1
|
Qiu Y, Wang Y, Chai Z, Ni D, Li X, Pu J, Chen J, Zhang J, Lu S, Lv C, Ji M. Targeting RAS phosphorylation in cancer therapy: Mechanisms and modulators. Acta Pharm Sin B 2021; 11:3433-3446. [PMID: 34900528 PMCID: PMC8642438 DOI: 10.1016/j.apsb.2021.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/26/2021] [Accepted: 02/16/2021] [Indexed: 12/17/2022] Open
Abstract
RAS, a member of the small GTPase family, functions as a binary switch by shifting between inactive GDP-loaded and active GTP-loaded state. RAS gain-of-function mutations are one of the leading causes in human oncogenesis, accounting for ∼19% of the global cancer burden. As a well-recognized target in malignancy, RAS has been intensively studied in the past decades. Despite the sustained efforts, many failures occurred in the earlier exploration and resulted in an ‘undruggable’ feature of RAS proteins. Phosphorylation at several residues has been recently determined as regulators for wild-type and mutated RAS proteins. Therefore, the development of RAS inhibitors directly targeting the RAS mutants or towards upstream regulatory kinases supplies a novel direction for tackling the anti-RAS difficulties. A better understanding of RAS phosphorylation can contribute to future therapeutic strategies. In this review, we comprehensively summarized the current advances in RAS phosphorylation and provided mechanistic insights into the signaling transduction of associated pathways. Importantly, the preclinical and clinical success in developing anti-RAS drugs targeting the upstream kinases and potential directions of harnessing allostery to target RAS phosphorylation sites were also discussed.
Collapse
Key Words
- ABL, Abelson
- APC, adenomatous polyposis coli
- Allostery
- CK1, casein kinase 1
- CML, chronic myeloid leukemia
- ER, endoplasmic reticulum
- GAPs, GTPase-activating proteins
- GEFs, guanine nucleotide exchange-factors
- GSK3, glycogen synthase kinase 3
- HVR, hypervariable region
- IP3R, inositol trisphosphate receptors
- LRP6, lipoprotein-receptor-related protein 6
- OMM, outer mitochondrial membrane
- PI3K, phosphatidylinositol 3-kinase
- PKC, protein kinase C
- PPIs, protein−protein interactions
- Phosphorylation
- Protein kinases
- RAS
- RIN1, RAB-interacting protein 1
- SHP2, SRC homology 2 domain containing phosphatase 2
- SOS, Son of Sevenless
- STK19, serine/threonine-protein kinase 19
- TKIs, tyrosine kinase inhibitors
- Undruggable
Collapse
Affiliation(s)
- Yuran Qiu
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Yuanhao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China
| | - Duan Ni
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200120, China
| | - Jie Chen
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Corresponding authors.
| | - Chuan Lv
- Department of Plastic Surgery, Changhai Hospital, Naval Military Medical University, Shanghai 200438, China
- Corresponding authors.
| | - Mingfei Ji
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, China
- Corresponding authors.
| |
Collapse
|
2
|
Cabot D, Brun S, Paco N, Ginesta MM, Gendrau-Sanclemente N, Abuasaker B, Ruiz-Fariña T, Barceló C, Cuatrecasas M, Bosch M, Rentero C, Pons G, Estanyol JM, Capellà G, Jaumot M, Agell N. KRAS phosphorylation regulates cell polarization and tumorigenic properties in colorectal cancer. Oncogene 2021; 40:5730-5740. [PMID: 34333552 DOI: 10.1038/s41388-021-01967-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/07/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Oncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells. Our data show that the presence of phospho-/dephosphorylatable oncogenic KRAS is required for preserving the epithelial organization of colorectal cancer cells in 3D cultures, and for supporting subcutaneous tumor growth in mice. Interestingly, gene expression differed according to the phosphorylation status of KRAS. In DLD-1 cells, CTNNA1 was only expressed in phospho-/dephosphorylatable oncogenic KRAS-expressing cells, correlating with cell polarization. Moreover, lack of oncogenic KRAS phosphorylation leads to changes in expression of genes related to cell invasion, such as SERPINE1, PRSS1,2,3, and NEO1, and expression of phosphomimetic oncogenic KRAS resulted in diminished expression of genes involved in enterocyte differentiation, such as HNF4G. Finally, the analysis, in a public data set of human colorectal cancer, of the gene expression signatures associated with phosphomimetic and nonphosphorylatable oncogenic KRAS suggests that this post-translational modification regulates tumor progression in patients.
Collapse
Affiliation(s)
- Débora Cabot
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sònia Brun
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Noelia Paco
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mireia M Ginesta
- Hereditary Cancer Program, Translational Research Laboratory, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain and Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain
| | - Núria Gendrau-Sanclemente
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Hospital Duran i Reynals, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Baraa Abuasaker
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Triana Ruiz-Fariña
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Barceló
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Institut d'Investigació Sanitària Illes Balears (IdISBa), Palma de Mallorca, Spain
| | - Miriam Cuatrecasas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Departament de Fonaments Clínics, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona; Pathology Department and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Tumor Bank-Biobank, Hospital Clínic, Barcelona, Spain
| | - Marta Bosch
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona and Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Estanyol
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Proteomics Unit, CCiT-UB, Universitat de Barcelona, Barcelona, Spain
| | - Gabriel Capellà
- Hereditary Cancer Program, Translational Research Laboratory, Catalan Institute of Oncology, ICO-IDIBELL, Hospitalet de Llobregat, Barcelona, Spain and Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Madrid, Spain
| | - Montserrat Jaumot
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Neus Agell
- Department Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain. .,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
3
|
Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling? Biochem Soc Trans 2021; 48:2669-2689. [PMID: 33155649 PMCID: PMC7752083 DOI: 10.1042/bst20200467] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The structure-function paradigm has guided investigations into the molecules involved in cellular signalling for decades. The peripheries of this paradigm, however, start to unravel when considering the co-operation between proteins and the membrane in signalling processes. Intrinsically disordered regions hold distinct advantages over folded domains in terms of their binding promiscuity, sensitivity to their particular environment and their ease of modulation through post-translational modifications. Low sequence complexity and bias towards charged residues are also favourable for the multivalent electrostatic interactions that occur at the surfaces of lipid bilayers. This review looks at the principles behind the successful marriage between protein disorder and membranes in addition to the role of this partnership in modifying and regulating signalling in cellular processes. The HVR (hypervariable region) of small GTPases is highlighted as a well-studied example of the nuanced role a short intrinsically disordered region can play in the fine-tuning of signalling pathways.
Collapse
|
4
|
Wang WH, Yuan T, Qian MJ, Yan FJ, Yang L, He QJ, Yang B, Lu JJ, Zhu H. Post-translational modification of KRAS: potential targets for cancer therapy. Acta Pharmacol Sin 2021; 42:1201-1211. [PMID: 33087838 PMCID: PMC8285426 DOI: 10.1038/s41401-020-00542-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023]
Abstract
Aberrant activation of the RAS superfamily is one of the critical factors in carcinogenesis. Among them, KRAS is the most frequently mutated one which has inspired extensive studies for developing approaches to intervention. Although the cognition toward KRAS remains far from complete, mounting evidence suggests that a variety of post-translational modifications regulate its activation and localization. In this review, we summarize the regulatory mode of post-translational modifications on KRAS including prenylation, post-prenylation, palmitoylation, ubiquitination, phosphorylation, SUMOylation, acetylation, nitrosylation, etc. We also highlight the recent studies targeting these modifications having exhibited potent anti-tumor activities.
Collapse
Affiliation(s)
- Wei-Hua Wang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mei-Jia Qian
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang-Jie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
PHLPPing the balance: restoration of protein kinase C in cancer. Biochem J 2021; 478:341-355. [PMID: 33502516 DOI: 10.1042/bcj20190765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022]
Abstract
Protein kinase signalling, which transduces external messages to mediate cellular growth and metabolism, is frequently deregulated in human disease, and specifically in cancer. As such, there are 77 kinase inhibitors currently approved for the treatment of human disease by the FDA. Due to their historical association as the receptors for the tumour-promoting phorbol esters, PKC isozymes were initially targeted as oncogenes in cancer. However, a meta-analysis of clinical trials with PKC inhibitors in combination with chemotherapy revealed that these treatments were not advantageous, and instead resulted in poorer outcomes and greater adverse effects. More recent studies suggest that instead of inhibiting PKC, therapies should aim to restore PKC function in cancer: cancer-associated PKC mutations are generally loss-of-function and high PKC protein is protective in many cancers, including most notably KRAS-driven cancers. These recent findings have reframed PKC as having a tumour suppressive function. This review focusses on a potential new mechanism of restoring PKC function in cancer - through targeting of its negative regulator, the Ser/Thr protein phosphatase PHLPP. This phosphatase regulates PKC steady-state levels by regulating the phosphorylation of a key site, the hydrophobic motif, whose phosphorylation is necessary for the stability of the enzyme. We also consider whether the phosphorylation of the potent oncogene KRAS provides a mechanism by which high PKC expression may be protective in KRAS-driven human cancers.
Collapse
|
6
|
López CA, Agarwal A, Van QN, Stephen AG, Gnanakaran S. Unveiling the Dynamics of KRAS4b on Lipid Model Membranes. J Membr Biol 2021; 254:201-216. [PMID: 33825026 PMCID: PMC8052243 DOI: 10.1007/s00232-021-00176-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022]
Abstract
Small GTPase proteins are ubiquitous and responsible for regulating several processes related to cell growth and differentiation. Mutations that stabilize their active state can lead to uncontrolled cell proliferation and cancer. Although these proteins are well characterized at the cellular scale, the molecular mechanisms governing their functions are still poorly understood. In addition, there is limited information about the regulatory function of the cell membrane which supports their activity. Thus, we have studied the dynamics and conformations of the farnesylated KRAS4b in various membrane model systems, ranging from binary fluid mixtures to heterogeneous raft mimics. Our approach combines long time-scale coarse-grained (CG) simulations and Markov state models to dissect the membrane-supported dynamics of KRAS4b. Our simulations reveal that protein dynamics is mainly modulated by the presence of anionic lipids and to some extent by the nucleotide state (activation) of the protein. In addition, our results suggest that both the farnesyl and the polybasic hypervariable region (HVR) are responsible for its preferential partitioning within the liquid-disordered (Ld) domains in membranes, potentially enhancing the formation of membrane-driven signaling platforms.
Collapse
Affiliation(s)
- Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Animesh Agarwal
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, 21702, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
7
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
8
|
Abdelkarim H, Banerjee A, Grudzien P, Leschinsky N, Abushaer M, Gaponenko V. The Hypervariable Region of K-Ras4B Governs Molecular Recognition and Function. Int J Mol Sci 2019; 20:ijms20225718. [PMID: 31739603 PMCID: PMC6888304 DOI: 10.3390/ijms20225718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
The flexible C-terminal hypervariable region distinguishes K-Ras4B, an important proto-oncogenic GTPase, from other Ras GTPases. This unique lysine-rich portion of the protein harbors sites for post-translational modification, including cysteine prenylation, carboxymethylation, phosphorylation, and likely many others. The functions of the hypervariable region are diverse, ranging from anchoring K-Ras4B at the plasma membrane to sampling potentially auto-inhibitory binding sites in its GTPase domain and participating in isoform-specific protein-protein interactions and signaling. Despite much research, there are still many questions about the hypervariable region of K-Ras4B. For example, mechanistic details of its interaction with plasma membrane lipids and with the GTPase domain require further clarification. The roles of the hypervariable region in K-Ras4B-specific protein-protein interactions and signaling are incompletely defined. It is also unclear why post-translational modifications frequently found in protein polylysine domains, such as acetylation, glycation, and carbamoylation, have not been observed in K-Ras4B. Expanding knowledge of the hypervariable region will likely drive the development of novel highly-efficient and selective inhibitors of K-Ras4B that are urgently needed by cancer patients.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
| | - Patrick Grudzien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Nicholas Leschinsky
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Mahmoud Abushaer
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
- Correspondence: ; Tel.: +312-355-4839
| |
Collapse
|
9
|
Barklis E, Stephen AG, Staubus AO, Barklis RL, Alfadhli A. Organization of Farnesylated, Carboxymethylated KRAS4B on Membranes. J Mol Biol 2019; 431:3706-3717. [PMID: 31330153 PMCID: PMC6733658 DOI: 10.1016/j.jmb.2019.07.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Mutations of the Ras proteins HRAS, KRAS4A, KRAS4B, and NRAS are associated with a high percentage of all human cancers. The proteins are composed of highly homologous N-terminal catalytic or globular domains, plus C-terminal hypervariable regions (HVRs). Post-translational modifications of all RAS HVRs helps target RAS proteins to cellular membrane locations where they perform their signaling functions. For the predominant KRAS4 isoform, KRAS4B, post-translational farnesylation and carboxymethylation, along with a patch of HVR basic residues help foster membrane binding. Recent investigations implicate membrane-bound RAS dimers, oligomers, and nanoclusters as landing pads for effector proteins that relay RAS signals. The details of these RAS signaling platforms have not been elucidated completely, in part due to the difficulties in preparing modified proteins. We have employed properly farnesylated and carboxymethylated KRAS4B in lipid monolayer incubations to examine how the proteins assemble on membranes. Our results reveal novel insights into to how KRAS4B may organize on membranes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA.
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21072, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, 97239, OR, USA
| |
Collapse
|
10
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
11
|
Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell 2019; 176:1113-1127.e16. [DOI: 10.1016/j.cell.2019.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/23/2018] [Accepted: 12/31/2018] [Indexed: 12/19/2022]
|
12
|
Ahearn I, Zhou M, Philips MR. Posttranslational Modifications of RAS Proteins. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031484. [PMID: 29311131 DOI: 10.1101/cshperspect.a031484] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three human RAS genes encode four proteins that play central roles in oncogenesis by acting as binary molecular switches that regulate signaling pathways for growth and differentiation. Each is subject to a set of posttranslational modifications (PTMs) that modify their activity or are required for membrane targeting. The enzymes that catalyze the various PTMs are potential targets for anti-RAS drug discovery. The PTMs of RAS proteins are the focus of this review.
Collapse
Affiliation(s)
- Ian Ahearn
- Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| | - Mo Zhou
- Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| | - Mark R Philips
- Department of Medicine, Perlmutter Cancer Center, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
13
|
Ritchie C, Mack A, Harper L, Alfadhli A, Stork PJS, Nan X, Barklis E. Analysis of K-Ras Interactions by Biotin Ligase Tagging. Cancer Genomics Proteomics 2018. [PMID: 28647697 DOI: 10.21873/cgp.20034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mutations of the human K-Ras 4B (K-Ras) G protein are associated with a significant proportion of all human cancers. Despite this fact, a comprehensive analysis of K-Ras interactions is lacking. Our investigations focus on characterization of the K-Ras interaction network. MATERIALS AND METHODS We employed a biotin ligase-tagging approach, in which tagged K-Ras proteins biotinylate neighbor proteins in a proximity-dependent fashion, and proteins are identified via mass spectrometry (MS) sequencing. RESULTS In transfected cells, a total of 748 biotinylated proteins were identified from cells expressing biotin ligase-tagged K-Ras variants. Significant differences were observed between membrane-associated variants and a farnesylation-defective mutant. In pancreatic cancer cells, 56 K-Ras interaction partners were identified. Most of these were cytoskeletal or plasma membrane proteins, and many have been identified previously as potential cancer biomarkers. CONCLUSION Biotin ligase tagging offers a rapid and convenient approach to the characterization of K-Ras interaction networks.
Collapse
Affiliation(s)
- Christopher Ritchie
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Andrew Mack
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Logan Harper
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A
| | - Philip J S Stork
- Department of Vollum Institute, Oregon Health & Science University, Portland, OR, U.S.A
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, U.S.A
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, U.S.A.
| |
Collapse
|
14
|
Guarnaccia M, Iemmolo R, San Biagio F, Alessi E, Cavallaro S. Genotyping of KRAS Mutational Status by the In-Check Lab-on-Chip Platform. SENSORS 2018; 18:s18010131. [PMID: 29304017 PMCID: PMC5795341 DOI: 10.3390/s18010131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/14/2017] [Accepted: 12/31/2017] [Indexed: 12/20/2022]
Abstract
The KRAS oncogene is involved in the pathogenesis of several types of cancer, particularly colorectal cancer (CRC). The most frequent mutations in this gene are associated with poor survival, increased tumor aggressiveness and resistance to therapy with anti-epidermal growth factor receptor (EGFR) antibodies. For this reason, KRAS mutation testing has become increasingly common in clinical practice for personalized cancer treatments of CRC patients. Detection methods for KRAS mutations are currently expensive, laborious, time-consuming and often lack of diagnostic sensitivity and specificity. In this study, we describe the development of a Lab-on-Chip assay for genotyping of KRAS mutational status. This assay, based on the In-Check platform, integrates microfluidic handling, a multiplex polymerase chain reaction (PCR) and a low-density microarray. This integrated sample-to-result system enables the detection of KRAS point mutations, including those occurring in codons 12 and 13 of exon 2, 59 and 61 of exon 3, 117 and 146 of exon 4. Thanks to its miniaturization, automation, rapid analysis, minimal risk of sample contamination, increased accuracy and reproducibility of results, this Lab-on-Chip platform may offer immediate opportunities to simplify KRAS genotyping into clinical routine.
Collapse
Affiliation(s)
- Maria Guarnaccia
- Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy.
| | - Rosario Iemmolo
- Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy.
| | | | - Enrico Alessi
- Analog, MEMS & Sensor Group-HealthCare Business Development Unit, STMicroelectronics, Stradale Primosole 50, 95121 Catania, Italy.
| | - Sebastiano Cavallaro
- Institute of Neurological Sciences, Italian National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
15
|
Seguin L, Camargo MF, Wettersten HI, Kato S, Desgrosellier JS, von Schalscha T, Elliott KC, Cosset E, Lesperance J, Weis SM, Cheresh DA. Galectin-3, a Druggable Vulnerability for KRAS-Addicted Cancers. Cancer Discov 2017; 7:1464-1479. [PMID: 28893801 DOI: 10.1158/2159-8290.cd-17-0539] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 01/12/2023]
Abstract
Identifying the molecular basis for cancer cell dependence on oncogenes such as KRAS can provide new opportunities to target these addictions. Here, we identify a novel role for the carbohydrate-binding protein galectin-3 as a lynchpin for KRAS dependence. By directly binding to the cell surface receptor integrin αvβ3, galectin-3 gives rise to KRAS addiction by enabling multiple functions of KRAS in anchorage-independent cells, including formation of macropinosomes that facilitate nutrient uptake and ability to maintain redox balance. Disrupting αvβ3/galectin-3 binding with a clinically active drug prevents their association with mutant KRAS, thereby suppressing macropinocytosis while increasing reactive oxygen species to eradicate αvβ3-expressing KRAS-mutant lung and pancreatic cancer patient-derived xenografts and spontaneous tumors in mice. Our work reveals galectin-3 as a druggable target for KRAS-addicted lung and pancreas cancers, and indicates integrin αvβ3 as a biomarker to identify susceptible tumors.Significance: There is a significant unmet need for therapies targeting KRAS-mutant cancers. Here, we identify integrin αvβ3 as a biomarker to identify mutant KRAS-addicted tumors that are highly sensitive to inhibition of galectin-3, a glycoprotein that binds to integrin αvβ3 to promote KRAS-mediated activation of AKT. Cancer Discov; 7(12); 1464-79. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1355.
Collapse
Affiliation(s)
- Laetitia Seguin
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California.
| | - Maria F Camargo
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Hiromi I Wettersten
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Shumei Kato
- School of Medicine, Division of Hematology/Oncology, University of California, San Diego, La Jolla, California
| | - Jay S Desgrosellier
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Tami von Schalscha
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Kathryn C Elliott
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Erika Cosset
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Jacqueline Lesperance
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Sara M Weis
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - David A Cheresh
- Department of Pathology, Moores UCSD Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California.
| |
Collapse
|
16
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
17
|
Zhang SY, Sperlich B, Li FY, Al-Ayoubi S, Chen HX, Zhao YF, Li YM, Weise K, Winter R, Chen YX. Phosphorylation Weakens but Does Not Inhibit Membrane Binding and Clustering of K-Ras4B. ACS Chem Biol 2017; 12:1703-1710. [PMID: 28448716 DOI: 10.1021/acschembio.7b00165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
K-Ras4B is one of the most frequently mutated Ras isoforms in cancer. The signaling activity of K-Ras4B depends on its localization to the plasma membrane (PM), which is mainly mediated by its polybasic farnesylated C-terminus. On top of the constitutive cycles that maintain the PM enrichment of K-Ras4B, conditional phosphorylation at Ser181 located within this motif has been found to be involved in regulating K-Ras4B's cell distribution and signaling activity. However, discordant observations have undermined our understanding of the role this phosphorylation plays. Here, we report an efficient strategy for producing K-Ras4B simultaneously bearing phosphate, farnesyl, and methyl modifications on a preparative scale, a very useful in vitro system when used in concert with model biomembranes. By using this system, we determined that phosphorylation at Ser181 does not fully inhibit membrane binding and clustering of K-Ras4B but reduces its membrane binding affinity, depending on membrane fluidity. In addition, phosphorylated K-Ras4B maintains tight association with its cytosolic shuttle protein PDEδ. After delivering K-Ras4B containing nonhydrolyzable phosphoserine mimetic into cells, the protein displayed a decreasing PM distribution compared with nonphosphorylable K-Ras4B, implying that phosphorylation might facilitate the dissociation of K-Ras4B from the PM. In addition, phosphorylation does not alter the localization of K-Ras4B in the liquid-disordered lipid subdomains of the membrane but slightly alters the thermotropic properties of K-Ras4B-incorporated membranes probably due to minor differences in membrane partitioning and dynamics. These results provide novel mechanistic insights into the role that phosphorylation at Ser181 plays in regulating K-Ras4B's distribution and activity.
Collapse
Affiliation(s)
- Si-Yu Zhang
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Benjamin Sperlich
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Fang-Yi Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Samy Al-Ayoubi
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Hong-Xue Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Fen Zhao
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan-Mei Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Katrin Weise
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Yong-Xiang Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Nussinov R, Wang G, Tsai CJ, Jang H, Lu S, Banerjee A, Zhang J, Gaponenko V. Calmodulin and PI3K Signaling in KRAS Cancers. Trends Cancer 2017; 3:214-224. [PMID: 28462395 PMCID: PMC5408465 DOI: 10.1016/j.trecan.2017.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Calmodulin (CaM) uniquely promotes signaling of oncogenic K-Ras; but not N-Ras or H-Ras. How CaM interacts with K-Ras and how this stimulates cell proliferation are among the most challenging questions in KRAS-driven cancers. Earlier data pointed to formation of a ternary complex consisting of K-Ras, PI3Kα and CaM. Recent data point to phosphorylated CaM binding to the SH2 domains of the p85 subunit of PI3Kα and activating it. Modeling suggests that the high affinity interaction between the phosphorylated CaM tyrosine motif and PI3Kα, can promote full PI3Kα activation by oncogenic K-Ras. Our up-to-date review discusses CaM's role in PI3K signaling at the membrane in KRAS-driven cancers. This is significant since it may help development of K-Ras-specific pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guanqiao Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, U.S.A
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Avik Banerjee
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL 60607, U.S.A
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL 60607, U.S.A
| |
Collapse
|
19
|
AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2. Mol Cell Biol 2016; 36:3086-3099. [PMID: 27697864 DOI: 10.1128/mcb.00365-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function.
Collapse
|
20
|
Banerjee A, Jang H, Nussinov R, Gaponenko V. The disordered hypervariable region and the folded catalytic domain of oncogenic K-Ras4B partner in phospholipid binding. Curr Opin Struct Biol 2016; 36:10-7. [PMID: 26709496 PMCID: PMC4785042 DOI: 10.1016/j.sbi.2015.11.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/20/2015] [Indexed: 01/08/2023]
Abstract
The C-terminal hypervariable region (HVR) of the splice variant KRAS4B is disordered. Classically, the role of the post-translationally-modified HVR is to navigate Ras in the cell and to anchor it in localized plasma membrane regions. Here, we propose additional regulatory roles, including auto-inhibition by shielding the effector binding site in the GDP-bound state and release upon GTP binding and in the presence of certain oncogenic mutations. The released HVR can interact with calmodulin. We show that oncogenic mutations (G12V/G12D) modulate the HVR-phospholipid binding specificity, resulting in preferential interactions with phosphatidic acid. The shifts in the conformational preferences and binding specificity in the disordered state exemplify the critical role of the unstructured tail of K-Ras4B in cancer.
Collapse
Affiliation(s)
- Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyunbum Jang
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Cancer and Inflammation Program, National Cancer Institute at Frederick, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
21
|
Chavan TS, Muratcioglu S, Marszalek R, Jang H, Keskin O, Gursoy A, Nussinov R, Gaponenko V. Plasma membrane regulates Ras signaling networks. CELLULAR LOGISTICS 2015; 5:e1136374. [PMID: 27054048 PMCID: PMC4820813 DOI: 10.1080/21592799.2015.1136374] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Ras GTPases activate more than 20 signaling pathways, regulating such essential cellular functions as proliferation, survival, and migration. How Ras proteins control their signaling diversity is still a mystery. Several pieces of evidence suggest that the plasma membrane plays a critical role. Among these are: (1) selective recruitment of Ras and its effectors to particular localities allowing access to Ras regulators and effectors; (2) specific membrane-induced conformational changes promoting Ras functional diversity; and (3) oligomerization of membrane-anchored Ras to recruit and activate Raf. Taken together, the membrane does not only attract and retain Ras but also is a key regulator of Ras signaling. This can already be gleaned from the large variability in the sequences of Ras membrane targeting domains, suggesting that localization, environment and orientation are important factors in optimizing the function of Ras isoforms.
Collapse
Affiliation(s)
- Tanmay Sanjeev Chavan
- Department of Medicinal Chemistry; University of Illinois at Chicago; Chicago, IL USA
| | - Serena Muratcioglu
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Richard Marszalek
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| | - Hyunbum Jang
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics; Koc University; Istanbul, Turkey
| | - Ruth Nussinov
- Cancer and Inflammation Program; Basic Science Program; Leidos Biomedical Research, Inc.; Frederick National Laboratory for Cancer Research; National Cancer Institute at Frederick; Frederick, MD USA
- Sackler Institute of Molecular Medicine; Department of Human Genetics and Molecular Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
22
|
Jang H, Abraham SJ, Chavan TS, Hitchinson B, Khavrutskii L, Tarasova NI, Nussinov R, Gaponenko V. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 2015; 290:9465-77. [PMID: 25713064 PMCID: PMC4392252 DOI: 10.1074/jbc.m114.620724] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/19/2015] [Indexed: 01/08/2023] Open
Abstract
K-Ras4B belongs to a family of small GTPases that regulates cell growth, differentiation and survival. K-ras is frequently mutated in cancer. K-Ras4B association with the plasma membrane through its farnesylated and positively charged C-terminal hypervariable region (HVR) is critical to its oncogenic function. However, the structural mechanisms of membrane association are not fully understood. Here, using confocal microscopy, surface plasmon resonance, and molecular dynamics simulations, we observed that K-Ras4B can be distributed in rigid and loosely packed membrane domains. Its membrane binding domain interaction with phospholipids is driven by membrane fluidity. The farnesyl group spontaneously inserts into the disordered lipid microdomains, whereas the rigid microdomains restrict the farnesyl group penetration. We speculate that the resulting farnesyl protrusion toward the cell interior allows oligomerization of the K-Ras4B membrane binding domain in rigid microdomains. Unlike other Ras isoforms, K-Ras4B HVR contains a single farnesyl modification and positively charged polylysine sequence. The high positive charge not only modulates specific HVR binding to anionic phospholipids but farnesyl membrane orientation. Phosphorylation of Ser-181 prohibits spontaneous farnesyl membrane insertion. The mechanism illuminates the roles of HVR modifications in K-Ras4B targeting microdomains of the plasma membrane and suggests an additional function for HVR in regulation of Ras signaling.
Collapse
Affiliation(s)
- Hyunbum Jang
- From the Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research and Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Sherwin J Abraham
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, Departments of Biochemistry and Molecular Genetics and
| | - Tanmay S Chavan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, Medicinal Chemistry, University of Illinois, Chicago, Illinois 60607, and
| | | | - Lyuba Khavrutskii
- From the Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research and Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Nadya I Tarasova
- Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702,
| | - Ruth Nussinov
- From the Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research and Cancer and Inflammation Program, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Vadim Gaponenko
- Departments of Biochemistry and Molecular Genetics and Medicinal Chemistry, University of Illinois, Chicago, Illinois 60607, and
| |
Collapse
|
23
|
Activated Ras as a Therapeutic Target: Constraints on Directly Targeting Ras Isoforms and Wild-Type versus Mutated Proteins. ISRN ONCOLOGY 2013; 2013:536529. [PMID: 24294527 PMCID: PMC3833460 DOI: 10.1155/2013/536529] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/04/2013] [Indexed: 12/12/2022]
Abstract
The ability to selectively and directly target activated Ras would provide immense utility for treatment of the numerous cancers that are driven by oncogenic Ras mutations. Patients with disorders driven by overactivated wild-type Ras proteins, such as type 1 neurofibromatosis, might also benefit from progress made in that context. Activated Ras is an extremely challenging direct drug target due to the inherent difficulties in disrupting the protein:protein interactions that underlie its activation and function. Major investments have been made to target Ras through indirect routes. Inhibition of farnesyl transferase to block Ras maturation has failed in large clinical trials. Likely reasons for this disappointing outcome include the significant and underappreciated differences in the isoforms of Ras. It is still plausible that inhibition of farnesyl transferase will prove effective for disease that is driven by activated H-Ras. The principal current focus of drugs entering clinic trial is inhibition of pathways downstream of activated Ras, for example, trametinib, a first-in-class MEK inhibitor. The complexity of signaling that is driven by activated Ras indicates that effective inhibition of oncogenic transduction through this approach will be difficult, with resistance being likely to emerge through switch to parallel pathways. Durable disease responses will probably require combinatorial block of several downstream targets.
Collapse
|