinergic signals in the absence of synaptic vesicles.
Collapse
Affiliation(s)
- Roman A Romanov
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.,Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.,Immanuel Kant Baltic Federal University, Kaliningrad 236041, Russia
| | - Robert S Lasher
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA
| | - Brigit High
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA
| | - Logan E Savidge
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA
| | - Adam Lawson
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA
| | - Olga A Rogachevskaja
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Vadim V Rogachevsky
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.,United Pushchino Center for Electron Microscopy, Pushchino, Moscow Region 142290, Russia
| | - Marina F Bystrova
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - Gleb D Churbanov
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia
| | - Igor Adameyko
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.,Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria.,Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Ruibiao Yang
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA
| | - Grahame J Kidd
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, and 3D-Electron Microscopy, Renovo Neural Inc., Cleveland, OH 44195, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - John C Kinnamon
- Rocky Mountain Taste and Smell Center, Department of Biological Sciences, University of Denver, Denver, CO 80210, USA
| | - Stanislav S Kolesnikov
- Institute of Cell Biophysics, Russian Academy of Science, Pushchino, Moscow Region 142290, Russia.
| | - Thomas E Finger
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, University Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
20
|
Ma J, Qi X, Yang C, Pan R, Wang S, Wu J, Huang L, Chen H, Cheng J, Wu R, Liao Y, Mao L, Wang FC, Wu Z, An JX, Wang Y, Zhang X, Zhang C, Yuan Z. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 2018; 23:883-891. [PMID: 29180673 DOI: 10.1038/mp.2017.229] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Abstract
Extracellular ATP is a widespread cell-to-cell signaling molecule in the brain, where it functions as a neuromodulator by activating glia and neurons. Although ATP exerts multiple effects on synaptic plasticity and neuro-glia interactions, as well as in mood disorders, the source and regulation of ATP release remain to be elaborated. Here, we define Calhm2 as an ATP-releasing channel protein based on in vitro and in vivo models. Conventional knockout and conditional astrocyte knockout of Calhm2 both lead to significantly reduced ATP concentrations, loss of hippocampal spine number, neural dysfunction and depression-like behaviors in mice, which can be significantly rescued by ATP replenishment. Our findings identify Calhm2 as a critical ATP-releasing channel that modulates neural activity and as a potential risk factor of depression.
Collapse
Affiliation(s)
- J Ma
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing, China
| | - X Qi
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - C Yang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - R Pan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - S Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - J Wu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - L Huang
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - H Chen
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - J Cheng
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - R Wu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Y Liao
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - L Mao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing, China
| | - F C Wang
- National Institute of Biological Sciences, Beijing, China
| | - Z Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hosipital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hanzhou, Zhejiang, China
| | - J X An
- Department of Anesthesiology, Pain Medicine & Critical Care Medicine, Aviation General Hospital of China Medical University, Beijing, China
| | - Y Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - X Zhang
- University of Ottawa Institute of Mental Health Research, Departments of Psychiatry and Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - C Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Z Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
21
|
Abstract
Adenosine triphosphate (ATP) has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1), volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR) anion channels), and maxi-anion channels (MACs). Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.
Collapse
|
22
|
Taruno A, Sun H, Nakajo K, Murakami T, Ohsaki Y, Kido MA, Ono F, Marunaka Y. Post-translational palmitoylation controls the voltage gating and lipid raft association of the CALHM1 channel. J Physiol 2017; 595:6121-6145. [PMID: 28734079 DOI: 10.1113/jp274164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Calcium homeostasis modulator 1 (CALHM1), a new voltage-gated ATP- and Ca2+ -permeable channel, plays important physiological roles in taste perception and memory formation. Regulatory mechanisms of CALHM1 remain unexplored, although the biophysical disparity between CALHM1 gating in vivo and in vitro suggests that there are undiscovered regulatory mechanisms. Here we report that CALHM1 gating and association with lipid microdomains are post-translationally regulated through the process of protein S-palmitoylation, a reversible attachment of palmitate to cysteine residues. Our data also establish cysteine residues and enzymes responsible for CALHM1 palmitoylation. CALHM1 regulation by palmitoylation provides new mechanistic insights into fine-tuning of CALHM1 gating in vivo and suggests a potential layer of regulation in taste and memory. ABSTRACT Emerging roles of CALHM1, a recently discovered voltage-gated ion channel, include purinergic neurotransmission of tastes in taste buds and memory formation in the brain, highlighting its physiological importance. However, the regulatory mechanisms of the CALHM1 channel remain entirely unexplored, hindering full understanding of its contribution in vivo. The different gating properties of CALHM1 in vivo and in vitro suggest undiscovered regulatory mechanisms. Here, in searching for post-translational regulatory mechanisms, we discovered the regulation of CALHM1 gating and association with lipid microdomains via protein S-palmitoylation, the only reversible lipid modification of proteins on cysteine residues. CALHM1 is palmitoylated at two intracellular cysteines located in the juxtamembrane regions of the third and fourth transmembrane domains. Enzymes that catalyse CALHM1 palmitoylation were identified by screening 23 members of the DHHC protein acyltransferase family. Epitope tagging of endogenous CALHM1 proteins in mice revealed that CALHM1 is basally palmitoylated in taste buds in vivo. Functionally, palmitoylation downregulates CALHM1 without effects on its synthesis, degradation and cell surface expression. Mutation of the palmitoylation sites has a profound impact on CALHM1 gating, shifting the conductance-voltage relationship to more negative voltages and accelerating the activation kinetics. The same mutation also reduces CALHM1 association with detergent-resistant membranes. Our results comprehensively uncover a post-translational regulation of the voltage-dependent gating of CALHM1 by palmitoylation.
Collapse
Affiliation(s)
- Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan
| | - Hongxin Sun
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan
| | - Koichi Nakajo
- Department of Physiology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, 569-8686, Japan
| | - Tatsuro Murakami
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark
| | - Yasuyoshi Ohsaki
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University, 3-1-1 Maidashi, Higashi-ward, Fukuoka, 812-8582, Japan
| | - Mizuho A Kido
- Department of Anatomy and Physiology, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, 569-8686, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan.,Department of Bio-Ionomics, Kyoto Prefectural University of Medicine, 465 Kajiicho Kamigyo-ward, Kyoto, 602-8566, Japan
| |
Collapse
|
23
|
Involvement of the MEK-ERK/p38-CREB/c-fos signaling pathway in Kir channel inhibition-induced rat retinal Müller cell gliosis. Sci Rep 2017; 7:1480. [PMID: 28469203 PMCID: PMC5431154 DOI: 10.1038/s41598-017-01557-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/28/2017] [Indexed: 11/07/2022] Open
Abstract
Our previous studies have demonstrated that activation of group I metabotropic glutamate receptors downregulated Kir channels in chronic ocular hypertension (COH) rats, thus contributing to Müller cell gliosis, characterized by upregulated expression of glial fibrillary acidic protein (GFAP). In the present study, we explored possible signaling pathways linking Kir channel inhibition and GFAP upregulation. In normal retinas, intravitreal injection of BaCl2 significantly increased GFAP expression in Müller cells, which was eliminated by co-injecting mitogen-activated protein kinase (MAPK) inhibitor U0126. The protein levels of phosphorylated extracellular signal-regulated protein kinase1/2 (p-ERK1/2) and its upstream regulator, p-MEK, were significantly increased, while the levels of phosphorylated c-Jun N-terminal kinase (p-JNK) and p38 kinase (p-p38) remained unchanged. Furthermore, the protein levels of phosphorylated cAMP response element binding protein (p-CREB) and c-fos were also increased, which were blocked by co-injecting ERK inhibitor FR180204. In purified cultured rat Müller cells, BaCl2 treatment induced similar changes in these protein levels apart from p-p38 levels and the p-p38:p38 ratio showing significant upregulation. Moreover, intravitreal injection of U0126 eliminated the upregulated GFAP expression in COH retinas. Together, these results suggest that Kir channel inhibition-induced Müller cell gliosis is mediated by the MEK-ERK/p38-CREB/c-fos signaling pathway.
Collapse
|
24
|
Subramaniam S, Ozdener MH, Abdoul-Azize S, Saito K, Malik B, Maquart G, Hashimoto T, Marambaud P, Aribi M, Tordoff MG, Besnard P, Khan NA. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J 2016; 30:3489-3500. [PMID: 27358389 PMCID: PMC5024696 DOI: 10.1096/fj.201600422r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Obesity is a major public health problem. An in-depth knowledge of the molecular mechanisms of oro-sensory detection of dietary lipids may help fight it. Humans and rodents can detect fatty acids via lipido-receptors, such as CD36 and GPR120. We studied the implication of the MAPK pathways, in particular, ERK1/2, in the gustatory detection of fatty acids. Linoleic acid, a dietary fatty acid, induced via CD36 the phosphorylation of MEK1/2-ERK1/2-ETS-like transcription factor-1 cascade, which requires Fyn-Src kinase and lipid rafts in human taste bud cells (TBCs). ERK1/2 cascade was activated by Ca2+ signaling via opening of the calcium-homeostasis modulator-1 (CALHM1) channel. Furthermore, fatty acid-evoked Ca2+ signaling and ERK1/2 phosphorylation were decreased in both human TBCs after small interfering RNA knockdown of CALHM1 channel and in TBCs from Calhm1-/- mice. Targeted knockdown of ERK1/2 by small interfering RNA or PD0325901 (MEK1/2 inhibitor) in the tongue and genetic ablation of Erk1 or Calhm1 genes impaired preference for dietary fat in mice. Lingual inhibition of ERK1/2 in healthy volunteers also decreased orogustatory sensitivity for linoleic acid. Our data demonstrate that ERK1/2-MAPK cascade is regulated by the opening of CALHM1 Ca2+ channel in TBCs to modulate orogustatory detection of dietary lipids in mice and humans.-Subramaniam, S., Ozdener, M. H., Abdoul-Azize, S., Saito, K., Malik, B., Maquart, G., Hashimoto, T., Marambaud, P., Aribi, M., Tordoff, M. G., Besnard, P., Khan, N. A. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans.
Collapse
Affiliation(s)
| | | | | | | | - Bilal Malik
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Guillaume Maquart
- Unité Mixte de Recherche U866, INSERM, Université de Bourgogne, AgroSup, Dijon, France
| | | | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, New York, USA
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, Abou Bekr Bel-Kaid University, Tlemcen, Algeria
| | | | - Philippe Besnard
- Unité Mixte de Recherche U866, INSERM, Université de Bourgogne, AgroSup, Dijon, France
| | - Naim Akhtar Khan
- Unité Mixte de Recherche U866, INSERM, Université de Bourgogne, AgroSup, Dijon, France;
| |
Collapse
|
25
|
Han B, Yu L, Geng Y, Shen L, Wang H, Wang Y, Wang J, Wang M. Chronic Stress Aggravates Cognitive Impairment and Suppresses Insulin Associated Signaling Pathway in APP/PS1 Mice. J Alzheimers Dis 2016; 53:1539-52. [PMID: 27392857 DOI: 10.3233/jad-160189] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bing Han
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yuan Geng
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| | - Li Shen
- Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Hualong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yanyong Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Jinhua Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mingwei Wang
- Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
- Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|
26
|
Vingtdeux V, Chang EH, Frattini SA, Zhao H, Chandakkar P, Adrien L, Strohl JJ, Gibson EL, Ohmoto M, Matsumoto I, Huerta PT, Marambaud P. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci Rep 2016; 6:24250. [PMID: 27066908 PMCID: PMC4828655 DOI: 10.1038/srep24250] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/18/2016] [Indexed: 12/04/2022] Open
Abstract
CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1−/−) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1−/− brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1−/− mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Eric H Chang
- Laboratory of Immune &Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Stephen A Frattini
- Laboratory of Immune &Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Pallavi Chandakkar
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Leslie Adrien
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Joshua J Strohl
- Laboratory of Immune &Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Elizabeth L Gibson
- Laboratory of Immune &Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Makoto Ohmoto
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | | | - Patricio T Huerta
- Laboratory of Immune &Neural Networks, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| |
Collapse
|
27
|
Genetic association of CALHM1 rs2986017 polymorphism with risk of Alzheimer’s disease: a meta-analysis. Neurol Sci 2016; 37:525-32. [DOI: 10.1007/s10072-015-2451-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/14/2015] [Indexed: 11/26/2022]
|
28
|
Liu W, Ao Q, Guo Q, He W, Peng L, Jiang J, Hu X. miR-9 Mediates CALHM1-Activated ATP-P2X7R Signal in Painful Diabetic Neuropathy Rats. Mol Neurobiol 2016; 54:922-929. [PMID: 26781424 DOI: 10.1007/s12035-016-9700-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022]
Abstract
In this study, we planned to illuminate the mechanisms of the expression and function of CALHM1 in painful diabetic neuropathy (PDN). PDN rat model was constructed. The expression of CALHM1 and miR-9 in rat spinal dorsal horn neurons was detected. The correlation between the level of CALHM1 mRNA and 50 % PWT and the relationship between the expression of CALHM1 and miR-9 in rat spinal dorsal horn neurons were statistically analyzed. The effect of miR-9 and CALHM1 on each other's expression in PDN rat spinal dorsal horn neurons were tested by qRT-PCR or Western blot. The co-culture system of neurons and glias from PDN rat spinal dorsal horn was constructed. The concentration of calcium and ATP as well as the expression of P2X7 receptor regulated by CALHM1 and miR-9 in PDN rat spinal dorsal horn neurons was measured. The results showed that the expression of CALHM1 was increased in PDN rat compared with controls, while its mRNA level was negatively correlated with 50 % PWT. miR-9, which was also upregulated in the spinal dorsal horn neurons of PDN rats, was positively correlated with the expression of CALHM1. The concentration of calcium and ATP as well as the expression of P2X7 receptor in glias was also increased in PDN rats. These increases could be reverted by inhibiting CALHM1 and/or miR-9. CALHM1 is involved in miR-9-mediated ATP-P2X7 pathway between neurons and glias in PDN rat.
Collapse
Affiliation(s)
- Wenjie Liu
- Anesthesia Department, The First Affiliated Hospital of Nanhua University, Chuanshan Road 69, Hengyang, 421001, Hunan, China
| | - Qinying Ao
- Health School, The Affiliated Nanhua Hospital of Nanhua University, Dongfeng South Road 336, Hengyang, 421001, Hunan, China
| | - Qulian Guo
- Anesthesia Department, Xiangya Hospital of Central South University, Xiangya Road 87, Changsha, 410008, Hunan, China
| | - Wanyou He
- Anesthesia Department, The First People's Hospital of Foshan City, Lingnan Avenue North 81, Foshan, 528000, Guangdong, China
| | - Liangyu Peng
- Anesthesia Department, The First Affiliated Hospital of Nanhua University, Chuanshan Road 69, Hengyang, 421001, Hunan, China
| | - Jun Jiang
- Anesthesia Department, The First Affiliated Hospital of Nanhua University, Chuanshan Road 69, Hengyang, 421001, Hunan, China
| | - Xiaoling Hu
- Anesthesia Department, The First Affiliated Hospital of Nanhua University, Chuanshan Road 69, Hengyang, 421001, Hunan, China.
| |
Collapse
|
29
|
Moreno‐Ortega AJ, Buendia I, Mouhid L, Egea J, Lucea S, Ruiz‐Nuño A, López MG, Cano‐Abad MF. CALHM1 and its polymorphism P86L differentially control Ca²⁺homeostasis, mitogen-activated protein kinase signaling, and cell vulnerability upon exposure to amyloid β. Aging Cell 2015; 14:1094-102. [PMID: 26416646 PMCID: PMC4693463 DOI: 10.1111/acel.12403] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2015] [Indexed: 11/30/2022] Open
Abstract
The mutated form of the Ca2+ channel CALHM1 (Ca2+ homeostasis modulator 1), P86L‐CALHM1, has been correlated with early onset of Alzheimer's disease (AD). P86L‐CALHM1 increases production of amyloid beta (Aβ) upon extracellular Ca2+ removal and its subsequent addback. The aim of this study was to investigate the effect of the overexpression of CALHM1 and P86L‐CALHM, upon Aβ treatment, on the following: (i) the intracellular Ca2+ signal pathway; (ii) cell survival proteins ERK1/2 and Ca2+/cAMP response element binding (CREB); and (iii) cell vulnerability after treatment with Aβ. Using aequorins to measure the effect of nuclear Ca2+ concentrations ([Ca2+]n) and cytosolic Ca2+ concentrations ([Ca2+]c) on Ca2+ entry conditions, we observed that baseline [Ca2+]n was higher in CALHM1 and P86L‐CALHM1 cells than in control cells. Moreover, exposure to Aβ affected [Ca2+]c levels in HeLa cells overexpressing CALHM1 and P86L‐CALHM1 compared with control cells. Treatment with Aβ elicited a significant decrease in the cell survival proteins p‐ERK and p‐CREB, an increase in the activity of caspases 3 and 7, and more frequent cell death by inducing early apoptosis in P86L‐CALHM1‐overexpressing cells than in CALHM1 or control cells. These results suggest that in the presence of Aβ, P86L‐CALHM1 shifts the balance between neurodegeneration and neuronal survival toward the stimulation of pro‐cytotoxic pathways, thus potentially contributing to its deleterious effects in AD.
Collapse
Affiliation(s)
- Ana José Moreno‐Ortega
- Servicio de Farmacología Clínica Instituto de Investigación Sanitaria Hospital Universitario de la Princesa Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Departamento de Farmacología y Terapéutica Facultad de Medicina Universidad Autónoma de Madrid Madrid Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Departamento de Farmacología y Terapéutica Facultad de Medicina Universidad Autónoma de Madrid Madrid Spain
| | - Lamia Mouhid
- Departamento de Farmacología y Terapéutica Facultad de Medicina Universidad Autónoma de Madrid Madrid Spain
| | - Javier Egea
- Servicio de Farmacología Clínica Instituto de Investigación Sanitaria Hospital Universitario de la Princesa Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
| | - Susana Lucea
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Departamento de Farmacología y Terapéutica Facultad de Medicina Universidad Autónoma de Madrid Madrid Spain
| | - Ana Ruiz‐Nuño
- Servicio de Farmacología Clínica Instituto de Investigación Sanitaria Hospital Universitario de la Princesa Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
| | - Manuela G. López
- Servicio de Farmacología Clínica Instituto de Investigación Sanitaria Hospital Universitario de la Princesa Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Departamento de Farmacología y Terapéutica Facultad de Medicina Universidad Autónoma de Madrid Madrid Spain
| | - María F. Cano‐Abad
- Servicio de Farmacología Clínica Instituto de Investigación Sanitaria Hospital Universitario de la Princesa Madrid Spain
- Instituto Teófilo Hernando Universidad Autónoma de Madrid Madrid Spain
- Departamento de Farmacología y Terapéutica Facultad de Medicina Universidad Autónoma de Madrid Madrid Spain
| |
Collapse
|
30
|
Ma Z, Tanis JE, Taruno A, Foskett JK. Calcium homeostasis modulator (CALHM) ion channels. Pflugers Arch 2015; 468:395-403. [PMID: 26603282 DOI: 10.1007/s00424-015-1757-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
Abstract
Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.
Collapse
Affiliation(s)
- Zhongming Ma
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 720 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, PA, 19104, USA.
| | - Jessica E Tanis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 720 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, 720 Clinical Research Bldg., 415 Curie Blvd., Philadelphia, PA, 19104, USA. .,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
31
|
Vingtdeux V, Chandakkar P, Zhao H, Blanc L, Ruiz S, Marambaud P. CALHM1 ion channel elicits amyloid-β clearance by insulin-degrading enzyme in cell lines and in vivo in the mouse brain. J Cell Sci 2015; 128:2330-8. [PMID: 25999473 DOI: 10.1242/jcs.167270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/18/2015] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease is characterized by amyloid-β (Aβ) peptide accumulation in the brain. CALHM1, a cell-surface Ca(2+) channel expressed in brain neurons, has anti-amyloidogenic properties in cell cultures. Here, we show that CALHM1 controls Aβ levels in vivo in the mouse brain through a previously unrecognized mechanism of regulation of Aβ clearance. Using pharmacological and genetic approaches in cell lines, we found that CALHM1 ion permeability and extracellular Ca(2+) were required for the Aβ-lowering effect of CALHM1. Aβ level reduction by CALHM1 could be explained by an increase in extracellular Aβ degradation by insulin-degrading enzyme (IDE), extracellular secretion of which was strongly potentiated by CALHM1 activation. Importantly, Calhm1 knockout in mice reduced IDE enzymatic activity in the brain, and increased endogenous Aβ concentrations by up to ∼50% in both the whole brain and primary neurons. Thus, CALHM1 controls Aβ levels in cell lines and in vivo by facilitating neuronal and Ca(2+)-dependent degradation of extracellular Aβ by IDE. This work identifies CALHM1 ion channel as a potential target for promoting amyloid clearance in Alzheimer's disease.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Manhasset, New York 11030 USA The Feinstein Institute for Medical Research, Manhasset, New York 11030 USA
| | - Pallavi Chandakkar
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Manhasset, New York 11030 USA The Feinstein Institute for Medical Research, Manhasset, New York 11030 USA
| | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Manhasset, New York 11030 USA The Feinstein Institute for Medical Research, Manhasset, New York 11030 USA
| | - Lionel Blanc
- The Feinstein Institute for Medical Research, Manhasset, New York 11030 USA
| | - Santiago Ruiz
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Manhasset, New York 11030 USA The Feinstein Institute for Medical Research, Manhasset, New York 11030 USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Manhasset, New York 11030 USA The Feinstein Institute for Medical Research, Manhasset, New York 11030 USA
| |
Collapse
|
32
|
Moreno-Ortega AJ, Martínez-Sanz FJ, Lajarín-Cuesta R, de Los Rios C, Cano-Abad MF. Benzothiazepine CGP37157 and its 2'-isopropyl analogue modulate Ca²⁺ entry through CALHM1. Neuropharmacology 2015; 95:503-10. [PMID: 25908402 DOI: 10.1016/j.neuropharm.2015.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/16/2015] [Accepted: 02/11/2015] [Indexed: 01/05/2023]
Abstract
CALHM1 is a Ca(2+) channel discovered in 2008, which plays a key role in the neuronal electrical activity, among other functions. However, there are no known efficient blockers able to modulate its Ca(2+) handling ability. We herein describe that benzothiazepine CGP37157 and its newly synthesized analogue ITH12575 reduced Ca(2+) influx through CALHM1 at low micromolar concentrations. These results could serve as a starting point for the development of more selective CALHM1 ligands using CGP37157 as a hit compound, which would help to study the physiological role of CALHM1 in the control of [Ca(2+)]cyt in excitable cells, as well as its implication in CNS diseases.
Collapse
Affiliation(s)
- Ana J Moreno-Ortega
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - Francisco J Martínez-Sanz
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Rocío Lajarín-Cuesta
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain
| | - Cristóbal de Los Rios
- Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, C/ Diego de León, 62, 28006, Madrid, Spain
| | - María F Cano-Abad
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029, Madrid, Spain.
| |
Collapse
|
33
|
Vingtdeux V, Tanis JE, Chandakkar P, Zhao H, Dreses-Werringloer U, Campagne F, Foskett JK, Marambaud P. Effect of the CALHM1 G330D and R154H human variants on the control of cytosolic Ca2+ and Aβ levels. PLoS One 2014; 9:e112484. [PMID: 25386646 PMCID: PMC4227689 DOI: 10.1371/journal.pone.0112484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022] Open
Abstract
CALHM1 is a plasma membrane voltage-gated Ca2+-permeable ion channel that controls amyloid-β (Aβ) metabolism and is potentially involved in the onset of Alzheimer's disease (AD). Recently, Rubio-Moscardo et al. (PLoS One (2013) 8: e74203) reported the identification of two CALHM1 variants, G330D and R154H, in early-onset AD (EOAD) patients. The authors provided evidence that these two human variants were rare and resulted in a complete loss of CALHM1 function. Recent publicly available large-scale exome sequencing data confirmed that R154H is a rare CALHM1 variant (minor allele frequency (MAF) = 0.015%), but that G330D is not (MAF = 3.5% in an African American cohort). Here, we show that both CALHM1 variants exhibited gating and permeation properties indistinguishable from wild-type CALHM1 when expressed in Xenopus oocytes. While there was also no effect of the G330D mutation on Ca2+ uptake by CALHM1 in transfected mammalian cells, the R154H mutation was associated with defects in the control by CALHM1 of both Ca2+ uptake and Aβ levels in this cell system. Together, our data show that the frequent CALHM1 G330D variant has no obvious functional consequences and is therefore unlikely to contribute to EOAD. Our data also demonstrate that the rare R154H variant interferes with CALHM1 control of cytosolic Ca2+ and Aβ accumulation. While these results strengthen the notion that CALHM1 influences Aβ metabolism, further investigation will be required to determine whether CALHM1 R154H, or other natural variants in CALHM1, is/are associated with EOAD.
Collapse
Affiliation(s)
- Valérie Vingtdeux
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Jessica E. Tanis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Pallavi Chandakkar
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Haitian Zhao
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Ute Dreses-Werringloer
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
| | - Fabien Campagne
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, The Weill Cornell Medical College, New York, NY, United States of America
| | - J. Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, The Feinstein Institute for Medical Research, Manhasset, NY, United States of America
- * E-mail:
| |
Collapse
|
34
|
Tordoff MG, Ellis HT, Aleman TR, Downing A, Marambaud P, Foskett JK, Dana RM, McCaughey SA. Salty taste deficits in CALHM1 knockout mice. Chem Senses 2014; 39:515-28. [PMID: 24846212 DOI: 10.1093/chemse/bju020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt.
Collapse
Affiliation(s)
- Michael G Tordoff
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA,
| | - Hillary T Ellis
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Tiffany R Aleman
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Arnelle Downing
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | - Philippe Marambaud
- Litwin-Zucker Research Center for the Study of Alzheimer's Disease, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - J Kevin Foskett
- Department of Physiology, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Rachel M Dana
- Department of Biology, Cooper Life Sciences Building, CL121, Ball State University, Muncie, IN 47306, USA and
| | - Stuart A McCaughey
- Center for Medical Education, IUSM-Muncie at Ball State University, 221 N. Celia Avenue, MT 201, Muncie, IN 47306, USA
| |
Collapse
|
35
|
Liu D, Yi C, Wang K, Fong CC, Wang Z, Lo PK, Sun D, Yang M. Reorganization of cytoskeleton and transient activation of Ca2+ channels in mesenchymal stem cells cultured on silicon nanowire arrays. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13295-13304. [PMID: 24308382 DOI: 10.1021/am404276r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tissue engineering combines biological cells and synthetic materials containing chemical signaling molecules to form scaffolds for tissue regeneration. Mesenchymal stem cells (MSCs) provide an attractive source for tissue engineering due to their versatility of multipotent differentiation. Recently, it has been recognized that both chemical and mechanical stimulations are essential mediators of adhesion and differentiation of MSCs. While significant progress has been made on the understanding of chemical regulatory factors within the extracellular matrix, the effects of mechanical stimulation exerted by nanomaterials on MSCs and the underlying mechanisms are less well-known. The present study showed that the adhesion, proliferation, and differentiation of MSCs cultured on vertically aligned silicon nanowire (SiNW) arrays were significantly different from those on flat silicon wafer and control substrates. The interactions between MSCs and the SiNW arrays caused the stem cells to preferentially differentiate toward osteocytes and chondrocytes but not adipocytes in the absence of supplementary growth factors. Our study demonstrated that Ca(2+) ion channels were transiently activated in MSCs upon mechanical stimulation, which eventually led to activation of Ras/Raf/MEK/ERK signaling cascades to regulate adhesion, proliferation, and differentiation of MSCs. The stretch-mediated transient Ca(2+) ion channel activation and cytoskeleton reorganization during stem cell-nanowire interaction may be early events of lineage-specific potentiation of MSCs in determining the fates of mesenchymal stem cells cultured on microenvironments with specific mechanical properties.
Collapse
Affiliation(s)
- Dandan Liu
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong , Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|