1
|
Walter NS, Gorki V, Bhardwaj R, Punnakkal P. Endoplasmic Reticulum Stress: Implications in Diseases. Protein J 2025; 44:147-161. [PMID: 40082380 DOI: 10.1007/s10930-025-10264-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Endoplasmic reticulum (ER) is a specialized organelle that plays a significant role in cellular function. The major functions of ER include protein synthesis and transport, folding of proteins, biosynthesis of lipids, calcium (Ca2+) storage, and redox balance. The loss of ER integrity results in the induction of ER stress within the cell due to the accumulation of unfolded, improperly folded proteins or changes in Ca2+ metabolism and redox balance of organelle. This ER stress commences the Unfolded Protein Response (UPR) that serves to counteract the ER stress via three sensors inositol requiring protein-1 (IRE1), protein kinase RNA-like ER kinase (PERK), and activating transcription factor-6 (ATF6) that serve to establish ER homeostasis and alleviates ER stress. Severe ER dysfunction ultimately results in the induction of apoptosis. Increasing shreds of evidence suggest the implication of ER stress in the development and progression of several diseases viz. tuberculosis, malaria, Alzheimer's disease, Parkinson's disease, diabetes, and cancer. Activation of ER stress can be beneficial for treating some diseases while inhibiting the process can be useful in others. A deeper understanding of these pathways can provide key insights in designing novel therapeutics to treat these diseases.
Collapse
Affiliation(s)
- Neha Sylvia Walter
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| | - Varun Gorki
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rishi Bhardwaj
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Pradeep Punnakkal
- Department of Biophysics, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
2
|
Duplan E, Bernardin A, Goiran T, Leroudier N, Casimiro M, Pestell R, Tanaka S, Malleval C, Honnorat J, Idbaih A, Martin L, Castel H, Checler F, Alves da Costa C. α-synuclein expression in glioblastoma restores tumor suppressor function and rescues temozolomide drug resistance. Cell Death Dis 2025; 16:188. [PMID: 40108111 PMCID: PMC11923286 DOI: 10.1038/s41419-025-07509-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/17/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Several studies have shown that Parkinson's disease causative gene products, including α-synuclein (α-syn), display tight links with the tumor suppressor p53. The purpose of this study is to determine the implication of α-syn in glioblastoma development and elucidate how it elicits a tumor suppressor function. We show that the expression of α-syn, a TP53 transcriptional target and a key molecular player in Parkinson's disease, is detected in 1p/19q-codeleted and isocitrate dehydrogenase (IDH)-mutant oligodendroglioma and in IDH-wild-type glioblastoma, while reduced in glioblastoma biopsies, corroborating the link of α-syn expression with a better prognosis among all glioma patients. Accordingly, protein expression is drastically reduced in oligodendrogliomas and glioblastoma biopsies. This could be accounted for by a reduction of p53 transcriptional activity in these samples. Interestingly, genetic manipulation of p53 in glioblastoma cells and in mouse brain shows that p53 up-regulates α-synuclein, a phenotype fully abolished by the prominent p53 hot spot mutation R175H. Downstream to its p53-linked control, α-syn lowers cyclin D1 protein and mRNA levels and reduces glioblastoma cells proliferation in a cyclin D1-dependent-manner. Further, in temozolomide (TMZ)-resistant U87 cells, α-syn reduces O6-methylguanine-DNA methyltransferase (MGMT) expression and rescues drug sensitivity by a mechanism implying its transcriptional activation by X-box binding protein 1 (XBP1), an effector of the UPR response. Furthermore, α-syn lowers MGMT and cyclin D1 (CCDN1) expressions and reduces tumor development in allografted mice. Overall, our data reveals a new role of α-syn as an oligodendroglioma biomarker and as a glioblastoma tumor suppressor capable of either potentiate TMZ effect or avoid TMZ-associated resistance.
Collapse
Affiliation(s)
- Eric Duplan
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France.
| | - Aurore Bernardin
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Thomas Goiran
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Nathalie Leroudier
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Mathew Casimiro
- Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, GA, 31794, USA
| | - Richard Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
- The Wistar Institute, Philadelphia, PA, 19107, USA
- Garvan Institute of Medical Research, and, St Vincent's Clinical School, UNSW Sydney, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, and Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N15, W7, Sapporo, 060-8638, Japan
| | - Celine Malleval
- Department of Neuro-Oncology, Hospices Civils de Lyon, Hôpital Neurologique, Institute MeLiS-UCBL-CNRS UMR 5284. INSERM U1314, University Claude Bernard Lyon 1, Lyon, 69008, France
| | - Jerome Honnorat
- Department of Neuro-Oncology, Hospices Civils de Lyon, Hôpital Neurologique, Institute MeLiS-UCBL-CNRS UMR 5284. INSERM U1314, University Claude Bernard Lyon 1, Lyon, 69008, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, F-75013, Paris, France
| | - Lucie Martin
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, F-76000, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
| | - Hélène Castel
- Univ Rouen Normandie, Inserm U1245, Normandie Univ, F-76000, Rouen, France
- Institute of Research and Innovation in Biomedicine (IRIB), 76000, Rouen, France
- Cancer and Cognition Platform, Normandie Univ, 14000, Caen, France
| | - Frédéric Checler
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France
| | - Cristine Alves da Costa
- University Côte d'azur, INSERM U1323, CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), team labeled "Laboratory of Excellence (LABEX) Distalz", 06560, Valbonne, France.
| |
Collapse
|
3
|
Li Y, Qi J, Guo L, Jiang X, He G. Organellar quality control crosstalk in aging-related disease: Innovation to pave the way. Aging Cell 2025; 24:e14447. [PMID: 39668579 PMCID: PMC11709098 DOI: 10.1111/acel.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
Organellar homeostasis and crosstalks within a cell have emerged as essential regulatory and determining factors for the survival and functions of cells. In response to various stimuli, cells can activate the organellar quality control systems (QCS) to maintain homeostasis. Numerous studies have demonstrated that dysfunction of QCS can lead to various aging-related diseases such as neurodegenerative, pulmonary, cardiometabolic diseases and cancers. However, the interplay between QCS and their potential role in these diseases are poorly understood. In this review, we present an overview of the current findings of QCS and their crosstalk, encompassing mitochondria, endoplasmic reticulum, Golgi apparatus, ribosomes, peroxisomes, lipid droplets, and lysosomes as well as the aberrant interplays among these organelles that contributes to the onset and progression of aging-related disorders. Furthermore, potential therapeutic approaches based on these quality control interactions are discussed. Our perspectives can enhance insights into the regulatory networks underlying QCS and the pathology of aging and aging-related diseases, which may pave the way for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Yu Li
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Jinxin Qi
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
| | - Linhong Guo
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xian Jiang
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Gu He
- Department of Dermatology & VenerologyWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease‐Related Molecular Network, State Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Yang D, Wu M, Zou N, Tang Y, Tao Q, Liu L, Jin M, Yu L, Du J, Luo Q, Shen J, Chu D, Qin K. Knockdown of DJ-1 Exacerbates Neuron Apoptosis Induced by TgCtwh3 through the NF-κB Pathway. Mol Neurobiol 2025; 62:123-136. [PMID: 38831169 PMCID: PMC11711788 DOI: 10.1007/s12035-024-04265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Mutations or loss of function of DJ-1 and Toxoplasma gondii (T. gondii) infection has been linked to neurodegenerative diseases, which are often caused by oxidative stress. However, the relationship between DJ-1 and T. gondii infection is not yet fully understood. Therefore, this study aimed to investigate the expression of DJ-1 in the hippocampus tissue of mice or in HT22 infected with T. gondii Chinese 1 genotype Wh3 strain (TgCtwh3) and the effect of DJ-1 knockdown on neuronal apoptosis induced by TgCtwh3 tachyzoite, as well as the underlying mechanism at the cellular and molecular level. Firstly, we detected DJ-1 protein expression and cell apoptosis in the hippocampal tissue of mice infected by TgCtwh3. Then, we examined DJ-1 expression and apoptosis in HT22 challenged with TgCtwh3. Finally, we evaluated the apoptosis in HT22 with DJ-1 knockdown which was infected with TgCtwh3 and assayed the expression of NF-κBp65 and p-NF-κBp65. Our results showed that DJ-1 expression was reduced and neurons underwent apoptosis in the hippocampus of mice infected with TgCtwh3 tachyzoites. Additionally, the knockdown of DJ-1 followed by infection with TgCtwh3 tachyzoites led to increased apoptosis in HT22 cells through the NF-κB signaling pathway. Therefore, this study suggests that DJ-1 is an important target for preventing apoptosis caused by T. gondii TgCtwh3.
Collapse
Affiliation(s)
- Di Yang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Minmin Wu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Nian Zou
- Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yiru Tang
- School of Public Health, Anhui Medical University, Hefei, China
| | - Qing Tao
- Center for Translational Medicine, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Lei Liu
- Department of Blood Transfusion, Division of Life Sciences and Medicine, the First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Mengmeng Jin
- Maternity and Child Health Hospital of Anhui Province, the Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jian Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Qingli Luo
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jilong Shen
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Deyong Chu
- Department of Pathogen Biology, Anhui Province Key Laboratory of Microbiology & Parasitology, Anhui Provincial Laboratory of Zoonoses of High Institutions, School of Basic Medicine, Anhui Medical University, Hefei, China.
| | - Kunpeng Qin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Department of Orthopaedics, Anhui Public Health Clinical Center, Hefei, Anhui, China.
| |
Collapse
|
5
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
6
|
Li Y, Song J, Zhou P, Zhou J, Xie S. Targeting Undruggable Transcription Factors with PROTACs: Advances and Perspectives. J Med Chem 2022; 65:10183-10194. [PMID: 35881047 DOI: 10.1021/acs.jmedchem.2c00691] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dysregulation of transcription factors has been implicated in a variety of human diseases. However, these proteins have traditionally been regarded as undruggable and only a handful of them have been successfully targeted by conventional small molecules. Moreover, the development of intrinsic and acquired resistance has hampered the clinical use of these agents. Over the past years, proteolysis-targeting chimeras (PROTACs) have shown great promise because of their potential for overcoming drug resistance and their ability to target previously undruggable proteins. Indeed, several small molecule-based PROTACs have demonstrated superior efficacy in therapy-resistant metastatic cancers. Nevertheless, it remains challenging to identify ligands for the majority of transcription factors. Given that transcription factors recognize short DNA motifs in a sequence-specific manner, multiple novel approaches exploit DNA motifs as warheads in PROTAC design for the degradation of aberrant transcription factors. These PROTACs pave the way for targeting undruggable transcription factors with potential therapeutic benefits.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jian Song
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Ping Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
7
|
Kim S, Kim DK, Jeong S, Lee J. The Common Cellular Events in the Neurodegenerative Diseases and the Associated Role of Endoplasmic Reticulum Stress. Int J Mol Sci 2022; 23:5894. [PMID: 35682574 PMCID: PMC9180188 DOI: 10.3390/ijms23115894] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/28/2022] Open
Abstract
Neurodegenerative diseases are inseparably linked with aging and increase as life expectancy extends. There are common dysfunctions in various cellular events shared among neurogenerative diseases, such as calcium dyshomeostasis, neuroinflammation, and age-associated decline in the autophagy-lysosome system. However, most of all, the prominent pathological feature of neurodegenerative diseases is the toxic buildup of misfolded protein aggregates and inclusion bodies accompanied by an impairment in proteostasis. Recent studies have suggested a close association between endoplasmic reticulum (ER) stress and neurodegenerative pathology in cellular and animal models as well as in human patients. The contribution of mutant or misfolded protein-triggered ER stress and its associated signaling events, such as unfolded protein response (UPR), to the pathophysiology of various neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease, amyotrophic lateral sclerosis, and prion disease, is described here. Impaired UPR action is commonly attributed to exacerbated ER stress, pathogenic protein aggregate accumulation, and deteriorating neurodegenerative pathologies. Thus, activating certain UPR components has been shown to alleviate ER stress and its associated neurodegeneration. However, uncontrolled activation of some UPR factors has also been demonstrated to worsen neurodegenerative phenotypes, suggesting that detailed molecular mechanisms around ER stress and its related neurodegenerations should be understood to develop effective therapeutics against aging-associated neurological syndromes. We also discuss current therapeutic endeavors, such as the development of small molecules that selectively target individual UPR components and address ER stress in general.
Collapse
Affiliation(s)
- Soojeong Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Doo Kyung Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Seho Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (S.K.); (D.K.K.); (S.J.)
- New Biology Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
8
|
Checler F, Alves da Costa C. Parkin as a Molecular Bridge Linking Alzheimer’s and Parkinson’s Diseases? Biomolecules 2022; 12:biom12040559. [PMID: 35454148 PMCID: PMC9026546 DOI: 10.3390/biom12040559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s (AD) and Parkinson’s (PD) diseases are two distinct age-related pathologies that are characterized by various common dysfunctions. They are referred to as proteinopathies characterized by ubiquitinated protein accumulation and aggregation. This accumulation is mainly due to altered lysosomal and proteasomal clearing processes and is generally accompanied by ER stress disturbance, autophagic and mitophagic defects, mitochondrial structure and function alterations and enhanced neuronal cell death. Genetic approaches aimed at identifying molecular triggers responsible for familial forms of AD or PD have helped to understand the etiology of their sporadic counterparts. It appears that several proteins thought to contribute to one of these pathologies are also likely to contribute to the other. One such protein is parkin (PK). Here, we will briefly describe anatomical lesions and genetic advances linked to AD and PD as well as the main cellular processes commonly affected in these pathologies. Further, we will focus on current studies suggesting that PK could well participate in AD and thereby act as a molecular bridge between these two pathologies. In particular, we will focus on the transcription factor function of PK and its newly described transcriptional targets that are directly related to AD- and PD-linked cellular defects.
Collapse
|
9
|
Rouland L, Duplan E, Ramos dos Santos L, Bernardin A, Katula KS, Manfioletti G, Idbaih A, Checler F, Alves da Costa C. Therapeutic potential of parkin as a tumor suppressor via transcriptional control of cyclins in glioblastoma cell and animal models. Am J Cancer Res 2021; 11:10047-10063. [PMID: 34815803 PMCID: PMC8581414 DOI: 10.7150/thno.57549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Parkin (PK) is an E3-ligase harboring tumor suppressor properties that has been associated to various cancer types including glioblastoma (GBM). However, PK is also a transcription factor (TF), the contribution of which to GBM etiology remains to be established. Methods: The impact of PK on GBM cells proliferation was analyzed by real-time impedance measurement and flow cytometry. Cyclins A and B proteins, promoter activities and mRNA levels were measured by western blot, luciferase assay and quantitative real-time PCR. Protein-protein and protein-promoter interactions were performed by co-immunoprecipitation and by ChIP approaches. The contribution of endogenous PK to tumor progression in vivo was performed by allografts of GL261 GBM cells in wild-type and PK knockout mice. Results: We show that overexpressed and endogenous PK control GBM cells proliferation by modulating the S and G2/M phases of the cell cycle via the trans-repression of cyclin A and cyclin B genes. We establish that cyclin B is regulated by both E3-ligase and TF PK functions while cyclin A is exclusively regulated by PK TF function. PK invalidation leads to enhanced tumor progression in immunocompetent mice suggesting an impact of PK-dependent tumor environment to tumor development. We show that PK is secreted by neuronal cells and recaptured by tumor cells. Recaptured PK lowered cyclins levels and decreased GBM cells proliferation. Further, PK expression is decreased in human GBM biopsies and its expression is inversely correlated to both cyclins A and B expressions. Conclusion: Our work demonstrates that PK tumor suppressor function contributes to the control of tumor by its cellular environment. It also shows a key role of PK TF function in GBM development via the control of cyclins in vitro and in vivo. It suggests that therapeutic strategies aimed at controlling PK shuttling to the nucleus may prove useful to treat GBM.
Collapse
|
10
|
Ren H, Zhai W, Lu X, Wang G. The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease. Front Aging Neurosci 2021; 13:691881. [PMID: 34168552 PMCID: PMC8218021 DOI: 10.3389/fnagi.2021.691881] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder, and it is characterized by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc), as well as the presence of intracellular inclusions with α-synuclein as the main component in surviving DA neurons. Emerging evidence suggests that the imbalance of proteostasis is a key pathogenic factor for PD. Endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and autophagy, two major pathways for maintaining proteostasis, play important roles in PD pathology and are considered as attractive therapeutic targets for PD treatment. However, although ER stress/UPR and autophagy appear to be independent cellular processes, they are closely related to each other. In this review, we focused on the roles and molecular cross-links between ER stress/UPR and autophagy in PD pathology. We systematically reviewed and summarized the most recent advances in regulation of ER stress/UPR and autophagy, and their cross-linking mechanisms. We also reviewed and discussed the mechanisms of the coexisting ER stress/UPR activation and dysregulated autophagy in the lesion regions of PD patients, and the underlying roles and molecular crosslinks between ER stress/UPR activation and the dysregulated autophagy in DA neurodegeneration induced by PD-associated genetic factors and PD-related neurotoxins. Finally, we indicate that the combined regulation of ER stress/UPR and autophagy would be a more effective treatment for PD rather than regulating one of these conditions alone.
Collapse
Affiliation(s)
- Haigang Ren
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wanqing Zhai
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Xiaojun Lu
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China
| | - Guanghui Wang
- Department of Neurology, Center of Translational Medicine, Taicang Affiliated Hospital of Soochow University, The First People's Hospital of Taicang, Suzhou, China.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuropsychiatric Disorders, Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
11
|
Dlamini MB, Gao Z, Jiang L, Geng C, Li Q, Shi X, Liu Y, Cao J. The crosstalk between mitochondrial dysfunction and endoplasmic reticulum stress promoted ATF4-mediated mitophagy induced by hexavalent chromium. ENVIRONMENTAL TOXICOLOGY 2021; 36:1162-1172. [PMID: 33650752 DOI: 10.1002/tox.23115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Chromium (Cr) compounds are markedly toxic and carcinogenic. Previously, we found that Cr (VI) induced autophagy in A549 cells. Here, the effect of mitochondrial dysfunction and endoplasmic reticulum (ER) stress on inducing mitophagy was investigated in both A549 and H1299 cells. Exposure to Cr (VI) for 6 h significantly enhanced reactive oxygen species (ROS) production and reduced mitochondrial membrane potential (MMP). Transmission electron microscopy showed that Cr (VI) induced mitochondrial morphological changes, such as, mitochondrial swelling and vacuolization. The elevated expression of GRP78 and p-PERK suggested that Cr (VI) resulted in ER stress. Both mitochondrial dysfunction and ER stress played an important role in Cr (VI)-induced mitophagy, as the mitochondrial function inhibitor, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) induced PINK1 and PARK2 and increased the expression of GRP78 and p-PERK while the levels of Cr (VI)-induced PINK1, PARK2, LC3-II were reduced after ER stress inhibitor, phenylbutyric acid (4PBA) pretreatment. When A549 cells were treated with CCCP and 4-PBA simultaneously, CCCP-induced expressions of PINK1, PARK2 and LC3-II decreased significantly compared with that of only CCCP-treated cells, indicating that there was a crosstalk between mitochondria and ER in inducing mitophagy. Additionally, the crosstalk between mitochondrial dysfunction and ER stress modulated the expression of Cr (VI)-induced ATF4, which resulted in mitophagy. Collectively, our data demonstrated that Cr (VI)-induced mitophagy mediated by ATF4 via the crosstalk between ER stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mongameli B Dlamini
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Zeyun Gao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Chengyan Geng
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yong Liu
- School of Life Science and Medicine, Dalian University of Technology, Panjin, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Zhou Y, Sha Z, Yang Y, Wu S, Chen H. lncRNA NEAT1 regulates gastric carcinoma cell proliferation, invasion and apoptosis via the miR‑500a‑3p/XBP‑1 axis. Mol Med Rep 2021; 24:503. [PMID: 33982777 PMCID: PMC8134875 DOI: 10.3892/mmr.2021.12142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/15/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer is a serious malignant tumor. Despite progression in gastric cancer research in recent years, the specific molecular mechanism underlying the pathogenesis of the disease is not completely understood. Long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) affects the proliferation and metastasis of multiple types of tumor cells in colorectal cancer and breast cancer but its specific role in gastric cancer requires further investigation. The aim of the present study was to analyze the role of NEAT1 in gastric cancer. The expression of endoplasmic reticulum stress marker proteins and apoptosis-related proteins in gastric cancer tissue and cell lines was analyzed using western blotting. The targeting relationship of NEAT1 and miR-500a-3p was analyzed using dual-luciferase reporter assay. Cell proliferation was analyzed using CCK8 assay and colony formation assay while cell invasion was detected using Transwell assay. Cell apoptosis was analyzed using TUNEL staining and LC3 expression through immunofluorescent staining (IF). The results showed that lncRNA NEAT1-overexpression gastric cancer cells were established to determine its effects on cell proliferation, invasion, apoptosis, autophagy and endoplasmic reticulum stress. Subsequently, microRNA (miR)-500a was overexpressed in lncRNA NEAT1-overexpression cells. Compared with the vector group, lncRNA NEAT1 overexpression significantly inhibited gastric cancer cell proliferation and invasion, but significantly promoted cell apoptosis. Furthermore, the results indicated that lncRNA NEAT1 targeted and downregulated the expression of miR-500a-3p, and miR-500a-3p targeted X-box binding protein-1 (XBP-1) mRNA. lncRNA NEAT1 overexpression-mediated inhibition of gastric cancer cell proliferation and invasion was significantly reversed by miR-500a-3p overexpression. Furthermore, compared with the vector group, the expression levels of endoplasmic reticulum stress-related proteins (XBP-1S/XBP-1U ratio and 78-kDa glucose-regulated protein) and apoptosis-related proteins (Bax and cleaved-caspase-3) were significantly upregulated by lncRNA NEAT1 overexpression; however, miR-500a-3p overexpression reversed lncRNA NEAT1 overexpression-mediated effects on protein expression. The present study demonstrated that lncRNA NEAT1 inhibited gastric cancer cell proliferation and invasion, and promoted apoptosis by regulating the miR-500a-3p/XBP-1 axis.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Gastroenterology, Zhongda Hospital Southeast University, Medical College of Southeast University, Nanjing, Jiangsu 210000, P.R. China
| | - Zhenghong Sha
- Department of General Surgery, Wuhu No. 1 People's Hospital, Wuhu, Anhui 241000, P.R. China
| | - Yong Yang
- Department of Gastroenterology, Wuhu No. 1 People's Hospital, Wuhu, Anhui 241000, P.R. China
| | - Shuimei Wu
- Department of Gastroenterology, Wuhu No. 1 People's Hospital, Wuhu, Anhui 241000, P.R. China
| | - Hong Chen
- Department of Gastroenterology, Zhongda Hospital Southeast University, Medical College of Southeast University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
13
|
Sircar E, Rai SR, Wilson MA, Schlossmacher MG, Sengupta R. Neurodegeneration: Impact of S-nitrosylated Parkin, DJ-1 and PINK1 on the pathogenesis of Parkinson's disease. Arch Biochem Biophys 2021; 704:108869. [PMID: 33819447 DOI: 10.1016/j.abb.2021.108869] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is one of the fastest-growing neurodegenerative disorders of increasing global prevalence. It represents the second most common movement disorder after tremor and the second most common neurodegenerative disorder after Alzheimer's disease. The incidence rate of idiopathic PD increases steadily with age, however, some variants of autosomal recessive inheritance are present with an early age-at-onset (ARPD). Approximately 50 percent of ARPD cases have been linked to bi-allelic mutations in genes encoding Parkin, DJ-1, and PINK1. Each protein has been implicated in maintaining proper mitochondrial function, which is particularly important for neuronal health. Aberrant post-translational modifications of these proteins may disrupt their cellular functions and thus contributing to the development of idiopathic PD. Some post-translational modifictions can be attributed to the dysregulation of potentially harmful reactive oxygen and nitrogen species inside the cell, which promote oxidative and nitrosative stress, respectively. Unlike oxidative modifications, the covalent modification by Nitric Oxide under nitrosative stress, leading to S-nitrosylation of Parkin, DJ-1; and PINK1, is less studied. Here, we review the available literature on S-nitrosylation of these three proteins, their implications in the pathogenesis of PD, and provide an overview of currently known, denitrosylating systems in eukaryotic cells.
Collapse
Affiliation(s)
- Esha Sircar
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Sristi Raj Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India
| | - Mark A Wilson
- Department of Biochemistry and the Redox Biology Center, University of Nebraska-Lincoln, NE, USA
| | - Michael G Schlossmacher
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Rajib Sengupta
- Amity Institute of Biotechnology, Amity University, Kolkata, West Bengal, India.
| |
Collapse
|
14
|
Tungalag T, Yang DK. Sinapic Acid Protects SH-SY5Y Human Neuroblastoma Cells against 6-Hydroxydopamine-Induced Neurotoxicity. Biomedicines 2021; 9:biomedicines9030295. [PMID: 33805692 PMCID: PMC8000777 DOI: 10.3390/biomedicines9030295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by progressive dopaminergic neuron loss or dysfunction and is the second most prevalent neurodegenerative disorder after Alzheimer’s disease. However, current therapeutic strategies for PD are limited to treating the outcomes of this disease rather than preventing it. Sinapic acid (SA) is a phenolic compound with potential antioxidant properties, which reportedly acts as a therapeutic agent against many diseases including cancer, as well as cardiac and liver diseases. However, little is known about the effects of SA against neurodegenerative disorders. Therefore, our study sought to evaluate the neuroprotective effects of non-cytotoxic concentrations of SA against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y human neuroblastoma cells, which we used as an in vitro PD model. SA increased cell viability and rescued the cells from 6-OHDA-induced apoptotic cell death. Additionally, oxidative stress responses were significantly blocked by SA, including reactive oxygen species (ROS) overproduction and decreased expression levels of antioxidant proteins. Notably, SA also attenuated mitochondrial dysfunction and endoplasmic reticulum (ER) stress. Moreover, SA dramatically inhibited the activation of mitogen-activated protein kinase (MAPK) proteins. Taken together, our findings highlight the potential PD prevention effects of SA, as well as its underlying mechanisms, making this compound a promising prevention and treatment agent for PD.
Collapse
|
15
|
Zhang J, Zhang J, Ni H, Wang Y, Katwal G, Zhao Y, Sun K, Wang M, Li Q, Chen G, Miao Y, Gong N. Downregulation of XBP1 protects kidney against ischemia-reperfusion injury via suppressing HRD1-mediated NRF2 ubiquitylation. Cell Death Discov 2021; 7:44. [PMID: 33654072 PMCID: PMC7925512 DOI: 10.1038/s41420-021-00425-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/13/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia-reperfusion (IR) injury to the renal epithelia is associated with endoplasmic reticulum stress (ERS) and mitochondria dysfunction, which lead to oxidative stress-induced acute kidney injury (AKI). X-box binding protein 1 (XBP1), an ERS response protein, could play a prominent role in IR-induced AKI. In this study, we revealed that XBP1 and its downstream target HRD1 participated in the crosstalk between ERS and mitochondrial dysfunction via regulation of NRF2/HO-1-mediated reactive oxidative stress (ROS) signaling. Mice with reduced expression of XBP1 (heterozygous Xbp1±) were resistant to IR-induced AKI due to the enhanced expression of NRF2/HO-1 and diminished ROS in the kidney. Downregulation of XBP1 in renal epithelial cells resulted in reduced HRD1 expression and increased NRF2/HO-1 function, accompanied with enhanced antioxidant response. Furthermore, HRD1 served as an E3-ligase to facilitate the downregulation of NRF2 through ubiquitination-degradation pathway, and the QSLVPDI motif on NRF2 constituted an active site for its interaction with HRD1. Thus, our findings unveil an important physiological role for XBP1/HRD1 in modulating the antioxidant function of NRF2/HO-1 in the kidney under stress conditions. Molecular therapeutic approaches that target XBP1-HRD1-NRF2 pathway may represent potential effective means to treat renal IR injury.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Jiasi Zhang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Haiqiang Ni
- Organ Transplant Department, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yanfeng Wang
- Institute of Hepatobiliary Diseases, Transplant Center, Hubei Key Laboratory of Medical Technology on Transplantation, Zhongnan Hospital, Wuhan University, 430071, Wuhan, Hubei, China
| | - Gaurav Katwal
- Chitwan Medical College Teaching Hospital, Department of Surgery, Bharatpur, Chitwan, 44200, Nepal
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Kailun Sun
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Mengqin Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Qingwen Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China
| | - Gen Chen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Yun Miao
- Organ Transplant Department, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Nianqiao Gong
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation of Ministry of Education, National Health Commission and Chinese Academy of Medical Sciences, 430030, Wuhan, Hubei, China.
| |
Collapse
|
16
|
Xu W, Wang C, Hua J. X-box binding protein 1 (XBP1) function in diseases. Cell Biol Int 2020; 45:731-739. [PMID: 33325615 DOI: 10.1002/cbin.11533] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 12/13/2020] [Indexed: 12/15/2022]
Abstract
The accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes endoplasmic reticulum stress (ERS), which is characteristic of cells with high levels of secretory activity and is involved in a variety of diseases. In response to ERS, cells initiate an adaptive process named the unfolding protein response (UPR) to maintain intracellular homeostasis and survival. However, long term and unresolved ERS can also induce apoptosis. As the most conserved signaling branch of UPR, the IRE1-XBP1 pathway plays an important role in both physiological and pathological states, and its activity has a profound impact on disease progression and prognosis. Here, the latest research progress of IRE1-XBP1 pathway in cancer, metabolic diseases, and other diseases was briefly introduced, and the relationship between several diseases and this pathway was analyzed. Besides, the new understanding and prospect of IRE1-XBP1 pathway regulating male reproduction were reviewed.
Collapse
Affiliation(s)
- Wenjing Xu
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Congrong Wang
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinlian Hua
- Shaanxi Centre of Stem Cells Engineering & Technology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
da Costa CA, Manaa WE, Duplan E, Checler F. The Endoplasmic Reticulum Stress/Unfolded Protein Response and Their Contributions to Parkinson's Disease Physiopathology. Cells 2020; 9:cells9112495. [PMID: 33212954 PMCID: PMC7698446 DOI: 10.3390/cells9112495] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is a multifactorial age-related movement disorder in which defects of both mitochondria and the endoplasmic reticulum (ER) have been reported. The unfolded protein response (UPR) has emerged as a key cellular dysfunction associated with the etiology of the disease. The UPR involves a coordinated response initiated in the endoplasmic reticulum that grants the correct folding of proteins. This review gives insights on the ER and its functioning; the UPR signaling cascades; and the link between ER stress, UPR activation, and physiopathology of PD. Thus, post-mortem studies and data obtained by either in vitro and in vivo pharmacological approaches or by genetic modulation of PD causative genes are described. Further, we discuss the relevance and impact of the UPR to sporadic and genetic PD pathology.
Collapse
|
18
|
Sharma N, Arora S, Saurav S, Motiani RK. Pathophysiological significance of calcium signaling at Mitochondria-Associated Endoplasmic Reticulum Membranes (MAMs). CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Zhu X, Luo C, Lin K, Bu F, Ye F, Huang C, Luo H, Huang J, Zhu Z. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway. Biosci Trends 2020; 14:83-95. [PMID: 32132307 DOI: 10.5582/bst.2019.01272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emerging evidence indicates that DJ-1 is highly expressed in different cancers. It modulates cancer progression, including cell proliferation, cell apoptosis, invasion, and metastasis. However, its role in colorectal cancer (CRC) remains poorly defined. The current study noted increased DJ-1 expression in CRC tumor tissue and found that its expression was closely related to clinical-pathological features. Similarly, DJ-1 increased in CRC cells (SW480, HT-29, Caco-2, LoVo, HCT116, and SW620), and especially in SW480 and HCT116 cells. Functional analyses indicated that overexpression of DJ-1 promoted CRC cell invasion, migration, and proliferation in vitro and in vivo. Mechanistic studies indicated that DJ-1 increased in CRC cell lines, activated specific protein cyclin-D1, and modulated the MDM2/p53 signaling pathway by regulating the levels of the downstream factors Bax, Caspase-3, and Bcl-2, which are related to the cell cycle and apoptosis. Conversely, knockdown of DJ-1 upregulated p53 expression by disrupting the interaction between p53 and MDM2 and inhibiting CRC cell proliferation, revealing the pro-oncogenic mechanism of DJ-1 in CRC. In conclusion, the current findings provide compelling evidence that DJ-1 might be a promoter of CRC cell invasion, proliferation, and migration via the cyclin-D1/MDM2-p53 signaling pathway. Findings also suggest its potential role as a postoperative adjuvant therapy for patients with CRC.
Collapse
Affiliation(s)
- Xiaojian Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Lin
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fanqin Bu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fan Ye
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengming Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
20
|
Pathways of protein synthesis and degradation in PD pathogenesis. PROGRESS IN BRAIN RESEARCH 2020; 252:217-270. [PMID: 32247365 DOI: 10.1016/bs.pbr.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the discovery of protein aggregates in the brains of individuals with Parkinson's disease (PD) in the early 20th century, the scientific community has been interested in the role of dysfunctional protein metabolism in PD etiology. Recent advances in the field have implicated defective protein handling underlying PD through genetic, in vitro, and in vivo studies incorporating many disease models alongside neuropathological evidence. Here, we discuss the existing body of research focused on understanding cellular pathways of protein synthesis and degradation, and how aberrations in either system could engender PD pathology with special attention to α-synuclein-related consequences. We consider transcription, translation, and post-translational modification to constitute protein synthesis, and protein degradation to encompass proteasome-, lysosome- and endoplasmic reticulum-dependent mechanisms. Novel findings connecting each of these steps in protein metabolism to development of PD indicate that deregulation of protein production and turnover remains an exciting area in PD research.
Collapse
|
21
|
Liu J, Liu W, Li R, Yang H. Mitophagy in Parkinson's Disease: From Pathogenesis to Treatment. Cells 2019; 8:cells8070712. [PMID: 31336937 PMCID: PMC6678174 DOI: 10.3390/cells8070712] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/07/2019] [Accepted: 07/10/2019] [Indexed: 01/20/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The pathogenesis of PD is complicated and remains obscure, but growing evidence suggests the involvement of mitochondrial and lysosomal dysfunction. Mitophagy, the process of removing damaged mitochondria, is compromised in PD patients and models, and was found to be associated with accelerated neurodegeneration. Several PD-related proteins are known to participate in the regulation of mitophagy, including PINK1 and Parkin. In addition, mutations in several PD-related genes are known to cause mitochondrial defects and neurotoxicity by disturbing mitophagy, indicating that mitophagy is a critical component of PD pathogenesis. Therefore, it is crucial to understand how these genes are involved in mitochondrial quality control or mitophagy regulation in the study of PD pathogenesis and the development of novel treatment strategies. In this review, we will discuss the critical roles of mitophagy in PD pathogenesis, highlighting the potential therapeutic implications of mitophagy regulation.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Weijin Liu
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruolin Li
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Yang
- Department of Neurobiology School of Basic Medical Sciences, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
- Center of Parkinson's Disease Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Key Laboratory on Parkinson's Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing 100069, China.
| |
Collapse
|
22
|
Colla E. Linking the Endoplasmic Reticulum to Parkinson's Disease and Alpha-Synucleinopathy. Front Neurosci 2019; 13:560. [PMID: 31191239 PMCID: PMC6550095 DOI: 10.3389/fnins.2019.00560] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Accumulation of misfolded proteins is a central paradigm in neurodegeneration. Because of the key role of the endoplasmic reticulum (ER) in regulating protein homeostasis, in the last decade multiple reports implicated this organelle in the progression of Parkinson's Disease (PD) and other neurodegenerative illnesses. In PD, dopaminergic neuron loss or more broadly neurodegeneration has been improved by overexpression of genes involved in the ER stress response. In addition, toxic alpha-synuclein (αS), the main constituent of proteinaceous aggregates found in tissue samples of PD patients, has been shown to cause ER stress by altering intracellular protein traffic, synaptic vesicles transport, and Ca2+ homeostasis. In this review, we will be summarizing evidence correlating impaired ER functionality to PD pathogenesis, focusing our attention on how toxic, aggregated αS can promote ER stress and cell death.
Collapse
Affiliation(s)
- Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
23
|
Dolgacheva LP, Berezhnov AV, Fedotova EI, Zinchenko VP, Abramov AY. Role of DJ-1 in the mechanism of pathogenesis of Parkinson's disease. J Bioenerg Biomembr 2019; 51:175-188. [PMID: 31054074 PMCID: PMC6531411 DOI: 10.1007/s10863-019-09798-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/24/2019] [Indexed: 12/13/2022]
Abstract
DJ-1 protein has multiple specific mechanisms to protect dopaminergic neurons against neurodegeneration in Parkinson's disease. Wild type DJ-1 can acts as oxidative stress sensor and as an antioxidant. DJ-1 exhibits the properties of molecular chaperone, protease, glyoxalase, transcriptional regulator that protects mitochondria from oxidative stress. DJ-1 increases the expression of two mitochondrial uncoupling proteins (UCP 4 and UCP5), that decrease mitochondrial membrane potential and leads to the suppression of ROS production, optimizes of a number of mitochondrial functions, and is regarded as protection for the neuronal cell survival. We discuss also the stabilizing interaction of DJ-1 with the mitochondrial Bcl-xL protein, which regulates the activity of (Inositol trisphosphate receptor) IP3R, prevents the cytochrome c release from mitochondria and inhibits the apoptosis activation. Upon oxidative stress DJ-1 is able to regulate various transcription factors including nuclear factor Nrf2, PI3K/PKB, and p53 signal pathways. Stress-activated transcription factor Nrf2 regulates the pathways to protect cells against oxidative stress and metabolic pathways initiating the NADPH and ATP production. DJ-1 induces the Nrf2 dissociation from its inhibitor Keap1 (Kelch-like ECH-associated protein 1), promoting Nrf2 nuclear translocation and binding to antioxidant response elements. DJ-1 is shown to be a co-activator of the transcription factor NF-kB. Under nitrosative stress, DJ-1 may regulate PI3K/PKB signaling through PTEN transnitrosylation, which leads to inhibition of phosphatase activity. DJ-1 has a complex modulating effect on the p53 pathway: one side DJ-1 directly binds to p53 to restore its transcriptional activity and on the other hand DJ-1 can stimulate deacylation and suppress p53 transcriptional activity. The ability of the DJ-1 to induce activation of different transcriptional factors and change redox balance protect neurons against aggregation of α-synuclein and oligomer-induced neurodegeneration.
Collapse
Affiliation(s)
- Ludmila P Dolgacheva
- Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, 142290, Russia.
| | - Alexey V Berezhnov
- Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Evgeniya I Fedotova
- Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Valery P Zinchenko
- Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, 142290, Russia
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
24
|
He L, Lin S, Pan H, Shen R, Wang M, Liu Z, Sun S, Tan Y, Wang Y, Chen S, Ding J. Lack of Association Between DJ-1 Gene Promoter Polymorphism and the Risk of Parkinson's Disease. Front Aging Neurosci 2019; 11:24. [PMID: 30863299 PMCID: PMC6399152 DOI: 10.3389/fnagi.2019.00024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/28/2019] [Indexed: 02/04/2023] Open
Abstract
Low DJ-1 protein level caused by DJ-1 gene mutation leads to autosomal recessive Parkinson's disease (PD) due to impaired antioxidative activity. In sporadic PD patients, although mutations were rarely found, lower DJ-1 protein level was also reported. Dysregulation of DJ-1 gene expression might contribute to low DJ-1 protein level. Since the promoter is the most important element to initiate gene expression, whether polymorphisms in the DJ-1 promoter result in the dysregulation of gene expression, thus leading to low protein level and causing PD, is worth exploring. The DJ-1 promoter region was sequenced in a Chinese cohort to evaluate possible links between DJ-1 promoter polymorphisms, PD risk and clinical phenotypes. Dual-luciferase reporter assay was conducted to evaluate the influence of promoter polymorphisms on DJ-1 transcriptional activity. Related information in an existing genome-wide association studies (GWAS) database were looked up, meta-analysis of the present study and other previous reports was conducted, and expression quantitative trait loci (eQTL) analysis was performed to further explore the association. Three single nucleotide polymorphisms (SNPs) (rs17523802, rs226249, and rs35675666) and one 18 bp deletion (rs200968609) were observed in our cohort. However, there was no significant association between the four detected genetic variations and the risk of PD either in allelic or genotype model, in single-point analysis or haplotype analysis. This was supported by the meta-analysis of this study and previous reports as well as that of GWAS database PDGene. Dual luciferase reporter assay suggested these promoter polymorphisms had no influence on DJ-1 transcriptive activity, which is consistent with the eQTL analysis results using the data from GTEx database. Thus, DJ-1 promoter polymorphisms may play little role in the dysregulation of DJ-1 expression and PD susceptibility in sporadic PD.
Collapse
Affiliation(s)
- Lu He
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suzhen Lin
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Pan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruinan Shen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyan Wang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihao Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyao Sun
- The University of Melbourne, Melbourne, VIC, Australia
| | - Yuyan Tan
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengdi Chen
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqing Ding
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
DJ-1 modulates the unfolded protein response and cell death via upregulation of ATF4 following ER stress. Cell Death Dis 2019; 10:135. [PMID: 30755590 PMCID: PMC6372623 DOI: 10.1038/s41419-019-1354-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/17/2018] [Accepted: 01/02/2019] [Indexed: 11/26/2022]
Abstract
The unfolded protein response (UPR) triggered by endoplasmic reticulum (ER) stress is a feature of many neurodegenerative diseases including Alzheimer’s disease, Huntington’s disease and Parkinson’s disease (PD). Although the vast majority of PD is sporadic, mutations in a number of genes including PARK7 which encodes the protein DJ-1 have been linked to early-onset, familial PD. In this regard, both PD of sporadic and genetic origins exhibit markers of ER stress-induced UPR. However, the relationship between pathogenic mutations in PARK7 and ER stress-induced UPR in PD pathogenesis remains unclear. In most contexts, DJ-1 has been shown to protect against neuronal injury. However, we find that DJ-1 deficiency ameliorates death in the context of acute ER stress in vitro and in vivo. DJ-1 loss decreases protein and transcript levels of ATF4, a transcription factor critical to the ER response and reduces the levels of CHOP and BiP, its downstream effectors. The converse is observed with DJ-1 over-expression. Importantly, we find that over-expression of wild-type and PD-associated mutant form of PARK7L166P, enhances ER stress-induced neuronal death by regulating ATF4 transcription and translation. Our results demonstrate a previously unreported role for wild-type and mutant DJ-1 in the regulation of UPR and provides a potential link to PD pathogenesis.
Collapse
|
26
|
Alves da Costa C, Duplan E, Rouland L, Checler F. The Transcription Factor Function of Parkin: Breaking the Dogma. Front Neurosci 2019; 12:965. [PMID: 30697141 PMCID: PMC6341214 DOI: 10.3389/fnins.2018.00965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/03/2018] [Indexed: 01/19/2023] Open
Abstract
PRKN (PARK2) is a key gene involved in both familial and sporadic Parkinson’s disease that encodes parkin (PK). Since its discovery by the end of the 90s, both functional and more recently, structural studies led to a consensual view of PK as an E3 ligase only. It is generally considered that this function conditions the cellular load of a subset of cytosolic proteins prone to proteasomal degradation and that a loss of E3 ligase function triggers an accumulation of potentially toxic substrates and, consequently, a neuronal loss. Furthermore, PK molecular interplay with PTEN-induced kinase 1 (PINK1), a serine threonine kinase also involved in recessive cases of Parkinson’s disease, is considered to underlie the mitophagy process. Thus, since mitochondrial homeostasis significantly governs cell health, there is a huge interest of the scientific community centered on PK function. In 2009, we have demonstrated that PK could also act as a transcription factor (TF) and induces neuroprotection via the downregulation of the pro-apoptotic and tumor suppressor factor, p53. Importantly, the DNA-binding properties of PK and its nuclear localization suggested an important role in the control of several genes. The duality of PK subcellular localization and of its associated ubiquitin ligase and TF functions suggests that PK could behave as a key molecular modulator of various physiological cellular signaling pathways that could be disrupted in pathological contexts. Here, we update the current knowledge on PK direct and indirect TF-mediated control of gene expression.
Collapse
Affiliation(s)
- Cristine Alves da Costa
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, IPMC, Team Labeled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| | - Eric Duplan
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, IPMC, Team Labeled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| | - Lila Rouland
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, IPMC, Team Labeled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| | - Frédéric Checler
- Université Côte d'Azur, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, IPMC, Team Labeled "Laboratory of Excellence (LABEX) DistAlz", Valbonne, France
| |
Collapse
|
27
|
Zhang Q, Huang D, Zhang Z, Feng Y, Fu M, Wei M, Zhou J, Huang Y, Liu S, Shi R. High expression of TMEM40 contributes to progressive features of tongue squamous cell carcinoma. Oncol Rep 2018; 41:154-164. [PMID: 30320346 PMCID: PMC6278588 DOI: 10.3892/or.2018.6788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Transmembrane protein 40 (TMEM40) is a 23-kDa protein and its association with tongue squamous cell carcinoma (TSCC) remains unclear. This study aimed to investigate the expression and clinical significance of TMEM40 in TSCC and its roles in TSCC cells. Immunohistochemical analysis was performed to detect the expression levels of TMEM40 in 60 tongue tissue samples. Furthermore, TMEM40 was overexpressed and inhibited in two TSCC cell lines by transfection with pEZ-M98-TMEM40 plasmid or TMEM40 small interfering RNA, respectively. Cell Counting Kit-8 and colony formation assays were used to investigate the effects of TMEM40 on cell proliferation and colony formation ability, respectively. Flow cytometry was performed to determine cell apoptosis and cycle conditions of transfected cells. Wound-healing and Transwell assays were processed to explore the effects of TMEM40 on cell migration and invasion, respectively. The results indicated that TMEM40 expression levels were significantly increased in TSCC tissues compared with adjacent normal tongue tissues (P<0.01). Clinicopathological analysis revealed that TMEM40 expression was positively correlated with pathological TNM (pTNM) status (P<0.05), histological grade (P<0.001) and clinical stage (P<0.01), but not with sex or age. Results of cell proliferation, apoptosis, migration and invasion assays indicated that when TMEM40 had been successfully overexpressed or knocked down in CAL27 and SCC9 TSCC cell lines, cell growth and invasion increased in the TMEM40 overexpressing cells, while they decreased in TMEM40-knockdown cells. Furthermore, experiments revealed that TMEM40 knockdown resulted in increased levels of p53 and Bax, and decreased levels of MMP-9, which indicated that TMEM40 regulated cell apoptosis and migration via involvement of p53, Bax and MMP-9 in TSCC cells. Our findings indicated that increased expression of TMEM40 contributed to progressive features of TSCC via regulation of p53, Bax and MMP-9.
Collapse
Affiliation(s)
- Qingyan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Danhui Huang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenfei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuzhen Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Meiting Fu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Min Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jueyu Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuanjin Huang
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Shuguang Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Rong Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
28
|
Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson’s Disease. Mol Neurobiol 2018; 55:9139-9155. [DOI: 10.1007/s12035-018-1062-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023]
|
29
|
Higuchi-Sanabria R, Frankino PA, Paul JW, Tronnes SU, Dillin A. A Futile Battle? Protein Quality Control and the Stress of Aging. Dev Cell 2018; 44:139-163. [PMID: 29401418 PMCID: PMC5896312 DOI: 10.1016/j.devcel.2017.12.020] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
There exists a phenomenon in aging research whereby early life stress can have positive impacts on longevity. The mechanisms underlying these observations suggest a robust, long-lasting induction of cellular defense mechanisms. These include the various unfolded protein responses of the endoplasmic reticulum (ER), cytosol, and mitochondria. Indeed, ectopic induction of these pathways, in the absence of stress, is sufficient to increase lifespan in organisms as diverse as yeast, worms, and flies. Here, we provide an overview of the protein quality control mechanisms that operate in the cytosol, mitochondria, and ER and discuss how they affect cellular health and viability during stress and aging.
Collapse
Affiliation(s)
- Ryo Higuchi-Sanabria
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Phillip Andrew Frankino
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph West Paul
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah Uhlein Tronnes
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; The Glenn Center for Aging Research, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
30
|
Cissé M, Duplan E, Lorivel T, Dunys J, Bauer C, Meckler X, Gerakis Y, Lauritzen I, Checler F. The transcription factor XBP1s restores hippocampal synaptic plasticity and memory by control of the Kalirin-7 pathway in Alzheimer model. Mol Psychiatry 2017; 22:1562-1575. [PMID: 27646263 PMCID: PMC5658671 DOI: 10.1038/mp.2016.152] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/14/2016] [Accepted: 07/18/2016] [Indexed: 12/18/2022]
Abstract
Neuronal network dysfunction and cognitive decline constitute the most prominent features of Alzheimer's disease (AD), although mechanisms causing such impairments are yet to be determined. Here we report that virus-mediated delivery of the active spliced transcription factor X-Box binding protein 1s (XBP1s) in the hippocampus rescued spine density, synaptic plasticity and memory function in a mouse model of AD. XBP1s transcriptionally activated Kalirin-7 (Kal7), a protein that controls synaptic plasticity. In addition, we found reduced levels of Kal7 in primary neurons exposed to Aβ oligomers, transgenic mouse models and human AD brains. Short hairpin RNA-mediated knockdown of Kal7 altered synaptic plasticity and memory formation in naive mice. Further, reduction of endogenous Kal7 compromised the beneficial effects of XBP1s in Alzheimer's model. Hence, our findings reveal that XBP1s is neuroprotective through a mechanism that engages Kal7 pathway with therapeutic implications in AD pathology.
Collapse
Affiliation(s)
- M Cissé
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France,Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, NEUROLOGY, IPMC/CNRS, 660 Route des Lucioles, 06560 Valbonne, France. E-mail:
| | - E Duplan
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - T Lorivel
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - J Dunys
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - C Bauer
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - X Meckler
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - Y Gerakis
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - I Lauritzen
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| | - F Checler
- Université de Nice-Sophia-Antipolis, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS-UMR7275, Sophia-Antipolis, Valbonne, France
| |
Collapse
|
31
|
Szybińska A, Leśniak W. P53 Dysfunction in Neurodegenerative Diseases - The Cause or Effect of Pathological Changes? Aging Dis 2017; 8:506-518. [PMID: 28840063 PMCID: PMC5524811 DOI: 10.14336/ad.2016.1120] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous, mostly age-associated group of disorders characterized by progressive neuronal loss, the most prevalent being Alzheimer disease. It is anticipated that, with continuously increasing life expectancy, these diseases will pose a serious social and health problem in the near feature. Meanwhile, however, their etiology remains largely obscure even though all possible novel clues are being thoroughly examined. In this regard, a concept has been proposed that p53, as a transcription factor controlling many vital cellular pathways including apoptosis, may contribute to neuronal death common to all neurodegenerative disorders. In this work, we review the research devoted to the possible role of p53 in the pathogenesis of these diseases. We not only describe aberrant changes in p53 level/activity observed in CNS regions affected by particular diseases but, most importantly, put special attention to the complicated reciprocal regulatory ties existing between p53 and proteins commonly regarded as pathological hallmarks of these diseases, with the ultimate goal to identify the primary element of their pathogenesis.
Collapse
Affiliation(s)
- Aleksandra Szybińska
- 1Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland.,2Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Center Polish Academy of Sciences, 5 Pawinskiego St. 02-106 Warsaw, Poland
| | - Wiesława Leśniak
- 3Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur St., 02-093 Warsaw Poland
| |
Collapse
|
32
|
Kishino A, Hayashi K, Hidai C, Masuda T, Nomura Y, Oshima T. XBP1-FoxO1 interaction regulates ER stress-induced autophagy in auditory cells. Sci Rep 2017; 7:4442. [PMID: 28667325 PMCID: PMC5493624 DOI: 10.1038/s41598-017-02960-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/21/2017] [Indexed: 01/07/2023] Open
Abstract
The purpose of this study was to clarify the relationship among X-box-binding protein 1 unspliced, spliced (XBP1u, s), Forkhead box O1 (FoxO1) and autophagy in the auditory cells under endoplasmic reticulum (ER) stress. In addition, the relationship between ER stress that causes unfolded protein response (UPR) and autophagy was also investigated. The present study reported ER stress induction by tunicamycin treatment that resulted in IRE1α-mediated XBP1 mRNA splicing and autophagy. XBP1 mRNA splicing and FoxO1 were found to be involved in ER stress-induced autophagy. This inference was based on the observation that the expression of LC3-II was suppressed by knockdown of IRE1α, XBP1 or FoxO1. In addition, XBP1u was found to interact with XBP1s in auditory cells under ER stress, functioning as a negative feedback regulator that was based on two important findings. Firstly, there was a significant inverse correlation between XBP1u and XBP1s expressions, and secondly, the expression of XBP1 protein showed different dynamics compared to the XBP1 mRNA level. Furthermore, our results regarding the relationship between XBP1 and FoxO1 by small interfering RNA (siRNA) paradoxically showed negative regulation of FoxO1 expression by XBP1. Our findings revealed that the XBP1-FoxO1 interaction regulated the ER stress-induced autophagy in auditory cells.
Collapse
Affiliation(s)
- Akihiro Kishino
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Ken Hayashi
- Department of Otolaryngology, Kamio Memorial Hospital, Tokyo, 101-0063, Japan
| | - Chiaki Hidai
- Department of Physiology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Takeshi Masuda
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan
| | - Takeshi Oshima
- Department of Otolaryngology, School of Medicine, Nihon University, Tokyo, 173-8610, Japan.
| |
Collapse
|
33
|
Remondelli P, Renna M. The Endoplasmic Reticulum Unfolded Protein Response in Neurodegenerative Disorders and Its Potential Therapeutic Significance. Front Mol Neurosci 2017; 10:187. [PMID: 28670265 PMCID: PMC5472670 DOI: 10.3389/fnmol.2017.00187] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, the endoplasmic reticulum (ER) is the cell compartment involved in secretory protein translocation and quality control of secretory protein folding. Different conditions can alter ER function, resulting in the accumulation of unfolded or misfolded proteins within the ER lumen. Such a condition, known as ER stress, elicits an integrated adaptive response known as the unfolded protein response (UPR) that aims to restore proteostasis within the secretory pathway. Conversely, in prolonged cell stress or insufficient adaptive response, UPR signaling causes cell death. ER dysfunctions are involved and contribute to neuronal degeneration in several human diseases, including Alzheimer, Parkinson and Huntington disease and amyotrophic lateral sclerosis. The correlations between ER stress and its signal transduction pathway known as the UPR with neuropathological changes are well established. In addition, much evidence suggests that genetic or pharmacological modulation of UPR could represent an effective strategy for minimizing the progressive neuronal loss in neurodegenerative diseases. Here, we review recent results describing the main cellular mechanisms linking ER stress and UPR to neurodegeneration. Furthermore, we provide an up-to-date panoramic view of the currently pursued strategies for ameliorating the toxic effects of protein unfolding in disease by targeting the ER UPR pathway.
Collapse
Affiliation(s)
- Paolo Remondelli
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di SalernoSalerno, Italy
| | - Maurizio Renna
- Cambridge Institute for Medical Research, Department of Medical Genetics, Wellcome Trust, Addenbrooke's Hospital, University of CambridgeCambridge, United Kingdom
| |
Collapse
|
34
|
Sprenkle NT, Sims SG, Sánchez CL, Meares GP. Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 2017; 12:42. [PMID: 28545479 PMCID: PMC5445486 DOI: 10.1186/s13024-017-0183-y] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Persistent endoplasmic reticulum (ER) stress is thought to drive the pathology of many chronic disorders due to its potential to elicit aberrant inflammatory signaling and facilitate cell death. In neurodegenerative diseases, the accumulation of misfolded proteins and concomitant induction of ER stress in neurons contributes to neuronal dysfunction. In addition, ER stress responses induced in the surrounding neuroglia may promote disease progression by coordinating damaging inflammatory responses, which help fuel a neurotoxic milieu. Nevertheless, there still remains a gap in knowledge regarding the cell-specific mechanisms by which ER stress mediates neuroinflammation. In this review, we will discuss recently uncovered inflammatory pathways linked to the ER stress response. Moreover, we will summarize the present literature delineating how ER stress is generated in Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis, and highlight how ER stress and neuroinflammation intersect mechanistically within the central nervous system. The mechanisms by which stress-induced inflammation contributes to the pathogenesis and progression of neurodegenerative diseases remain poorly understood. Further examination of this interplay could present unappreciated insights into the development of neurodegenerative diseases, and reveal new therapeutic targets.
Collapse
Affiliation(s)
- Neil T Sprenkle
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Savannah G Sims
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Cristina L Sánchez
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, One Medical Center Drive, BMRC, Morgantown, WV, 311, USA. .,Blanchette Rockefeller Neurosciences Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
| |
Collapse
|
35
|
Marotta D, Tinelli E, Mole SE. NCLs and ER: A stressful relationship. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1273-1281. [PMID: 28390949 PMCID: PMC5479446 DOI: 10.1016/j.bbadis.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders with variable age of onset, characterized by the lysosomal accumulation of autofluorescent ceroid lipopigments. The endoplasmic reticulum (ER) is a critical organelle for normal cell function. Alteration of ER homeostasis leads to accumulation of misfolded protein in the ER and to activation of the unfolded protein response. ER stress and the UPR have recently been linked to the NCLs. In this review, we will discuss the evidence for UPR activation in the NCLs, and address its connection to disease pathogenesis. Further understanding of ER-stress response involvement in the NCLs may encourage development of novel therapeutical agents targeting these pathogenic pathways. ER-stress activation has been linked to various neurodegenerative diseases. ER-stress is a common patho-mechanism in four forms of NCL. Pharmacological modulation of UPR could provide new treatment for NCL.
Collapse
Affiliation(s)
- Davide Marotta
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Elisa Tinelli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT; UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
36
|
Ambrosi G, Milani P. Endoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
37
|
Papaioannou A, Chevet E. Driving Cancer Tumorigenesis and Metastasis Through UPR Signaling. Curr Top Microbiol Immunol 2017; 414:159-192. [PMID: 28710693 DOI: 10.1007/82_2017_36] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the tumor microenvironment, cancer cells encounter both external and internal factors that can lead to the accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER) lumen, thus causing ER stress. When this happens, an adaptive mechanism named the Unfolded Protein Response (UPR) is triggered to help the cell cope with this change and restore protein homeostasis in the ER. Sequentially, one would expect that the activation of the three UPR branches, driven namely by IRE1, PERK, and ATF6, are crucial for the adaptation of cancer cells to the changing environment and thus for their survival and further propagation. Indeed, in the last few years, an increasing amount of studies has shown the implication of UPR signaling in different aspects of carcinogenesis and tumor progression. Features such as sustaining proliferation and resistance to cell death, genomic instability, altered metabolism, increased inflammation and tumor-immune infiltration, invasion and metastasis, and angiogenesis, defined as "the hallmarks of cancer", can be regulated by the UPR machinery. At the same time, new potential therapeutic interventions applicable to different kinds of cancers are being revealed. In order to describe the emerging role of UPR in cancer biology, these are the points that will be discussed in this chapter.
Collapse
Affiliation(s)
- Alexandra Papaioannou
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Avenue de la bataille Flandres Dunkerque, 35000, Rennes, France
| | - Eric Chevet
- Inserm U1242 «Chemistry, Oncogenesis, Stress and Signaling», University of Rennes 1, Rennes, France.
| |
Collapse
|
38
|
Hazan I, Hofmann TG, Aqeilan RI. Tumor Suppressor Genes within Common Fragile Sites Are Active Players in the DNA Damage Response. PLoS Genet 2016; 12:e1006436. [PMID: 27977694 PMCID: PMC5157955 DOI: 10.1371/journal.pgen.1006436] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of common fragile sites (CFSs) in cancer remains controversial. Two main views dominate the discussion: one suggests that CFS loci are hotspots of genomic instability leading to inactivation of genes encoded within them, while the other view proposes that CFSs are functional units and that loss of the encoded genes confers selective pressure, leading to cancer development. The latter view is supported by emerging evidence showing that expression of a given CFS is associated with genome integrity and that inactivation of CFS-resident tumor suppressor genes leads to dysregulation of the DNA damage response (DDR) and increased genomic instability. These two viewpoints of CFS function are not mutually exclusive but rather coexist; when breaks at CFSs are not repaired accurately, this can lead to deletions by which cells acquire growth advantage because of loss of tumor suppressor activities. Here, we review recent advances linking some CFS gene products with the DDR, genomic instability, and carcinogenesis and discuss how their inactivation might represent a selective advantage for cancer cells.
Collapse
Affiliation(s)
- Idit Hazan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Thomas G. Hofmann
- Cellular Senescence Group, Department of Epigenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rami I. Aqeilan
- Lautenberg Center for Immunology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States of America
- Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont, United States of America
- * E-mail:
| |
Collapse
|
39
|
Rodríguez-Arribas M, Yakhine-Diop SMS, Pedro JMBS, Gómez-Suaga P, Gómez-Sánchez R, Martínez-Chacón G, Fuentes JM, González-Polo RA, Niso-Santano M. Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Mol Neurobiol 2016; 54:6287-6303. [PMID: 27714635 DOI: 10.1007/s12035-016-0140-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Mitochondria-associated membranes (MAMs) are structures that regulate physiological functions between endoplasmic reticulum (ER) and mitochondria in order to maintain calcium signaling and mitochondrial biogenesis. Several proteins located in MAMs, including those encoded by PARK genes and some of neurodegeneration-related proteins (huntingtin, presenilin, etc.), ensure this regulation. In this regard, MAM alteration is associated with neurodegenerative diseases such as Parkinson's (PD), Alzheimer's (AD), and Huntington's diseases (HD) and contributes to the appearance of the pathogenesis features, i.e., autophagy dysregulation, mitochondrial dysfunction, oxidative stress, and lately, neuronal death. Moreover,, ER stress and/or damaged mitochondria can be the cause of these disruptions. Therefore, ER-mitochondria contact structure and function are crucial to multiple cellular processes. This review is focused on the molecular interaction between ER and mitochondria indispensable to MAM formation and on MAM alteration-induced etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- M Rodríguez-Arribas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - S M S Yakhine-Diop
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - J M Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.,INSERM U1138, 75006, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006, Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006, Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France
| | - P Gómez-Suaga
- Department Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute Kings College London, London, SE5 9RX, UK
| | - R Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - G Martínez-Chacón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - J M Fuentes
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - R A González-Polo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain. .,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain.
| | - M Niso-Santano
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain. .,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain.
| |
Collapse
|
40
|
Qi X, Davis B, Chiang YH, Filichia E, Barnett A, Greig NH, Hoffer B, Luo Y. Dopaminergic neuron-specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model. J Neurochem 2016; 138:746-57. [PMID: 27317935 DOI: 10.1111/jnc.13706] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 01/06/2023]
Abstract
p53, a stress response gene, is involved in diverse cell death pathways and its activation has been implicated in the pathogenesis of Parkinson's disease (PD). However, whether the neuronal p53 protein plays a direct role in regulating dopaminergic (DA) neuronal cell death is unknown. In this study, in contrast to the global inhibition of p53 function by pharmacological inhibitors and in traditional p53 knock-out (KO) mice, we examined the effect of DA specific p53 gene deletion in DAT-p53KO mice. These DAT-p53KO mice did not exhibit apparent changes in the general structure and neuronal density of DA neurons during late development and in aging. However, in DA-p53KO mice treated with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we found that the induction of Bax and p53 up-regulated modulator of apoptosis (PUMA) mRNA and protein levels by MPTP were diminished in both striatum and substantia nigra of these mice. Notably, deletion of the p53 gene in DA neurons significantly reduced dopaminergic neuronal loss in substantia nigra, dopaminergic neuronal terminal loss at striatum and, additionally, decreased motor deficits in mice challenged with MPTP. In contrast, there was no difference in astrogliosis between WT and DAT-p53KO mice in response to MPTP treatment. These findings demonstrate a specific contribution of p53 activation in DA neuronal cell death by MPTP challenge. Our results further support the role of programmed cell death mediated by p53 in this animal model of PD and identify Bax, BAD and PUMA genes as downstream targets of p53 in modulating DA neuronal death in the in vivo MPTP-induced PD model. We deleted p53 gene in dopaminergic neurons in late developmental stages and found that DA specific p53 deletion is protective in acute MPTP animal model possibly through blocking MPTP-induced BAX and PUMA up-regulation. Astrocyte activation measured by GFAP positive cells and GFAP gene up-regulation in the striatum shows no difference between wt and DA-p53 ko mice.
Collapse
Affiliation(s)
- Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brandon Davis
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yung-Hsiao Chiang
- Division of Neurosurgery, Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Emily Filichia
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Austin Barnett
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute of Aging, Baltimore, Maryland, USA
| | - Barry Hoffer
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yu Luo
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Tan Y, Wu L, Li D, Liu X, Ding J, Chen S. Methylation status of DJ-1 in leukocyte DNA of Parkinson's disease patients. Transl Neurodegener 2016; 5:5. [PMID: 27034775 PMCID: PMC4815061 DOI: 10.1186/s40035-016-0052-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/11/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DJ-1 has been thought as a candidate biomarker for Parkinson's disease (PD). It was found reduced in PD brains, CSF and saliva, although there were conflicting results. How DJ-1 expression may be regulated is not clear. Recently, blood-based DNA methylation represents a highly promising biomarker for PD by regulating the causative gene expression. Thus, in this study, we try to explore whether blood-based DNA methylation of DJ-1 could be used as a biomarker to differentiate PD patients from normal control (NC), and whether DNA methylation could regulate DJ-1 expression in a SH-SY5Y cell model. METHODS Forty PD patients and 40 NC were recruited in this study. DNA was extracted from peripheral blood leukocytes (PBLs). Methylation status of two CpG islands (CpG1 and CpG2) in promoter region of DJ-1 was explored by bisulfite specific PCR-based sequencing method. Methylation inhibitor 5-Aza-dC was used to treat SH-SY5Y cell line, DJ-1 level was detected in both mRNA and protein level. RESULTS CpG sites in these two CpG islands (CpG1 and CpG2) of DJ-1 were unmethylated in both PD and NC group. In SH-SY5Y cell model treated by methylation inhibitor, there was no significant change of DJ-1 expression in either mRNA level or protein level. CONCLUSIONS Our results indicated that DNA methylation inhibitor didn't alter DJ-1 gene expression in SH-SY5Y cell model, and DNA methylation of DJ-1 promoter region in PBLs level might not be an efficient biomarker for PD patients.
Collapse
Affiliation(s)
- Yuyan Tan
- Department of Neurology, and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Li Wu
- Department of Neurology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200011 China
| | - Dunhui Li
- Department of Neurology, and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiaoli Liu
- Department of Neurology, and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jianqing Ding
- Department of Neurology, and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Shengdi Chen
- Department of Neurology, and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, 100069 China
| |
Collapse
|
42
|
Methyl-Arginine Profile of Brain from Aged PINK1-KO+A53T-SNCA Mice Suggests Altered Mitochondrial Biogenesis. PARKINSONS DISEASE 2016; 2016:4686185. [PMID: 27034888 PMCID: PMC4791501 DOI: 10.1155/2016/4686185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/29/2022]
Abstract
Hereditary Parkinson's disease can be triggered by an autosomal dominant overdose of alpha-Synuclein (SNCA) or the autosomal recessive deficiency of PINK1. We recently showed that the combination of PINK1-knockout with overexpression of A53T-SNCA in double mutant (DM) mice potentiates phenotypes and reduces survival. Now we studied brain hemispheres of DM mice at age of 18 months in a hypothesis-free approach, employing a quantitative label-free global proteomic mass spectrometry scan of posttranslational modifications focusing on methyl-arginine. The strongest effects were documented for the adhesion modulator CMAS, the mRNA decapping/deadenylation factor PATL1, and the synaptic plasticity mediator CRTC1/TORC1. In addition, an intriguing effect was observed for the splicing factor PSF/SFPQ, known to interact with the dopaminergic differentiation factor NURR1 as well as with DJ-1, the protein responsible for the autosomal recessive PARK7 variant of PD. CRTC1, PSF, and DJ-1 are modulators of PGC1alpha and of mitochondrial biogenesis. This pathway was further stressed by dysregulations of oxygen sensor EGLN3 and of nuclear TMPO. PSF and TMPO cooperate with dopaminergic differentiation factors LMX1B and NURR1. Further dysregulations concerned PRR18, TRIO, HNRNPA1, DMWD, WAVE1, ILDR2, DBNDD1, and NFM. Thus, we report selective novel endogenous stress responses in brain, which highlight early dysregulations of mitochondrial homeostasis and midbrain vulnerability.
Collapse
|
43
|
Duplan E, Giordano C, Checler F, Alves da Costa C. Direct α-synuclein promoter transactivation by the tumor suppressor p53. Mol Neurodegener 2016; 11:13. [PMID: 26833254 PMCID: PMC4736712 DOI: 10.1186/s13024-016-0079-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/27/2016] [Indexed: 11/21/2022] Open
Abstract
Background Parkinson’s disease (PD) is a motor disease associated with the degeneration of dopaminergic neurons of the substantia nigra pars compacta. p53 is a major neuronal pro-apoptotic factor that is at the center of gravity of multiple physiological and pathological cascades, some of which implying several key PD-linked proteins. Since p53 is up-regulated in PD-affected brain, we have examined its ability to regulate the transcription of α-synuclein, a key protein that accumulates in PD-related Lewy bodies. Results We show that pharmacological and genetic up-regulation of p53 expression lead to a strong increase of α-synuclein protein, promoter activity and mRNA levels. Several lines of evidence indicate that this transcriptional control is due to the DNA-binding properties of p53. Firstly, p53 DNA-binding dead mutations abolish p53 regulation of α-synuclein. Secondly, the deletion of p53 responsive element from α-synuclein promoter abrogates p53-mediated α-synuclein regulation. Thirdly, gel shift and chromatin immunoprecipitation studies indicate that p53 interacts physically with α-synuclein promoter both in vitro and in a physiological context. Furthermore, we show that the depletion of endogenous p53 in cells as well as in knockout mice down-regulates α-synuclein transcription. Conclusions Overall, we have identified α-synuclein as a new transcriptional target of p53 and delineated a cellular mechanism feeding the accumulation of toxic aggregated α-synuclein in PD. This original α-syn regulatory mechanism may be central to PD-related cell death and may lead to novel opportunities to design alternative neuroprotective strategies in PD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0079-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric Duplan
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Cécile Giordano
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France
| | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| | - Cristine Alves da Costa
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS/UNSA, team labeled "Fondation pour la Recherche Médicale" and "Laboratory of Excellence (LABEX) Distalz", 660 route des Lucioles, 06560, Sophia-Antipolis, Valbonne, France.
| |
Collapse
|
44
|
Moussa CEH. Parkin Is Dispensable for Mitochondrial Function, but Its Ubiquitin Ligase Activity Is Critical for Macroautophagy and Neurotransmitters: Therapeutic Potential beyond Parkinson's Disease. NEURODEGENER DIS 2015; 15:259-70. [DOI: 10.1159/000430888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/23/2015] [Indexed: 11/19/2022] Open
|
45
|
Dufey E, Urra H, Hetz C. ER proteostasis addiction in cancer biology: Novel concepts. Semin Cancer Biol 2015; 33:40-7. [PMID: 25931388 DOI: 10.1016/j.semcancer.2015.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 01/22/2023]
Abstract
Endoplasmic reticulum (ER) stress is generated by various physiological and pathological conditions that induce an accumulation of misfolded proteins in its lumen. ER stress activates the unfolded protein response (UPR), an adaptive reaction to cope with protein misfolding to and restore proteostasis. However, chronic ER stress results in apoptosis. In solid tumors, the UPR mediates adaptation to various environmental stressors, including hypoxia, low in pH and low nutrients availability, driving positive selection. Recent findings support the concept that UPR signaling also contributes to other relevant cancer-related event that may not be related to ER stress, including angiogenesis, genomic instability, metastasis and immunomodulation. In this article, we overview novel discoveries highlighting the impact of the UPR to different aspects of cancer biology beyond its known role as a survival factor to the hypoxic environment observed in solid tumors.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Senft D, Ronai ZA. UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci 2015; 40:141-8. [PMID: 25656104 DOI: 10.1016/j.tibs.2015.01.002] [Citation(s) in RCA: 828] [Impact Index Per Article: 82.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 12/29/2014] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
Cellular stress, induced by external or internal cues, activates several well-orchestrated processes aimed at either restoring cellular homeostasis or committing to cell death. Those processes include the unfolded protein response (UPR), autophagy, hypoxia, and mitochondrial function, which are part of the global endoplasmic reticulum (ER) stress (ERS) response. When one of the ERS elements is impaired, as often occurs under pathological conditions, overall cellular homeostasis may be perturbed. Further, activation of the UPR could trigger changes in mitochondrial function or autophagy, which could modulate the UPR, exemplifying crosstalk processes. Among the numerous factors that control the magnitude or duration of these processes are ubiquitin ligases, which govern overall cellular stress outcomes. Here we summarize crosstalk among the fundamental processes governing ERS responses.
Collapse
Affiliation(s)
- Daniela Senft
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| | - Ze'ev A Ronai
- Sanford-Burnham Medical Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
47
|
Evstafieva AG, Garaeva AA, Khutornenko AA, Klepikova AV, Logacheva MD, Penin AA, Novakovsky GE, Kovaleva IE, Chumakov PM. A sustained deficiency of mitochondrial respiratory complex III induces an apoptotic cell death through the p53-mediated inhibition of pro-survival activities of the activating transcription factor 4. Cell Death Dis 2014; 5:e1511. [PMID: 25375376 PMCID: PMC4260727 DOI: 10.1038/cddis.2014.469] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/11/2014] [Accepted: 09/24/2014] [Indexed: 11/09/2022]
Abstract
Generation of energy in mitochondria is subjected to physiological regulation at many levels, and its malfunction may result in mitochondrial diseases. Mitochondrial dysfunction is associated with different environmental influences or certain genetic conditions, and can be artificially induced by inhibitors acting at different steps of the mitochondrial electron transport chain (ETC). We found that a short-term (5 h) inhibition of ETC complex III with myxothiazol results in the phosphorylation of translation initiation factor eIF2α and upregulation of mRNA for the activating transcription factor 4 (ATF4) and several ATF4-regulated genes. The changes are characteristic for the adaptive integrated stress response (ISR), which is known to be triggered by unfolded proteins, nutrient and metabolic deficiency, and mitochondrial dysfunctions. However, after a prolonged incubation with myxothiazol (13-17 h), levels of ATF4 mRNA and ATF4-regulated transcripts were found substantially suppressed. The suppression was dependent on the p53 response, which is triggered by the impairment of the complex III-dependent de novo biosynthesis of pyrimidines by mitochondrial dihydroorotate dehydrogenase. The initial adaptive induction of ATF4/ISR acted to promote viability of cells by attenuating apoptosis. In contrast, the induction of p53 upon a sustained inhibition of ETC complex III produced a pro-apoptotic effect, which was additionally stimulated by the p53-mediated abrogation of the pro-survival activities of the ISR. Interestingly, a sustained inhibition of ETC complex I by piericidine did not induce the p53 response and stably maintained the pro-survival activation of ATF4/ISR. We conclude that a downregulation of mitochondrial ETC generally induces adaptive pro-survival responses, which are specifically abrogated by the suicidal p53 response triggered by the genetic risks of the pyrimidine nucleotide deficiency.
Collapse
Affiliation(s)
- A G Evstafieva
- 1] Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia [2] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A A Garaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A A Khutornenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A V Klepikova
- 1] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia [2] Faculty of Biology, Department of Genetics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - M D Logacheva
- 1] Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia [2] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - A A Penin
- 1] Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia [2] Faculty of Biology, Department of Genetics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - G E Novakovsky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - I E Kovaleva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - P M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Street 32, Moscow, 119991, Russia
| |
Collapse
|
48
|
DJ-1 interacts with RACK1 and protects neurons from oxidative-stress-induced apoptosis. Biochem J 2014; 462:489-97. [PMID: 24947010 DOI: 10.1042/bj20140235] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PD (Parkinson's disease) is a complex disorder that is associated with neuronal loss or dysfunction caused by genetic risks, environmental factors and advanced aging. It has been reported that DJ-1 mutations rendered neurons sensitive to oxidative damage, which led to the onset of familiar PD. However, the molecular mechanism is still unclear. In the present study we show that DJ-1 interacts with RACK1 (receptor of activated C kinase 1) and increases its dimerization and protein stability. The DJ-1 transgene protects cortical neurons from H2O2-induced apoptosis, and this protective effect is abrogated by knocking down RACK1. Similarly, deletion of DJ-1 in cortical neurons increases the sensitivity to H2O2, and the damage can be significantly rescued by DJ-1 or DJ-1/RACK1 co-transfection, but not by RACK1 alone. We observed further that the interaction of DJ-1 and RACK1 is disrupted by H2O2 or MPP+ (1-methyl-4-phenylpyridinium) treatment, and the protein levels of DJ-1 and RACK1 decreased in neurodegenerative disease models. Taken together, the DJ-1-RACK1 complex protects neurons from oxidative stress-induced apoptosis, with the implication that DJ-1 and RACK1 might be novel targets in the treatment of neurodegenerative diseases.
Collapse
|
49
|
Vassar R, Zheng H. Molecular neurodegeneration: basic biology and disease pathways. Mol Neurodegener 2014; 9:34. [PMID: 25248568 PMCID: PMC4177433 DOI: 10.1186/1750-1326-9-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/10/2022] Open
Abstract
The field of neurodegeneration research has been advancing rapidly over the past few years, and has provided intriguing new insights into the normal physiological functions and pathogenic roles of a wide range of molecules associated with several devastating neurodegenerative disorders, including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, Huntington’s disease, and Down syndrome. Recent developments have also facilitated initial efforts to translate preclinical discoveries toward novel therapeutic approaches and clinical trials in humans. These recent developments are reviewed in the current Review Series on "Molecular Neurodegeneration: Basic Biology and Disease Pathways" in a number of state-of-the-art manuscripts that cover themes presented at the Third International Conference on Molecular Neurodegeneration: "Basic biology and disease pathways" held in Cannes, France, September, 2013.
Collapse
Affiliation(s)
- Robert Vassar
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | | |
Collapse
|
50
|
Dunys J, Duplan E, Checler F. The transcription factor X-box binding protein-1 in neurodegenerative diseases. Mol Neurodegener 2014; 9:35. [PMID: 25216759 PMCID: PMC4166022 DOI: 10.1186/1750-1326-9-35] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/14/2014] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) is the cellular compartment where secreted and integral membrane proteins are folded and matured. The accumulation of unfolded or misfolded proteins triggers a stress that is physiologically controlled by an adaptative protective response called Unfolded Protein Response (UPR). UPR is primordial to induce a quality control response and to restore ER homeostasis. When this adaptative response is defective, protein aggregates overwhelm cells and affect, among other mechanisms, synaptic function, signaling transduction and cell survival. Such dysfunction likely contributes to several neurodegenerative diseases that are indeed characterized by exacerbated protein aggregation, protein folding impairment, increased ER stress and UPR activation. This review briefly documents various aspects of the biology of the transcription factor XBP-1 (X-box Binding Protein-1) and summarizes recent findings concerning its putative contribution to the altered UPR response observed in various neurodegenerative disorders including Parkinson’s and Alzheimer’s diseases.
Collapse
Affiliation(s)
| | | | - Frédéric Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275 CNRS-UNS, Sophia Antipolis, Nice, Valbonne F-06560, France.
| |
Collapse
|