1
|
Brouns I, Adriaensen D, Timmermans JP. The pulmonary neuroepithelial body microenvironment represents an underestimated multimodal component in airway sensory pathways. Anat Rec (Hoboken) 2025; 308:1094-1117. [PMID: 36808710 DOI: 10.1002/ar.25171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/22/2023]
Abstract
Exciting new imaging and molecular tools, combined with state-of-the-art genetically modified mouse models, have recently boosted interest in pulmonary (vagal) sensory pathway investigations. In addition to the identification of diverse sensory neuronal subtypes, visualization of intrapulmonary projection patterns attracted renewed attention on morphologically identified sensory receptor end-organs, such as the pulmonary neuroepithelial bodies (NEBs) that have been our area of expertise for the past four decades. The current review aims at providing an overview of the cellular and neuronal components of the pulmonary NEB microenvironment (NEB ME) in mice, underpinning the role of these complexly organized structures in the mechano- and chemosensory potential of airways and lungs. Interestingly, the pulmonary NEB ME additionally harbors different types of stem cells, and emerging evidence suggests that the signal transduction pathways that are active in the NEB ME during lung development and repair also determine the origin of small cell lung carcinoma. Although documented for many years that NEBs appear to be affected in several pulmonary diseases, the current intriguing knowledge on the NEB ME seems to encourage researchers that are new to the field to explore the possibility that these versatile sensor-effector units may be involved in lung pathogenesis or pathobiology.
Collapse
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology (CBH), Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Seeholzer LF, Julius D. Neuroendocrine cells initiate protective upper airway reflexes. Science 2024; 384:295-301. [PMID: 38669574 PMCID: PMC11407116 DOI: 10.1126/science.adh5483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 02/21/2024] [Indexed: 04/28/2024]
Abstract
Airway neuroendocrine (NE) cells have been proposed to serve as specialized sensory epithelial cells that modulate respiratory behavior by communicating with nearby nerve endings. However, their functional properties and physiological roles in the healthy lung, trachea, and larynx remain largely unknown. In this work, we show that murine NE cells in these compartments have distinct biophysical properties but share sensitivity to two commonly aspirated noxious stimuli, water and acid. Moreover, we found that tracheal and laryngeal NE cells protect the airways by releasing adenosine 5'-triphosphate (ATP) to activate purinoreceptive sensory neurons that initiate swallowing and expiratory reflexes. Our work uncovers the broad molecular and biophysical diversity of NE cells across the airways and reveals mechanisms by which these specialized excitable cells serve as sentinels for activating protective responses.
Collapse
Affiliation(s)
- Laura F. Seeholzer
- Department of Physiology, University of California, San Francisco; San Francisco, 94143, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco; San Francisco, 94143, USA
| |
Collapse
|
3
|
Kuo CS, Darmanis S, Diaz de Arce A, Liu Y, Almanzar N, Wu TTH, Quake SR, Krasnow MA. Neuroendocrinology of the lung revealed by single-cell RNA sequencing. eLife 2022; 11:e78216. [PMID: 36469459 PMCID: PMC9721618 DOI: 10.7554/elife.78216] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary neuroendocrine cells (PNECs) are sensory epithelial cells that transmit airway status to the brain via sensory neurons and locally via calcitonin gene-related peptide (CGRP) and γ- aminobutyric acid (GABA). Several other neuropeptides and neurotransmitters have been detected in various species, but the number, targets, functions, and conservation of PNEC signals are largely unknown. We used scRNAseq to profile hundreds of the rare mouse and human PNECs. This revealed over 40 PNEC neuropeptide and peptide hormone genes, most cells expressing unique combinations of 5-18 genes. Peptides are packaged in separate vesicles, their release presumably regulated by the distinct, multimodal combinations of sensors we show are expressed by each PNEC. Expression of the peptide receptors predicts an array of local cell targets, and we show the new PNEC signal angiotensin directly activates one subtype of innervating sensory neuron. Many signals lack lung targets so may have endocrine activity like those of PNEC-derived carcinoid tumors. PNECs are an extraordinarily rich and diverse signaling hub rivaling the enteroendocrine system.
Collapse
Affiliation(s)
- Christin S Kuo
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Spyros Darmanis
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Alex Diaz de Arce
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Yin Liu
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Nicole Almanzar
- Department of Pediatrics, Stanford University School of MedicineStanfordUnited States
| | - Timothy Ting-Hsuan Wu
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Stephen R Quake
- Department of Bioengineering, Stanford UniversityStanfordUnited States
- Chan-Zuckerburg BiohubSan FranciscoUnited States
| | - Mark A Krasnow
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
4
|
Xiong H, Yang J, Guo J, Ma A, Wang B, Kang Y. Mechanosensitive Piezo channels mediate the physiological and pathophysiological changes in the respiratory system. Respir Res 2022; 23:196. [PMID: 35906615 PMCID: PMC9338466 DOI: 10.1186/s12931-022-02122-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 02/08/2023] Open
Abstract
Mechanosensitive Piezo ion channels were first reported in 2010 in a mouse neuroblastoma cell line, opening up a new field for studying the composition and function of eukaryotic mechanically activated channels. During the past decade, Piezo ion channels were identified in many species, such as bacteria, Drosophila, and mammals. In mammals, basic life activities, such as the sense of touch, proprioception, hearing, vascular development, and blood pressure regulation, depend on the activation of Piezo ion channels. Cumulative evidence suggests that Piezo ion channels play a major role in lung vascular development and function and diseases like pneumonia, pulmonary hypertension, apnea, and other lung-related diseases. In this review, we focused on studies that reported specific functions of Piezos in tissues and emphasized the physiological and pathological effects of their absence or functional mutations on the respiratory system.
Collapse
Affiliation(s)
- Huaiyu Xiong
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Jing Yang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Jun Guo
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Aijia Ma
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China
| | - Bo Wang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China.
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, No. 17, Section 3, Renmin South Road, Wuhou District, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
5
|
Lu Y, Huang Y, Li J, Huang J, Zhang L, Feng J, Li J, Xia Q, Zhao Q, Huang L, Jiang S, Su S. Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nat Cell Biol 2021; 23:1060-1072. [PMID: 34616019 DOI: 10.1038/s41556-021-00762-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/26/2021] [Indexed: 12/18/2022]
Abstract
Eosinophilic inflammation is a feature of allergic asthma. Despite mounting evidence showing that chromatin filaments released from neutrophils mediate various diseases, the understanding of extracellular DNA from eosinophils is limited. Here we show that eosinophil extracellular traps (EETs) in bronchoalveolar lavage fluid are associated with the severity of asthma in patients. Functionally, we find that EETs augment goblet-cell hyperplasia, mucus production, infiltration of inflammatory cells and expressions of type 2 cytokines in experimental non-infection-related asthma using both pharmaceutical and genetic approaches. Multiple clinically relevant allergens trigger EET formation at least partially via thymic stromal lymphopoietin in vivo. Mechanically, EETs activate pulmonary neuroendocrine cells via the CCDC25-ILK-PKCα-CRTC1 pathway, which is potentiated by eosinophil peroxidase. Subsequently, the pulmonary neuroendocrine cells amplify allergic immune responses via neuropeptides and neurotransmitters. Therapeutically, inhibition of CCDC25 alleviates allergic inflammation. Together, our findings demonstrate a previously unknown role of EETs in integrating immunological and neurological cues to drive asthma progression.
Collapse
Affiliation(s)
- Yiwen Lu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yijiao Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingying Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lizhi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingwei Feng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiaqian Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qidong Xia
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiyi Zhao
- Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Linjie Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Pulmonary and Critical Care Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Institute of Pulmonary Diseases, Sun Yat-Sen University, Guangzhou, China.
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Infectious Diseases, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China. .,Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Brouns I, Verckist L, Pintelon I, Timmermans JP, Adriaensen D. Pulmonary Sensory Receptors. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2021; 233:1-65. [PMID: 33950466 DOI: 10.1007/978-3-030-65817-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium.
| | - Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerpen (Wilrijk), Belgium
| |
Collapse
|
7
|
Functional Exploration of the Pulmonary NEB ME. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 233:31-67. [PMID: 33950469 DOI: 10.1007/978-3-030-65817-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Bery F, Cancel M, Chantôme A, Guibon R, Bruyère F, Rozet F, Mahéo K, Fromont G. The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12040860. [PMID: 32252342 PMCID: PMC7226072 DOI: 10.3390/cancers12040860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying neuroendocrine (NE) differentiation in prostate cancer (PCa) remain mostly uncharacterized. Since a deregulated calcium homeostasis has been reported in neuroendocrine prostate cancer (NEPC), we explored herein the link between NE differentiation and the calcium-sensing receptor (CaSR). CaSR expression was evaluated by immunohistochemistry-together with NE markers-on tissue microarrays containing samples of normal prostate, localized PCa, metastatic castration resistant PCa (MCRPC) and NEPC. In prostate tissues, we observed a strong association between CaSR and chromogranin expression. Both markers were strongly expressed in all cases of NEPC and co-expression was confirmed by double immunostaining. In MCRPC, the expression of CaSR was significantly associated with shorter overall survival. The involvement of CaSR in NE differentiation was evaluated in PCa cell lines. Inhibition of CaSR led to decrease the expression of neuronal (NSE, βtubulinIII) and NE (chromogranin, synaptophysin) markers in the NE PCa cell line NCI-H660. A decrease of neuronal and NE markers was also observed in siCaSR-transfected PC3 and 22RV1 cells, respectively, whereas CaSR activation increased both NSE and synaptophysin expression in PC3 cells. These results strongly suggest that CaSR is a marker and a driver of NE differentiation in PCa and emphasize the potential of CaSR directed therapy for NEPC patients.
Collapse
Affiliation(s)
- Fanny Bery
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
| | - Mathilde Cancel
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
- Department of Oncology, CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
| | - Aurélie Chantôme
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
| | - Roseline Guibon
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
- Department of Pathology CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
| | - Franck Bruyère
- Department of Urology, CHRU Bretonneau, CEDEX 9, F-37044 Tours, France;
| | - François Rozet
- Institut Mutualiste Montsouris, Department of Urology, F-75014 Paris, France;
| | - Karine Mahéo
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
| | - Gaëlle Fromont
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
- Department of Pathology CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
- Correspondence: ; Tel.: +33-(0)2-47-47-82-72
| |
Collapse
|
9
|
Sensing Extracellular Calcium - An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1031-1063. [PMID: 31646544 DOI: 10.1007/978-3-030-12457-1_41] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor that plays a key role in calcium homeostasis, by sensing free calcium levels in blood and regulating parathyroid hormone secretion in response. The CaSR is highly expressed in parathyroid gland and kidney where its role is well characterised, but also in other tissues where its function remains to be determined. The CaSR can be activated by a variety of endogenous ligands, as well as by synthetic modulators such as Cinacalcet, used in the clinic to treat secondary hyperparathyroidism in patients with chronic kidney disease. The CaSR couples to multiple G proteins, in a tissue-specific manner, activating several signalling pathways and thus regulating diverse intracellular events. The multifaceted nature of this receptor makes it a valuable therapeutic target for calciotropic and non-calciotropic diseases. It is therefore essential to understand the complexity behind the pharmacology, trafficking, and signalling characteristics of this receptor. This review provides an overview of the latest knowledge about the CaSR and discusses future hot topics in this field.
Collapse
|
10
|
Roesler AM, Wicher SA, Ravix J, Britt RD, Manlove L, Teske JJ, Cummings K, Thompson MA, Farver C, MacFarlane P, Pabelick CM, Prakash YS. Calcium sensing receptor in developing human airway smooth muscle. J Cell Physiol 2019; 234:14187-14197. [PMID: 30624783 DOI: 10.1002/jcp.28115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Airway smooth muscle (ASM) regulation of airway structure and contractility is critical in fetal/neonatal physiology in health and disease. Fetal lungs experience higher Ca2+ environment that may impact extracellular Ca2+ ([Ca2+ ]o ) sensing receptor (CaSR). Well-known in the parathyroid gland, CaSR is also expressed in late embryonic lung mesenchyme. Using cells from 18-22 week human fetal lungs, we tested the hypothesis that CaSR regulates intracellular Ca2+ ([Ca2+ ]i ) in fetal ASM (fASM). Compared with adult ASM, CaSR expression was higher in fASM, while fluorescence Ca2+ imaging showed that [Ca2+ ]i was more sensitive to altered [Ca2+ ]o . The fASM [Ca2+ ]i responses to histamine were also more sensitive to [Ca2+ ]o (0-2 mM) compared with an adult, enhanced by calcimimetic R568 but blunted by calcilytic NPS2143. [Ca2+ ]i was enhanced by endogenous CaSR agonist spermine (again higher sensitivity compared with adult). Inhibition of phospholipase C (U73122; siRNA) or inositol 1,4,5-triphosphate receptor (Xestospongin C) blunted [Ca2+ ]o sensitivity and R568 effects. NPS2143 potentiated U73122 effects. Store-operated Ca2+ entry was potentiated by R568. Traction force microscopy showed responsiveness of fASM cellular contractility to [Ca2+ ]o and NPS2143. Separately, fASM proliferation showed sensitivity to [Ca2+ ]o and NPS2143. These results demonstrate functional CaSR in developing ASM that modulates airway contractility and proliferation.
Collapse
Affiliation(s)
- Anne M Roesler
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Sarah A Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jovanka Ravix
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Logan Manlove
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Katelyn Cummings
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Carol Farver
- Department of Anatomic Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Peter MacFarlane
- Division of Neonatology, Case Western University, Cleveland, Ohio
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Verckist L, Pintelon I, Timmermans JP, Brouns I, Adriaensen D. Selective activation and proliferation of a quiescent stem cell population in the neuroepithelial body microenvironment. Respir Res 2018; 19:207. [PMID: 30367659 PMCID: PMC6203996 DOI: 10.1186/s12931-018-0915-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The microenvironment (ME) of neuroepithelial bodies (NEBs) harbors densely innervated groups of pulmonary neuroendocrine cells that are covered by Clara-like cells (CLCs) and is believed to be important during development and for adult airway epithelial repair after severe injury. Yet, little is known about its potential stem cell characteristics in healthy postnatal lungs. METHODS Transient mild lung inflammation was induced in mice via a single low-dose intratracheal instillation of lipopolysaccharide (LPS). Bronchoalveolar lavage fluid (BALF), collected 16 h after LPS instillation, was used to challenge the NEB ME in ex vivo lung slices of control mice. Proliferating cells in the NEB ME were identified and quantified following simultaneous LPS instillation and BrdU injection. RESULTS The applied LPS protocol induced very mild and transient lung injury. Challenge of lung slices with BALF of LPS-treated mice resulted in selective Ca2+-mediated activation of CLCs in the NEB ME of control mice. Forty-eight hours after LPS challenge, a remarkably selective and significant increase in the number of divided (BrdU-labeled) cells surrounding NEBs was observed in lung sections of LPS-challenged mice. Proliferating cells were identified as CLCs. CONCLUSIONS A highly reproducible and minimally invasive lung inflammation model was validated for inducing selective activation of a quiescent stem cell population in the NEB ME. The model creates new opportunities for unraveling the cellular mechanisms/pathways regulating silencing, activation, proliferation and differentiation of this unique postnatal airway epithelial stem cell population.
Collapse
Affiliation(s)
- Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerpen, Belgium.
| |
Collapse
|
12
|
Verckist L, Lembrechts R, Thys S, Pintelon I, Timmermans JP, Brouns I, Adriaensen D. Selective gene expression analysis of the neuroepithelial body microenvironment in postnatal lungs with special interest for potential stem cell characteristics. Respir Res 2017; 18:87. [PMID: 28482837 PMCID: PMC5422937 DOI: 10.1186/s12931-017-0571-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/01/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The pulmonary neuroepithelial body (NEB) microenvironment (ME) consists of innervated cell clusters that occur sparsely distributed in the airway epithelium, an organization that has so far hampered reliable selective gene expression analysis. Although the NEB ME has been suggested to be important for airway epithelial repair after ablation, little is known about their potential stem cell characteristics in healthy postnatal lungs. Here we report on a large-scale selective gene expression analysis of the NEB ME. METHODS A GAD67-GFP mouse model was used that harbors GFP-fluorescent NEBs, allowing quick selection and pooling by laser microdissection (LMD) without further treatment. A panel of stem cell-related PCR arrays was used to selectively compare mRNA expression in the NEB ME to control airway epithelium (CAE). For genes that showed a higher expression in the NEB ME, a ranking was made based on the relative expression level. Single qPCR and immunohistochemistry were used to validate and quantify the PCR array data. RESULTS Careful optimization of all protocols appeared to be essential to finally obtain high-quality RNA from pooled LMD samples of NEB ME. About 30% of the more than 600 analyzed genes showed an at least two-fold higher expression compared to CAE. The gene that showed the highest relative expression in the NEB ME, Delta-like ligand 3 (Dll3), was investigated in more detail. Selective Dll3 gene expression in the NEB ME could be quantified via single qPCR experiments, and Dll3 protein expression could be localized specifically to NEB cell surface membranes. CONCLUSIONS This study emphasized the importance of good protocols and RNA quality controls because of the, often neglected, fast RNA degradation in postnatal lung samples. It was shown that sufficient amounts of high-quality RNA for reliable complex gene expression analysis can be obtained from pooled LMD-collected NEB ME samples of postnatal lungs. Dll3 expression, which has also been reported to be important in high-grade pulmonary tumor-initiating cells, was used as a proof-of-concept to confirm that the described methodology represents a promising tool for further unraveling the molecular basis of NEB ME physiology in general, and its postnatal stem cell capacities in particular.
Collapse
Affiliation(s)
- Line Verckist
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium
| | - Robrecht Lembrechts
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium
| | - Inge Brouns
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium
| | - Dirk Adriaensen
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerpen, Wilrijk, Belgium.
| |
Collapse
|
13
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
14
|
Schepelmann M, Yarova PL, Lopez-Fernandez I, Davies TS, Brennan SC, Edwards PJ, Aggarwal A, Graça J, Rietdorf K, Matchkov V, Fenton RA, Chang W, Krssak M, Stewart A, Broadley KJ, Ward DT, Price SA, Edwards DH, Kemp PJ, Riccardi D. The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. Am J Physiol Cell Physiol 2015; 310:C193-204. [PMID: 26538090 DOI: 10.1152/ajpcell.00248.2015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/29/2015] [Indexed: 12/28/2022]
Abstract
The extracellular calcium-sensing receptor CaSR is expressed in blood vessels where its role is not completely understood. In this study, we tested the hypothesis that the CaSR expressed in vascular smooth muscle cells (VSMC) is directly involved in regulation of blood pressure and blood vessel tone. Mice with targeted CaSR gene ablation from vascular smooth muscle cells (VSMC) were generated by breeding exon 7 LoxP-CaSR mice with animals in which Cre recombinase is driven by a SM22α promoter (SM22α-Cre). Wire myography performed on Cre-negative [wild-type (WT)] and Cre-positive (SM22α)CaSR(Δflox/Δflox) [knockout (KO)] mice showed an endothelium-independent reduction in aorta and mesenteric artery contractility of KO compared with WT mice in response to KCl and to phenylephrine. Increasing extracellular calcium ion (Ca(2+)) concentrations (1-5 mM) evoked contraction in WT but only relaxation in KO aortas. Accordingly, diastolic and mean arterial blood pressures of KO animals were significantly reduced compared with WT, as measured by both tail cuff and radiotelemetry. This hypotension was mostly pronounced during the animals' active phase and was not rescued by either nitric oxide-synthase inhibition with nitro-l-arginine methyl ester or by a high-salt-supplemented diet. KO animals also exhibited cardiac remodeling, bradycardia, and reduced spontaneous activity in isolated hearts and cardiomyocyte-like cells. Our findings demonstrate a role for CaSR in the cardiovascular system and suggest that physiologically relevant changes in extracellular Ca(2+) concentrations could contribute to setting blood vessel tone levels and heart rate by directly acting on the cardiovascular CaSR.
Collapse
Affiliation(s)
- M Schepelmann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - P L Yarova
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - I Lopez-Fernandez
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Faculty of Pharmacy, Université de Picardie Jules Verne, Amiens, France
| | - T S Davies
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - S C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - P J Edwards
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - A Aggarwal
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - J Graça
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; Pathology Sciences, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - K Rietdorf
- Faculty of Science, Department for Life, Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| | - V Matchkov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - R A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - W Chang
- Endocrine Research Unit, Department of Veteran Affairs Medical Center, Department of Medicine, University of California, San Francisco, Califonia
| | - M Krssak
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - A Stewart
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - K J Broadley
- School of Pharmacy and Pharmaceutical Sciences, Division of Pharmacology, Cardiff University, Cardiff, United Kingdom
| | - D T Ward
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom; and
| | - S A Price
- Pathology Sciences, AstraZeneca, Macclesfield, Cheshire, United Kingdom
| | - D H Edwards
- Cardiff University, Wales Heart Research Institute, Cardiff, United Kingdom
| | - P J Kemp
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - D Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| |
Collapse
|
15
|
Sensory input to the central nervous system from the lungs and airways: A prominent role for purinergic signalling via P2X2/3 receptors. Auton Neurosci 2015; 191:39-47. [PMID: 25953244 DOI: 10.1016/j.autneu.2015.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Specific subpopulations of lung-related primary afferent neurons in dorsal root and vagal sensory ganglia have been reported to express P2X2 and P2X3 receptors both in the neuronal cell bodies and in their peripheral terminals. The afferent innervation of airways and lungs is organised as sensory receptor structures, of which at least seven types with a vagal origin and two with a spinal origin have been reported. In view of the recently suggested therapeutic promise of ATP antagonism - specifically at P2X3 receptor expressing nociceptive fibres - in respiratory disorders, the present work focusses on four distinct populations of pulmonary sensory receptors that have so far been reported to express P2X2/3 receptors. Three of them originate from myelinated nerve fibres that display similar mechanosensor-like morphological and neurochemical characteristics. Two of the latter concern vagal nodose sensory fibres, either related to pulmonary neuroepithelial bodies (NEBs), or giving rise to smooth muscle-associated airway receptors (SMARs); the third gives rise to visceral pleura receptors (VPRs) and most likely arises from dorsal root ganglia. The fourth population concerns C-fibre receptors (CFRs) that also derive from neuronal cell bodies located in vagal nodose ganglia. Although the majority of the airway- and lung-related sensory receptors that express P2X2/3 receptors apparently do not belong to accepted nociceptive populations, these data definitely point out that ATP may be an important player in the physiological transduction of different lung-related afferent signals from the periphery to the CNS. The observed variety within the populations of pulmonary sensory receptors that express P2X2/3 receptors argues for a critical and careful interpretation of the functional data.
Collapse
|
16
|
|
17
|
Meng K, Xu J, Zhang C, Zhang R, Yang H, Liao C, Jiao J. Calcium sensing receptor modulates extracellular calcium entry and proliferation via TRPC3/6 channels in cultured human mesangial cells. PLoS One 2014; 9:e98777. [PMID: 24905090 PMCID: PMC4048219 DOI: 10.1371/journal.pone.0098777] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/07/2014] [Indexed: 12/31/2022] Open
Abstract
Calcium-sensing receptor (CaSR) has been demonstrated to be present in several tissues and cells unrelated to systemic calcium homeostasis, where it regulates a series of diverse cellular functions. A previous study indicated that CaSR is expressed in mouse glomerular mesangial cells (MCs), and stimulation of CaSR induces cell proliferation. However, the signaling cascades initiated by CaSR activation in MCs are currently unknown. In this study, our data demonstrate that CaSR mRNA and protein are expressed in a human mesangial cell line. Activating CaSR with high extracellular Ca2+ concentration ([Ca2+]o) or spermine induces a phospholipase C (PLC)-dependent increase in intracellular Ca2+ concentration ([Ca2+]i). Interestingly, the CaSR activation-induced increase in [Ca2+]i results not only from intracellular Ca2+ release from internal stores but also from canonical transient receptor potential (TRPC)-dependent Ca2+ influx. This increase in Ca2+ was attenuated by treatment with a nonselective TRPC channel blocker but not by treatment with a voltage-gated calcium blocker or Na+/Ca2+ exchanger inhibitor. Furthermore, stimulation of CaSR by high [Ca2+]o enhanced the expression of TRPC3 and TRPC6 but not TRPC1 and TRPC4, and siRNA targeting TRPC3 and TRPC6 attenuated the CaSR activation-induced [Ca2+]i increase. Further experiments indicate that 1-oleoyl-2-acetyl-sn-glycerol (OAG), a known activator of receptor-operated calcium channels, significantly enhances the CaSR activation-induced [Ca2+]i increase. Moreover, under conditions in which intracellular stores were already depleted with thapsigargin (TG), CaSR agonists also induced an increase in [Ca2+]i, suggesting that calcium influx stimulated by CaSR agonists does not require the release of calcium stores. Finally, our data indicate that pharmacological inhibition and knock down of TRPC3 and TRPC6 attenuates the CaSR activation-induced cell proliferation in human MCs. With these data, we conclude that CaSR activation mediates Ca2+ influx and cell proliferation via TRPC3 and TRPC6 in human MCs.
Collapse
Affiliation(s)
- Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jia Xu
- Department of Nephrology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chengwei Zhang
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - He Yang
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Chang Liao
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
- Institute of Nephrology, Harbin Medical University, Harbin, China
- * E-mail:
| |
Collapse
|
18
|
Pokorski M, Takeda K, Sato Y, Okada Y. The hypoxic ventilatory response and TRPA1 antagonism in conscious mice. Acta Physiol (Oxf) 2014; 210:928-38. [PMID: 24245768 DOI: 10.1111/apha.12202] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 11/14/2013] [Indexed: 01/26/2023]
Abstract
AIM Recently, TRPA1 channels, richly expressed in both peripheral and central neural systems, have been proposed as novel sensors of changes in oxygen concentration along the hypoxic-hyperoxic continuum. In this study, we investigated the hypothesis that TRPA1 channels blockade should profoundly affect the hypoxic ventilatory response (HVR). METHODS We examined the chemosensory ventilatory responses in conscious mice before and after intraperitoneal administration of the specific TRPA1 antagonist HC-030031 in two doses of 50 and 200 (cumulative dose 250) mg kg(-1) . Ventilation and its responses to mild 13% and severe 7% hypoxia, pure O2 , and 5% CO2 in O2 were recorded in a whole-body plethysmograph. RESULTS TRPA1 antagonism caused a dose-dependent attenuation of the HVR. Ventilatory stimulation was virtually abrogated in response to the mild, but it remained viable, albeit slashed, at severe hypoxia after the bigger dose of HC-030031. The TRPA1 function seemed specific for the hypoxic chemoreflex as neither the response to pure O2 nor hypercapnia was appreciably influenced by the TRPA1 antagonist. CONCLUSIONS The study unravelled the role of TRPA1 in shaping the ventilatory response to low-intensity hypoxia, liable to be mediated by vagally innervated respiratory chemosensors of lower functional rank, but contradicted the TRPA1 being indispensable for the powerful carotid body chemoreflex in face of a severe hypoxic threat.
Collapse
Affiliation(s)
- M. Pokorski
- Clinical Research Centre; National Hospital Organization Murayama Medical Center; Musashimurayama City Japan
- Medical Research Center; Polish Academy of Sciences; Warsaw Poland
| | - K. Takeda
- Clinical Research Centre; National Hospital Organization Murayama Medical Center; Musashimurayama City Japan
| | - Y. Sato
- Institute of Socio-Arts and Sciences; University of Tokushima; Tokushima City Japan
| | - Y. Okada
- Clinical Research Centre; National Hospital Organization Murayama Medical Center; Musashimurayama City Japan
| |
Collapse
|