1
|
Li X, Jin DS, Eadara S, Caterina MJ, Meffert MK. Regulation by noncoding RNAs of local translation, injury responses, and pain in the peripheral nervous system. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2023; 13:100119. [PMID: 36798094 PMCID: PMC9926024 DOI: 10.1016/j.ynpai.2023.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Neuropathic pain is a chronic condition arising from damage to somatosensory pathways that results in pathological hypersensitivity. Persistent pain can be viewed as a consequence of maladaptive plasticity which, like most enduring forms of cellular plasticity, requires altered expression of specific gene programs. Control of gene expression at the level of protein synthesis is broadly utilized to directly modulate changes in activity and responsiveness in nociceptive pathways and provides an effective mechanism for compartmentalized regulation of the proteome in peripheral nerves through local translation. Levels of noncoding RNAs (ncRNAs) are commonly impacted by peripheral nerve injury leading to persistent pain. NcRNAs exert spatiotemporal regulation of local proteomes and affect signaling cascades supporting altered sensory responses that contribute to hyperalgesia. This review discusses ncRNAs found in the peripheral nervous system (PNS) that are dysregulated following nerve injury and the current understanding of their roles in pathophysiological pain-related responses including neuroimmune interactions, neuronal survival and axon regeneration, Schwann cell dedifferentiation and proliferation, intercellular communication, and the generation of ectopic action potentials in primary afferents. We review progress in the field beyond cataloging, with a focus on the relevant target transcripts and mechanisms underlying pain modulation by ncRNAs.
Collapse
Affiliation(s)
- Xinbei Li
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Daniel S. Jin
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Sreenivas Eadara
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
| | - Michael J. Caterina
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Department of Neurosurgery and Neurosurgery Pain Research Institute, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| | - Mollie K. Meffert
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
2
|
Pan B, Guo D, Jing L, Li K, Li X, Li G, Gao X, Li ZW, Zhao W, Feng H, Cao MH. Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury. Neural Regen Res 2022; 18:1147-1153. [PMID: 36255005 PMCID: PMC9827779 DOI: 10.4103/1673-5374.353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Research has shown that long-chain noncoding RNAs (lncRNAs) are involved in the regulation of a variety of biological processes, including peripheral nerve regeneration, in part by acting as competing endogenous RNAs. c-Jun plays a key role in the repair of peripheral nerve injury. However, the precise underlying mechanism of c-Jun remains unclear. In this study, we performed microarray and bioinformatics analysis of mouse crush-injured sciatic nerves and found that the lncRNA Pvt1 was overexpressed in Schwann cells after peripheral nerve injury. Mechanistic studies revealed that Pvt1 increased c-Jun expression through sponging miRNA-214. We overexpressed Pvt1 in Schwann cells cultured in vitro and found that the proliferation and migration of Schwann cells were enhanced, and overexpression of miRNA-214 counteracted the effects of Pvt1 overexpression on Schwann cell proliferation and migration. We conducted in vivo analyses and injected Schwann cells overexpressing Pvt1 into injured sciatic nerves of mice. Schwann cells overexpressing Pvt1 enhanced the regeneration of injured sciatic nerves following peripheral nerve injury and the locomotor function of mice was improved. Our findings reveal the role of lncRNAs in the repair of peripheral nerve injury and highlight lncRNA Pvt1 as a novel potential treatment target for peripheral nerve injury.
Collapse
Affiliation(s)
- Bin Pan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Di Guo
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Li Jing
- Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Ke Li
- Department of Imaging, Xuzhou Central Hospital, Xuzhou, Jiangsu Province, China
| | - Xin Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Gen Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Xiao Gao
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Zhi-Wen Li
- College of Extended Education, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wei Zhao
- Department of Orthopedics, Kuitun Hospital, Yili Kazak Autonomous Prefecture, Xinjiang Uygur Autonomous Region, China
| | - Hu Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Meng-Han Cao, ; Hu Feng, .
| | - Meng-Han Cao
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China,Correspondence to: Meng-Han Cao, ; Hu Feng, .
| |
Collapse
|
3
|
Borger A, Stadlmayr S, Haertinger M, Semmler L, Supper P, Millesi F, Radtke C. How miRNAs Regulate Schwann Cells during Peripheral Nerve Regeneration-A Systemic Review. Int J Mol Sci 2022; 23:3440. [PMID: 35408800 PMCID: PMC8999002 DOI: 10.3390/ijms23073440] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/18/2023] Open
Abstract
A growing body of studies indicate that small noncoding RNAs, especially microRNAs (miRNA), play a crucial role in response to peripheral nerve injuries. During Wallerian degeneration and regeneration processes, they orchestrate several pathways, in particular the MAPK, AKT, and EGR2 (KROX20) pathways. Certain miRNAs show specific expression profiles upon a nerve lesion correlating with the subsequent nerve regeneration stages such as dedifferentiation and with migration of Schwann cells, uptake of debris, neurite outgrowth and finally remyelination of regenerated axons. This review highlights (a) the specific expression profiles of miRNAs upon a nerve lesion and (b) how miRNAs regulate nerve regeneration by acting on distinct pathways and linked proteins. Shedding light on the role of miRNAs associated with peripheral nerve regeneration will help researchers to better understand the molecular mechanisms and deliver targets for precision medicine.
Collapse
Affiliation(s)
- Anton Borger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Sarah Stadlmayr
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Maximilian Haertinger
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Lorenz Semmler
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Paul Supper
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (A.B.); (S.S.); (M.H.); (L.S.); (P.S.); (F.M.)
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
| |
Collapse
|
4
|
Yang C, Huang T, Liang Y, Xue Y, Liang Y, Wei X, Meng F, Wei Q. CTHRC1 targeted by miR-30a-5p regulates cell adhesion, invasion and migration in lung adenocarcinoma. J Cardiothorac Surg 2022; 17:46. [PMID: 35313900 PMCID: PMC8935819 DOI: 10.1186/s13019-022-01788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
The morbidity of lung cancer ranks first among all cancers. Lung adenocarcinoma (LUAD) is a classification of lung cancer, and cell invasion and migration of LUAD are the main causes for its high mortality. Therefore, further exploring the potential mechanism of LUAD metastasis may provide bases for following targeted drug development and treatment of LUAD. In this study, clinical data as well as gene expression profiles were obtained from TCGA-LUAD and GEO to analyze CTHRC1 expression. The result found that CTHRC1 was significantly high in LUAD. Similar results were also discovered in 4 cancer cell lines. Moreover, overexpressed/knock-down CTHRC1 cell lines were constructed. It was uncovered that overexpressing CTHRC1 promoted LUAD cell migration and invasion, and inhibited cell adhesion, while knocked down CTHRC1 had the opposite effect. Afterward, the upstream miRNAs that regulated CTHRC1 were predicted by several bioinformatics websites. It was testified by dual-luciferase method that CTHRC1 was negatively mediated by miR-30a-5p. Overexpressed miR-30a-5p suppressed cell invasion/migration, and increased cell adhesion, while overexpressing CTHRC1 as well reversed such impacts. In conclusion, it was disclosed in this study that CTHRC1 worked as a cancer promoter in LUAD, and miR-30a-5p could target and downregulate CTHRC1 to regulate cell adhesion, and inhibited LUAD cell invasion and migration. These results elucidated at cellular level that upregulated CTHRC1 may be a marker protein for LUAD metastasis.
Collapse
|
5
|
Liu YP, Yang YD, Mou FF, Zhu J, Li H, Zhao TT, Zhao Y, Shao SJ, Cui GH, Guo HD. Exosome-Mediated miR-21 Was Involved in the Promotion of Structural and Functional Recovery Effect Produced by Electroacupuncture in Sciatic Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7530102. [PMID: 35132352 PMCID: PMC8817850 DOI: 10.1155/2022/7530102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
PURPOSE Our study is aimed at investigating the mechanism by which electroacupuncture (EA) promoted nerve regeneration by regulating the release of exosomes and exosome-mediated miRNA-21 (miR-21) transmission. Furthermore, the effects of Schwann cells- (SC-) derived exosomes on the overexpression of miR-21 for the treatment of PNI were investigated. METHODS A sciatic nerve injury model of rat was constructed, and the expression of miR-21 in serum exosomes and damaged local nerves was detected using RT-qPCR after EA treatment. The exosomes were identified under a transmission electron microscope and using western blotting analysis. Then, the exosome release inhibitor, GW4869, and the miR-21-5p-sponge used for the knockdown of miR-21 were used to clarify the effects of exosomal miR-21 on nerve regeneration promoted by EA. The nerve conduction velocity recovery rate, sciatic nerve function index, and wet weight ratio of gastrocnemius muscle were determined to evaluate sciatic nerve function recovery. SC proliferation and the level of neurotrophic factors were assessed using immunofluorescence staining, and the expression levels of SPRY2 and miR-21 were detected using RT-qPCR analysis. Subsequently, the transmission of exosomal miR-21 from SC to the axon was verified in vitro. Finally, the exosomes derived from the SC infected with the miR-21 overexpression lentivirus were collected and used to treat the rat SNI model to explore the therapeutic role of SC-derived exosomes overexpressing miR-21. RESULTS We found that EA inhibited the release of serum exosomal miR-21 in a PNI model of rats during the early stage of PNI, while it promoted its release during later stages. EA enhanced the accumulation of miR-21 in the injured nerve and effectively promoted the recovery of nerve function after PNI. The treatment effect of EA was attenuated when the release of circulating exosomes was inhibited or when miR-21 was downregulated in local injury tissue via the miR-21-5p-sponge. Normal exosomes secreted by SC exhibited the ability to promote the recovery of nerve function, while the overexpression of miR-21 enhanced the effects of the exosomes. In addition, exosomal miR-21 secreted by SC could promote neurite outgrowth in vitro. CONCLUSION Our results demonstrated the mechanism of EA on PNI from the perspective of exosome-mediated miR-21 transport and provided a theoretical basis for the use of exosomal miR-21 as a novel strategy for the treatment of PNI.
Collapse
Affiliation(s)
- Yu-pu Liu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi-duo Yang
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-tian Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shui-jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guo-hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Hai-dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Warnecke A, Harre J, Shew M, Mellott AJ, Majewski I, Durisin M, Staecker H. Successful Treatment of Noise-Induced Hearing Loss by Mesenchymal Stromal Cells: An RNAseq Analysis of Protective/Repair Pathways. Front Cell Neurosci 2021; 15:656930. [PMID: 34887728 PMCID: PMC8650824 DOI: 10.3389/fncel.2021.656930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are an adult derived stem cell-like population that has been shown to mediate repair in a wide range of degenerative disorders. The protective effects of MSCs are mainly mediated by the release of growth factors and cytokines thereby modulating the diseased environment and the immune system. Within the inner ear, MSCs have been shown protective against tissue damage induced by sound and a variety of ototoxins. To better understand the mechanism of action of MSCs in the inner ear, mice were exposed to narrow band noise. After exposure, MSCs derived from human umbilical cord Wharton's jelly were injected into the perilymph. Controls consisted of mice exposed to sound trauma only. Forty-eight hours post-cell delivery, total RNA was extracted from the cochlea and RNAseq performed to evaluate the gene expression induced by the cell therapy. Changes in gene expression were grouped together based on gene ontology classification. A separate cohort of animals was treated in a similar fashion and allowed to survive for 2 weeks post-cell therapy and hearing outcomes determined. Treatment with MSCs after severe sound trauma induced a moderate hearing protective effect. MSC treatment resulted in an up-regulation of genes related to immune modulation, hypoxia response, mitochondrial function and regulation of apoptosis. There was a down-regulation of genes related to synaptic remodeling, calcium homeostasis and the extracellular matrix. Application of MSCs may provide a novel approach to treating sound trauma induced hearing loss and may aid in the identification of novel strategies to protect hearing.
Collapse
Affiliation(s)
- Athanasia Warnecke
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation (EXC 2177/1), Oldenburg, Germany
| | - Jennifer Harre
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation (EXC 2177/1), Oldenburg, Germany
| | - Matthew Shew
- Department of Otolaryngology–Head & Neck Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | | | - Igor Majewski
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
| | - Martin Durisin
- Clinic for Otolaryngology–Head & Neck Surgery, Hanover Medical School, Hanover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology–Head & Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| |
Collapse
|
7
|
Chen Y, Fan Z, Dong Q. LncRNA SNHG16 promotes Schwann cell proliferation and migration to repair sciatic nerve injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1349. [PMID: 34532486 PMCID: PMC8422103 DOI: 10.21037/atm-21-3971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/06/2022]
Abstract
Background To investigate the expression of long non-coding RNA (lncRNA) Snorna hostgene16 (SNHG16) in sciatic nerve injury tissues and cells. The molecular mechanism of SNHG16 regulating signal activator of transcription 3 (STAT3) expression through “sponge” adsorption of miR-93-5p was also studied. Methods A rat model of sciatic nerve injury was established, and primary Schwann cells (SCs) were extracted. The expression of SNHG16 in animal tissues with sciatic nerve injury and SCs treated with ischemia and hypoxia was detected by qPCR, and CCK-8 assay, cell scratch assay, and Transwell chamber assay were used to detect cell proliferation, migration, and invasion. The targeted binding of SNHG16 to miR-93-5p was verified by double luciferase reporter gene assay and miRNA immunoprecipitation assay. MiR-93-5p mimic, SNHG16 overexpression vector, and sh-STAT3 plasmid were transfected into cells, respectively, and the mRNA expressions of SNHG16, miR-93-5p, and STAT3 in the cells were detected by qPCR. Results The expression of lncRNA SNHG16 was decreased after sciatic nerve injury, while overexpression of SNHG16 promoted the proliferation, migration, and invasion of SCs. The results of dual luciferase reporter gene assay and miRNA immunoprecipitation reaction showed miR-93-5p interacted with SNHG16, and the overexpression of miR-93-5p reversed the promoting effects of SNHG16 on the proliferation and invasion of SCs. At the same time, the knockdown of STAT3, which is the target gene of miR-93-5p, reversed the proliferation and invasion promotion effect of SNHG16 on SCs. SNHG16 affected the expression of its downstream target gene STAT3 by adsorbing miR-93-5p via endogenous competitive sponge. Conclusions SNHG16 can regulate STAT3 expression by sponge adsorption of miR-93-5p in SCs, and SNHG16 and miR-93-5p can be used as potential targets for the diagnosis and treatment of sciatic nerve injury.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiying Fan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qirong Dong
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
MiR-124 synergism with ELAVL3 enhances target gene expression to promote neuronal maturity. Proc Natl Acad Sci U S A 2021; 118:2015454118. [PMID: 34031238 DOI: 10.1073/pnas.2015454118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuron-enriched microRNAs (miRNAs), miR-9/9* and miR-124 (miR-9/9*-124), direct cell fate switching of human fibroblasts to neurons when ectopically expressed by repressing antineurogenic genes. How these miRNAs function after the repression of fibroblast genes for neuronal fate remains unclear. Here, we identified targets of miR-9/9*-124 as reprogramming cells activate the neuronal program and reveal the role of miR-124 that directly promotes the expression of its target genes associated with neuronal development and function. The mode of miR-124 as a positive regulator is determined by the binding of both AGO and a neuron-enriched RNA-binding protein, ELAVL3, to target transcripts. Although existing literature indicates that miRNA-ELAVL family protein interaction can result in either target gene up-regulation or down-regulation in a context-dependent manner, we specifically identified neuronal ELAVL3 as the driver for miR-124 target gene up-regulation in neurons. In primary human neurons, repressing miR-124 and ELAVL3 led to the down-regulation of genes involved in neuronal function and process outgrowth and cellular phenotypes of reduced inward currents and neurite outgrowth. Our results highlight the synergistic role between miR-124 and RNA-binding proteins to promote target gene regulation and neuronal function.
Collapse
|
9
|
Fan B, Chopp M, Zhang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurol 2020; 11:558758. [PMID: 33192992 PMCID: PMC7642849 DOI: 10.3389/fneur.2020.558758] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
10
|
The Role of CTHRC1 in Regulation of Multiple Signaling and Tumor Progression and Metastasis. Mediators Inflamm 2020; 2020:9578701. [PMID: 32848510 PMCID: PMC7441421 DOI: 10.1155/2020/9578701] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Collagen triple helix repeat containing-1 (CTHRC1) has been identified as cancer-related protein. CTHRC1 expresses mainly in adventitial fibroblasts and neointimal smooth muscle cells of balloon-injured vessels and promotes cell migration and tissue repair in response to injury. CTHRC1 plays a pivotal role in some pathophysiological processes, including increasing bone mass, preventing myelination, and reversing collagen synthesis in many tumor cells. The ascended expression of CTHRC1 is related to tumorigenesis, proliferation, invasion, and metastasis in various human malignancies, including gastric cancer, pancreatic cancer, hepatocellular carcinoma, keloid, breast cancer, colorectal cancer, epithelial ovarian cancer, esophageal squamous cell carcinoma, cervical cancer, non-small-cell lung carcinoma, and melanoma. And molecules that regulate the expression of CTHRC1 include miRNAs, lncRNAs, WAIF1, and DPAGT1. Many reports have pointed that CTHRC1 could exert different effects through several signaling pathways such as TGF-β, Wnt, integrin β/FAK, Src/FAK, MEK/ERK, PI3K/AKT/ERK, HIF-1α, and PKC-δ/ERK signaling pathways. As a participant in tissue remodeling or immune response, CTHRC1 may promote early-stage cancer. Several recent studies have identified CTHRC1 as an effectual prognostic biomarker for predicting tumor recurrence or metastasis. It is worth noting that CTHRC1 has different cellular localization and mechanisms of action in different cells and different microenvironments. In this article, we focus on the advances in the signaling pathways mediated by CTHRC1 in tumors.
Collapse
|
11
|
Adipose Stem Cell-Derived Extracellular Vesicles Induce Proliferation of Schwann Cells via Internalization. Cells 2020; 9:cells9010163. [PMID: 31936601 PMCID: PMC7016740 DOI: 10.3390/cells9010163] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 12/20/2022] Open
Abstract
Recent studies showed a beneficial effect of adipose stem cell-derived extracellular vesicles (ADSC-EVs) on sciatic nerve repair, presumably through Schwann cell (SC) modulation. However, it has not yet been elucidated whether ADSC-EVs exert this supportive effect on SCs by extracellular receptor binding, fusion to the SC membrane, or endocytosis mediated internalization. ADSCs, ADSC-EVs, and SCs were isolated from rats and characterized according to associated marker expression and properties. The proliferation rate of SCs in response to ADSC-EVs was determined using a multicolor immunofluorescence staining panel followed by automated image analysis. SCs treated with ADSC-EVs and silica beads were further investigated by 3-D high resolution confocal microscopy and live cell imaging. Our findings demonstrated that ADSC-EVs significantly enhanced the proliferation of SCs in a time- and dose-dependent manner. 3-D image analysis revealed a perinuclear location of ADSC-EVs and their accumulation in vesicular-like structures within the SC cytoplasm. Upon comparing intracellular localization patterns of silica beads and ADSC-EVs in SCs, we found striking resemblance in size and distribution. Live cell imaging visualized that the uptake of ADSC-EVs preferentially took place at the SC processes from which the EVs were transported towards the nucleus. This study provided first evidence for an endocytosis mediated internalization of ADSC-EVs by SCs and underlines the therapeutic potential of ADSC-EVs in future approaches for nerve regeneration.
Collapse
|
12
|
TNFR2 knockdown triggers apoptosis-induced proliferation in primarily cultured Schwann cells. Neurosci Res 2020; 150:29-36. [DOI: 10.1016/j.neures.2019.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/12/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
|
13
|
Wu R, Mao S, Wang Y, Zhou S, Liu Y, Liu M, Gu X, Yu B. Differential Circular RNA Expression Profiles Following Spinal Cord Injury in Rats: A Temporal and Experimental Analysis. Front Neurosci 2019; 13:1303. [PMID: 31920480 PMCID: PMC6916439 DOI: 10.3389/fnins.2019.01303] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI), one of the most severe types of neurological damage, results in persistent motor and sensory dysfunction and involves complex gene alterations. Circular RNAs (circRNAs) are a recently discovered class of regulatory molecules, and their roles in SCI still need to be addressed. This study comprehensively investigated circRNA alterations in rats across a set time course (days 0, 1, 3, 7, 14, 21, and 28) after hemisection SCI at the right T9 site. A total of 360 differentially expressed circRNAs were identified using RNA sequencing. From these, the functions of the exonic circRNA_01477 were further explored in cultured spinal cord astrocytes. Knockdown of circRNA_01477 significantly inhibited astrocyte proliferation and migration. The circRNA_01477/microRNAs (miRNA)/messenger RNA (mRNA) interaction network was visualized following microarray assay. Among the downregulated differentially expressed mRNAs, four of the seven validated genes were controlled by miRNA-423-5p. We then demonstrated that miRNA-423-5p is significantly upregulated after circRNA_01477 depletion. In summary, this study provides, for the first time, a systematic evaluation of circRNA alterations following SCI and an insight into the transcriptional regulation of the genes involved. It further reveals that circRNA_01477/miR-423-5p could be a key regulator involved in regulating the changeable regeneration environment that occurs during recovery from SCI.
Collapse
Affiliation(s)
- Ronghua Wu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuoshuo Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Mao S, Zhang S, Zhou S, Huang T, Feng W, Gu X, Yu B. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury. FASEB J 2019; 33:12409-12424. [PMID: 31415184 DOI: 10.1096/fj.201900965r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schwann cells (SCs) play an essential role in nerve injury repair. A striking feature of the cellular response to peripheral nerve injury is the proliferation of SCs. Circular (circ)RNAs are enriched in the nervous system and are involved in physiologic and pathologic processes. However, the potential role of circRNAs in SC proliferation post nerve injury remains largely unknown. Using a sciatic nerve crush model, we obtained an expression profiling of circRNAs in injured sciatic nerves in rats by RNA sequencing and bioinformatics analysis, and we further identified a circRNA [circ-ankyrin repeat and in-between Ring finger (IBR) domain containing 1 (Ankib1)] involved in SC proliferation by the transfection of specific small interfering RNAs. Overexpression of circ-Ankib1, which was specifically and highly enriched in SCs, impaired SC proliferation and axon regeneration following sciatic nerve injury. Mechanistically, increased expression of DEx/H-box helicase 9 (DHX9) postinjury might contribute to the down-regulation of circ-Ankib1, which further suppressed cytochrome P450, family 26, subfamily B, polypeptide 1 expression by sponging miR-423-5p, miR-485-5p, and miR-666-3p, leading to the induction of SC proliferation and nerve regeneration. Taken together, our results reveal a crucial role for circRNAs in regulating proliferation of SCs involved in sciatic nerve regeneration; as such, circRNAs may serve as a potential therapeutic avenue for nerve injury repair.-Mao, S., Zhang, S., Zhou, S., Huang, T., Feng, W., Gu, X., Yu, B. A Schwann cell-enriched circular RNA circ-Ankib1 regulates Schwann cell proliferation following peripheral nerve injury.
Collapse
Affiliation(s)
- Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shanshan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Shuoshuo Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tao Huang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
15
|
Liu X, Yu X, He Y, Wang L. Long noncoding RNA nuclear enriched abundant transcript 1 promotes the proliferation and migration of Schwann cells by regulating the miR-34a/Satb1 axis. J Cell Physiol 2019; 234:16357-16366. [PMID: 30747445 DOI: 10.1002/jcp.28302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
The proliferation and migration of Schwann cells contribute to axonal outgrowth and functional recovery after peripheral nerve injury. Studies have found that long noncoding RNAs (lncRNAs) were abnormally expressed after peripheral nerve injury and they played vital roles in peripheral nerve regeneration. LncRNA nuclear enriched abundant transcript 1 (NEAT1) was increased in the cerebral cortex surrounding the injury site of mice after traumatic brain injury, and it promoted the functional recovery in mice. However, its role and mechanism in peripheral nerve injury remain unknown. The expression of NEAT1, miR-34a, and Special AT-rich sequence-binding protein-1 (Satb1) was detected in the sciatic nerve of mice after sciatic nerve crush at 0, 1, 4 and 7 days. The effects of NEAT1 on the proliferation and migration of Schwann cells were detected by 5-Ethynyl-20-deoxyuridine (Edu) and transwell by gain- and loss-of-functions. The mechanism was focused on the miR-34a/Satb1 pathway. In addition, the effect of NEAT1 in Schwann cells on axon outgrowth of dorsal root ganglion neurons was further investigated. We found that the NEAT1 and Satb1 expression was increased, whereas miR-34a was reduced, in injured sciatic nerve at different time points. Overexpression of NEAT1 promoted, whereas knockdown of NEAT1 suppressed the proliferation and migration of Schwann cells. NEAT1 functioned as a competing endogenous RNA to regulate the Satb1 expression via sponging miR-34a. NEAT1 enhanced the axon outgrowth of dorsal root ganglion neurons via regulating the miR-34a and Satb1 expression. In conclusion, NEAT1 promotes the proliferation and migration of Schwann cell via miR-34a/Satb1, which may provide a new approach to peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiangyu Liu
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xueyuan Yu
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Youcheng He
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lu Wang
- Department of Aesthetic Plastic & Craniofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
16
|
Schwann Cell-Like Cells Derived from Human Amniotic Mesenchymal Stem Cells Promote Peripheral Nerve Regeneration through a MicroRNA-214/c-Jun Pathway. Stem Cells Int 2019; 2019:2490761. [PMID: 31354837 PMCID: PMC6636479 DOI: 10.1155/2019/2490761] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background The use of Schwann cell-like cells (SCLCs) derived from stem cells has been introduced as an effective strategy for promoting peripheral nerve regeneration (PNR). However, molecular mechanisms underlying therapeutic transplantation of SCLCs for PNR are often ignored. Objectives To explore the potential of SCLCs for the treatment of sciatic never injury and investigate the underlying molecule mechanisms. Method SCLCs differentiated from human amniotic mesenchymal stem cells (hAMSCs) and specific markers of Schwann cells were detected. SCLCs were transplanted into the injured sites of a rat model of sciatic nerve injury, and sciatic nerve functional index (SFI) was determined. Results SCLCs expressed specific markers of Schwann cells as well as secreted neurotrophic factors. The transplantation of SCLCs into injured sites of a rat model of sciatic nerve injury promoted the functional recovery. With regard to the underlying molecular mechanisms, we identified c-Jun as a negative regulator of the myelination of SCLCs. Moreover, we discovered a novel signaling transduction pathway in SCLCs; that is, miR-214 directly targets c-Jun to promote the myelination of SCLCs. Finally, we demonstrated that miR-214 upon overexpression in SCLCs enhanced the therapeutic effects of SCLCs on sciatic nerve injury. Conclusions We demonstrate that SCLCs have beneficial effect for myelination. Moreover, our results provide a previously unknown molecular basis underlying the treatment of peripheral nerve injury with SCLCs and also offer a practical strategy for future therapeutic promotion of PNR.
Collapse
|
17
|
Zhou Z, Zhang N, Shi P, Xie J. Mechanism of miR-148b inhibiting cell proliferation and migration of Schwann cells by regulating CALR. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1978-1983. [PMID: 31174435 DOI: 10.1080/21691401.2019.1609008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aim of this study is to investigate the effect of miR-148b on cell proliferation and migration of Schwann cells and explore its mechanism. The miR-148b group, miR-con group and the anti-miR-148b group, anti-miR-con group, si-con group, si-CALR group, Ctrl group, CALR group were transfected into Schwann cells by liposome method; the expression of miR-148b was detected by qRT-PCR; the cell viability was detected by MTT assay; the migration of cells was detected by Transwell method; WB assay was used to detect the protein expression of CALR. Firstly, we found that compared with miR-con group and si-con group, the proliferation and migration of miR-148b group and si-CALR group were significantly down-regulated (P < .05). Moreover, compared with anti-miR-con group and Ctrl group, anti-miR-148b group and CALR group cells proliferation and migration were significantly up-regulated (P < .05). In addition, miR-148b was targeted to CALR, and silencing CALR could reverse the inhibitory effect of miR-148b on Schwann cell proliferation and migration. In conclusion, miR-148b can regulate the proliferation and migration of Schwann cells. The mechanism may be related to the targeted negative regulation of CALR, which will provide a basis for targeted therapy of peripheral nerve injury.
Collapse
Affiliation(s)
- Zhenyu Zhou
- a Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College , Jinan , China.,b Department of Orthaopedics, General Hospital of Jinan Military Command , Jinan , China
| | - Ning Zhang
- a Department of Orthopaedics, Second Military Medical University's Jinan Clinical Medicine College , Jinan , China.,b Department of Orthaopedics, General Hospital of Jinan Military Command , Jinan , China
| | - Peilei Shi
- c Department of Orthopaedics, Kuishan Section of Rizhao People's Hospital , Rizhao , China
| | - Jin Xie
- d Guangxi International Zhuang Medicine hospital , Guangxi , China
| |
Collapse
|
18
|
Chen J, Ren S, Duscher D, Kang Y, Liu Y, Wang C, Yuan M, Guo G, Xiong H, Zhan P, Wang Y, Machens HG, Chen Z. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function. J Cell Physiol 2019; 234:23097-23110. [PMID: 31124125 DOI: 10.1002/jcp.28873] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022]
Abstract
Human adipose-derived stem cells (ASCs) have a potential for the treatment of peripheral nerve injury. Recent studies demonstrated that stem cells can mediate therapeutic effect by secreting exosomes. We aimed to investigate the effect of human ASCs derived exosomes (ASC-Exos) on peripheral nerve regeneration in vitro and in vivo. Our results showed after being internalized by Schwann cells (SCs), ASC-Exos significantly promoted SC proliferation, migration, myelination, and secretion of neurotrophic factors by upregulating corresponding genes in vitro. We next evaluated the efficacy of ASC-Exo therapy in a rat sciatic nerve transection model with a 10-mm gap. Axon regeneration, myelination, and restoration of denervation muscle atrophy in ASC-Exos treated group was significantly improved compared to vehicle control. This study demonstrates that ASC-Exos effectively promote peripheral nerve regeneration via optimizing SC function and thereby represent a novel therapeutic strategy for regenerative medicine and nerve tissue engineering.
Collapse
Affiliation(s)
- Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yutian Liu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Jessen KR, Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia 2019; 67:421-437. [PMID: 30632639 DOI: 10.1002/glia.23532] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Schwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues. At the cellular level, many other tissues also react to injury by cellular reprogramming, generating cells specialized to promote tissue homeostasis and repair. And at the molecular level, a common feature possessed by Schwann cells and many other cells is the injury-induced activation of genes associated with epithelial-mesenchymal transitions and stemness, differentiation states that are linked to cellular plasticity and that help injury-induced tissue remodeling. The number of signaling systems regulating Schwann cell plasticity is rapidly increasing. Importantly, this includes mechanisms that are crucial for the generation of functional repair Schwann cells and nerve regeneration, although they have no or a minor role elsewhere in the Schwann cell lineage. This encourages the view that selective tools can be developed to control these particular cells, amplify their repair supportive functions and prevent their deterioration. In this review, we discuss the emerging similarities between the injury response seen in nerves and in other tissues and survey the transcription factors, epigenetic mechanisms, and signaling cascades that control repair Schwann cells, with emphasis on systems that selectively regulate the Schwann cell injury response.
Collapse
Affiliation(s)
- Kristjan R Jessen
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Peter Arthur-Farraj
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Wang X, Chen Q, Yi S, Liu Q, Zhang R, Wang P, Qian T, Li S. The microRNAs let-7 and miR-9 down-regulate the axon-guidance genes Ntn1 and Dcc during peripheral nerve regeneration. J Biol Chem 2019; 294:3489-3500. [PMID: 30626732 DOI: 10.1074/jbc.ra119.007389] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
Axon guidance helps growing neural axons to follow precise paths to reach their target locations. It is a critical step for both the formation and regeneration of neuronal circuitry. Netrin-1 (Ntn1) and its receptor, deleted in colorectal carcinoma (Dcc) are essential factors for axon guidance, but their regulation in this process is incompletely understood. In this study, using quantitative real-time RT-PCR (qRT-PCR) and biochemical and reporter gene assays, we found that the Ntn1 and Dcc genes are both robustly up-regulated in the sciatic nerve stump after peripheral nerve injury. Moreover, we found that the microRNA (miR) let-7 directly targets the Ntn1 transcript by binding to its 3'-untranslated region (3'-UTR), represses Ntn1 expression, and reduces the secretion of Ntn1 protein in Schwann cells. We also identified miR-9 as the regulatory miRNA that directly targets Dcc and found that miR-9 down-regulates Dcc expression and suppresses the migration ability of Schwann cells by regulating Dcc abundance. Functional examination in dorsal root ganglion neurons disclosed that let-7 and miR-9 decrease the protein levels of Ntn1 and Dcc in these neurons, respectively, and reduce axon outgrowth. Moreover, we identified a potential regulatory network comprising let-7, miR-9, Ntn1, Dcc, and related molecules, including the RNA-binding protein Lin-28 homolog A (Lin28), SRC proto-oncogene nonreceptor tyrosine kinase (Src), and the transcription factor NF-κB. In summary, our findings reveal that the miRs let-7 and miR-9 are involved in regulating neuron pathfinding and extend our understanding of the regulatory pathways active during peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xinghui Wang
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Qianqian Chen
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Sheng Yi
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Qianyan Liu
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Ruirui Zhang
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Pan Wang
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Tianmei Qian
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| | - Shiying Li
- From the Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nanjing, Jiangsu 226001, China
| |
Collapse
|
21
|
Zhang PX, Han N, Kou YH, Zhu QT, Liu XL, Quan DP, Chen JG, Jiang BG. Tissue engineering for the repair of peripheral nerve injury. Neural Regen Res 2019; 14:51-58. [PMID: 30531070 PMCID: PMC6263012 DOI: 10.4103/1673-5374.243701] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injury is a common clinical problem and affects the quality of life of patients. Traditional restoration methods are not satisfactory. Researchers increasingly focus on the field of tissue engineering. The three key points in establishing a tissue engineering material are the biological scaffold material, the seed cells and various growth factors. Understanding the type of nerve injury, the construction of scaffold and the process of repair are necessary to solve peripheral nerve injury and promote its regeneration. This review describes the categories of peripheral nerve injury, fundamental research of peripheral nervous tissue engineering and clinical research on peripheral nerve scaffold material, and paves a way for related research and the use of conduits in clinical practice.
Collapse
Affiliation(s)
| | - Na Han
- Peking University People's Hospital, Beijing, China
| | - Yu-Hui Kou
- Peking University People's Hospital, Beijing, China
| | - Qing-Tang Zhu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lin Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Da-Ping Quan
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jian-Guo Chen
- School of Life Science, Peking University, Beijing, China
| | | |
Collapse
|
22
|
miR-129 controls axonal regeneration via regulating insulin-like growth factor-1 in peripheral nerve injury. Cell Death Dis 2018; 9:720. [PMID: 29915198 PMCID: PMC6006361 DOI: 10.1038/s41419-018-0760-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 05/10/2018] [Accepted: 06/04/2018] [Indexed: 01/08/2023]
Abstract
The microenvironment of peripheral nerve regeneration consists of multiple neurotrophic factors, adhesion molecules, and extracellular matrix molecules, secreted by unique glial cells in the peripheral nerve system (PNS)-Schwann cell (SCs). Following peripheral nerve injury (PNI), local IGF-1 production is upregulated in SCs and denervated muscle during axonal sprouting and regeneration. Regulation of IGF-1/IGF-1R signaling is considered as a potentially targeted therapy of PNI. We previously identified a group of novel miRNAs in proximal nerve following rat sciatic nerve transection. The present work focused on the role of miR-129 in regulation of IGF-1 signaling after sciatic nerve injury. The temporal change profile of the miR-129 expression was negatively correlated with the IGF-1 expression in proximal nerve stump and dorsal root ganglion (DRG) following sciatic nerve transection. An increased expression of miR-129 inhibited proliferation and migration of SCs, and axonal outgrowth of DRG neurons, which was inversely promoted by silencing of the miR-129 expression. The IGF-1 was identified as one of the multiple target genes of miR-129, which exerted negative regulation of IGF-1 by translational suppression. Moreover, knockdown of IGF-1 attenuated the promoting effects of miR-129 inhibitor on proliferation and migration of SCs, and neurite outgrowth of DRG neurons. Overall, our data indicated that miR-129 own the potential to regulate the proliferation and migration of SCs by targeting IGF-1, providing further insight into the regulatory role of miRNAs in peripheral nerve regeneration. The present work not only provides new insight into miR-129 regulation of peripheral nerve regeneration by robust phenotypic modulation of neural cells, but also opens a novel therapeutic window for PNI by mediating IGF-1 production. Our results may provide further experimental basis for translation of the molecular therapy into the clinic.
Collapse
|
23
|
lncRNA TNXA-PS1 Modulates Schwann Cells by Functioning As a Competing Endogenous RNA Following Nerve Injury. J Neurosci 2018; 38:6574-6585. [PMID: 29915133 DOI: 10.1523/jneurosci.3790-16.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 06/09/2018] [Accepted: 06/11/2018] [Indexed: 11/21/2022] Open
Abstract
As the major glia in PNS, Schwann cells play a critical role in peripheral nerve injury repair. Finding an efficient approach to promote Schwann cell activation might facilitate peripheral nerve repair. Long noncoding RNAs (lncRNAs) have been shown to regulate gene expression and take part in many biological processes. However, the role of lncRNAs in peripheral nerve regeneration is not fully understood. In this study, we obtained a global lncRNA portrayal following sciatic nerve injury in male rats using microarray and further investigated one of these dys-regulated lncRNAs, TNXA-PS1, confirming its vital role in regulating Schwann cells. Silencing TNAX-PS1 could promote Schwann cell migration and mechanism analyses showed that TNXA-PS1 might exert its regulatory role by sponging miR-24-3p/miR-152-3p and affecting dual specificity phosphatase 1 (Dusp1) expression. Systematic lncRNA expression profiling of sciatic nerve segments following nerve injury in rats suggested lncRNA TNXA-PS1 as a key regulator of Schwann cell migration, providing a potential therapeutic target for nerve injury repair.SIGNIFICANCE STATEMENT The PNS has an intrinsic regeneration capacity after injury in which Schwann cells play a crucial role. Therefore, further exploration of functional molecules in the Schwann cell phenotype modulation is of great importance. We have identified a set of dys-regulated long noncoding RNAs (lncRNAs) in rats following sciatic nerve injury and found that the expression of TNXA-PS1 was significantly downregulated. Mechanically analyses showed that TNXA-PS1 might act as a competing endogenous RNA to affect dual specificity phosphatase 1 (Dusp1) expression, regulating migration of Schwann cells. This study provides for the first time a global landscape of lncRNAs following sciatic nerve injury in rats and broadens the known functions of lncRNA during nerve injury. The investigation of TNXA-PS1 might facilitate the development of novel targets for nerve injury therapy.
Collapse
|
24
|
Zhang J, Liu Y, Lu L. Emerging role of MicroRNAs in peripheral nerve system. Life Sci 2018; 207:227-233. [PMID: 29894714 DOI: 10.1016/j.lfs.2018.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/21/2018] [Accepted: 06/08/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve injury is one of the most common clinical diseases. Although the regeneration of the peripheral nerve is better than that of the nerves of the central nervous system, because of its growth rate restrictions after damage. Hence, the outcome of repair after injury is not favorable. Small RNA, a type of non-coding RNA, has recently been gaining attention in neural injury. It is widely distributed in the nervous system in vivo and a significant change in the expression of small RNAs has been observed in a neural injury model. This suggests that MicroRNAs (miRNAs) may serve as a potential target for resolving the challenges of peripheral nerve repair. This review summarizes the current challenges in peripheral nerve injury repair, systematically expounds the mechanism of miRNAs in the process of nerve injury and repair and attempts to determine the possible treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yang Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Laijin Lu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
25
|
Sohn EJ, Park HT. MicroRNA Mediated Regulation of Schwann Cell Migration and Proliferation in Peripheral Nerve Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8198365. [PMID: 29854793 PMCID: PMC5952561 DOI: 10.1155/2018/8198365] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/26/2018] [Indexed: 11/17/2022]
Abstract
Schwann cells (SCs) contribute to nerve repair following injury; however, the underlying molecular mechanism is poorly understood. MicroRNAs (miRNAs), which are short noncoding RNAs, have been shown to play a role in neuronal disease. In this work, we show that miRNAs regulate the peripheral nerve system by modulating the migration and proliferation of SCs. Thus, miRNAs expressed in peripheral nerves may provide a potential therapeutic target for peripheral nerve injury or repair.
Collapse
Affiliation(s)
- Eun Jung Sohn
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, Republic of Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
26
|
Musumeci G, Leggio GM, Marzagalli R, Al-Badri G, Drago F, Castorina A. Identification of Dysregulated microRNA Networks in Schwann Cell-Like Cultures Exposed to Immune Challenge: Potential Crosstalk with the Protective VIP/PACAP Neuropeptide System. Int J Mol Sci 2018; 19:ijms19040981. [PMID: 29587404 PMCID: PMC5979605 DOI: 10.3390/ijms19040981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/21/2022] Open
Abstract
Following peripheral nerve injury, dysregulations of certain non-coding microRNAs (miRNAs) occur in Schwann cells. Whether these alterations are the result of local inflammation and/or correlate with perturbations in the expression profile of the protective vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) system is currently unknown. To address these issues, we aimed at profiling the expression of selected miRNAs in the rat RT4 Schwann cell line. Cells exposed to lipopolysaccharide (LPS), to mimic the local inflammatory milieu, were appraised by real-time qPCR, Western blot and ELISAs. We found that upon LPS treatment, levels of pro-inflammatory cytokines (IL-1β, -6, -18, -17A, MCP-1 and TNFα) increased in a time-dependent manner. Unexpectedly, the expression levels of VIP and PACAP were also increased. Conversely, levels of VPAC1 and VPAC2 receptors were reduced. Downregulated miRNAs included miR-181b, -145, -27a, -340 and -132 whereas upregulated ones were miR-21, -206, -146a, -34a, -155, -204 and -29a, respectively. Regression analyses revealed that a subset of the identified miRNAs inversely correlated with the expression of VPAC1 and VPAC2 receptors. In conclusion, these findings identified a novel subset of miRNAs that are dysregulated by immune challenge whose activities might elicit a regulatory function on the VIP/PACAP system.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, "Torre Biologica", University of Catania, via S. Sofia, 97, 95123 Catania, Italy.
| | - Rubina Marzagalli
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| | - Ghaith Al-Badri
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney NSW 2007, Australia.
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, "Torre Biologica", University of Catania, via S. Sofia, 97, 95123 Catania, Italy.
| | - Alessandro Castorina
- School of Life Sciences, Faculty of Science, University of Technology Sydney, P.O. Box 123, Broadway, Sydney NSW 2007, Australia.
- Discipline of Anatomy and Histology, School of Medical Sciences, the University of Sydney, Sydney NSW 2006, Australia.
| |
Collapse
|
27
|
Zhao L, Yuan Y, Li P, Pan J, Qin J, Liu Y, Zhang Y, Tian F, Yu B, Zhou S. miR-221-3p Inhibits Schwann Cell Myelination. Neuroscience 2018; 379:239-245. [PMID: 29577996 DOI: 10.1016/j.neuroscience.2018.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Following peripheral nerve injury, Schwann Cells (SCs) undergo dedifferentiation, proliferation, migration, and remyelination. Recent works demonstrated the importance of the short non-coding RNA (miRNAs) in SC dedifferentiation and remyelination after nerve injury. Previously, we found some miRNAs like miR-9, miR-221, miR-222 and miR-182 could regulate the proliferation and migration of SCs. Therefore, it is imperative to ask whether these miRNAs could regulate the myelination of SCs. Here we demonstrated that miR-221-3p could inhibit the myelination of SCs when co-cultured with dorsal root ganglion cells in vitro. In addition, NGF1-A binding protein 1 (Nab1) which was essential for SCs myelination could be downregulated by miR-221-3p. Suppressing the expression of Nab1 could reverse the promotion of miR-221-3p antagomir on SC myelination. The effects of miR-221-3p on SC myelination might be used to improve peripheral nerve regeneration, thus offering a new approach to peripheral nerve repair.
Collapse
Affiliation(s)
- Lili Zhao
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Ying Yuan
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Ping Li
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiacheng Pan
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jing Qin
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yisheng Liu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital, Harvard Medical School, 300 Longwood Anevue, Boston, MA 02115, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital, Harvard Medical School, 300 Longwood Anevue, Boston, MA 02115, USA
| | - Bin Yu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Songlin Zhou
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
28
|
Lin HP, Oksuz I, Svaren J, Awatramani R. Egr2-dependent microRNA-138 is dispensable for peripheral nerve myelination. Sci Rep 2018; 8:3817. [PMID: 29491350 PMCID: PMC5830491 DOI: 10.1038/s41598-018-22010-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/14/2018] [Indexed: 12/27/2022] Open
Abstract
Recent studies have elucidated the crucial role for microRNAs in peripheral nerve myelination by ablating components of the microRNA synthesis machinery. Few studies have focused on the role of individual microRNAs. To fill this gap, we focused this study on miR-138, which was shown to be drastically reduced in Dicer1 and Dgcr8 knockout mice with hypomyelinating phenotypes and to potentially target the negative regulators of Schwann cell differentiation. Here, we show that of two miR-138 encoding loci, mir-138-1 is the predominant locus transcribed in Schwann cells. mir-138-1 is transcriptionally upregulated during myelination and downregulated upon nerve injury. EGR2 is required for mir-138-1 transcription during development, and both SOX10 and EGR2 bind to an active enhancer near the mir-138-1 locus. Based on expression analyses, we hypothesized that miR-138 facilitates the transition between undifferentiated Schwann cells and myelinating Schwann cells. However, in conditional knockouts, we could not detect significant changes in Schwann cell proliferation, cell cycle exit, or myelination. Overall, our results demonstrate that miR-138 is an Egr2-dependent microRNA but is dispensable for Schwann cell myelination.
Collapse
Affiliation(s)
- Hsin-Pin Lin
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Idil Oksuz
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rajeshwar Awatramani
- Department of Neurology and Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Li WY, Zhang WT, Cheng YX, Liu YC, Zhai FG, Sun P, Li HT, Deng LX, Zhu XF, Wang Y. Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration. Neurosci Bull 2018; 34:419-437. [PMID: 29356943 DOI: 10.1007/s12264-018-0206-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/28/2017] [Indexed: 12/12/2022] Open
Abstract
A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Wei-Ting Zhang
- The Affiliated Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Yong-Xia Cheng
- Department of Pathology, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Yan-Cui Liu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Feng-Guo Zhai
- Department of Pharmacy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Ping Sun
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Hui-Ting Li
- The Affiliated Hongqi Hospital, Mudanjiang College of Medicine, Mudanjiang, 157011, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiao-Feng Zhu
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China.
| | - Ying Wang
- Department of Anatomy, Mudanjiang College of Medicine, Mudanjiang, 157011, China.
| |
Collapse
|
30
|
Qian T, Wang P, Chen Q, Yi S, Liu Q, Wang H, Wang S, Geng W, Liu Z, Li S. The dynamic changes of main cell types in the microenvironment of sciatic nerves following sciatic nerve injury and the influence of let-7 on their distribution. RSC Adv 2018; 8:41181-41191. [PMID: 35559286 PMCID: PMC9091661 DOI: 10.1039/c8ra08298g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Schwann cells (SCs), fibroblasts and macrophages are the main cells in the peripheral nerve stumps.
Collapse
|
31
|
Wu X. Genome expression profiling predicts the molecular mechanism of peripheral myelination. Int J Mol Med 2017; 41:1500-1508. [PMID: 29286075 PMCID: PMC5819935 DOI: 10.3892/ijmm.2017.3348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/22/2017] [Indexed: 01/17/2023] Open
Abstract
The present study aimed to explore the molecular mechanism of myelination in the peripheral nervous system (PNS) based on genome expression profiles. Microarray data (GSE60345) was acquired from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were integrated and subsequently subjected to pathway and term enrichment analysis. A protein-protein interaction network was constructed and the top 200 DEGs according to their degree value were further subjected to pathway enrichment analysis. A microRNA (miR)-target gene regulatory network was constructed to explore the role of miRs associated with PNS myelination. A total of 783 upregulated genes and 307 downregulated genes were identified. The upregulated DEGs were significantly enriched in the biological function of complement and coagulation cascades, cytokine-cytokine receptor interactions and cell adhesion molecules. Pathways significantly enriched by the downregulated DEGs included the cell cycle, oocyte meiosis and the p53 signaling pathway. In addition, the upregulated DEGs among the top 200 DEGs were significantly enriched in natural killer (NK) cell mediated cytotoxicity and the B cell receptor (BCR) signaling pathway, in which Fc γ receptor (FCGR), ras-related C3 botulinum toxin substrate 2 (RAC2) and 1-phosphatidylinositol-4,5-bisphosphate phosphodiesterase γ-2 (PLCG2) were involved. miR-339-5p, miR-10a-5p and miR-10b-5p were identified as having a high degree value and may regulate the target genes TOX high mobility group box family member 4 (Tox4), DNA repair protein XRCC2 (Xrcc2) and C5a anaphylatoxin chemotactic receptor C5a2 (C5ar2). NK cell mediated cytotoxicity and the BCR pathway may be involved in peripheral myelination by targeting FCGR, RAC2 and PLCG2. The downregulation of oocyte meiosis, the cell cycle and the cellular tumor antigen p53 signaling pathway suggests decreasing schwann cell proliferation following the initiation of myelination. miR-339-5p, miR-10a-5p and miR-10b-5p may play important roles in PNS myelination by regulating Tox4, Xrcc2 and C5ar2.
Collapse
Affiliation(s)
- Xiaoming Wu
- Department of Radiology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| |
Collapse
|
32
|
Ghibaudi M, Boido M, Vercelli A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 2017; 158:69-93. [PMID: 28779869 DOI: 10.1016/j.pneurobio.2017.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/24/2017] [Accepted: 07/28/2017] [Indexed: 01/06/2023]
Abstract
New players are emerging in the game of peripheral and central nervous system injury since their physiopathological mechanisms remain partially elusive. These mechanisms are characterized by several molecules whose activation and/or modification following a trauma is often controlled at transcriptional level. In this scenario, microRNAs (miRNAs/miRs) have been identified as main actors in coordinating important molecular pathways in nerve or spinal cord injury (SCI). miRNAs are small non-coding RNAs whose functionality at network level is now emerging as a new level of complexity. Indeed they can act as an organized network to provide a precise control of several biological processes. Here we describe the functional synergy of some miRNAs in case of SCI and peripheral damage. In particular we show how several small RNAs can cooperate in influencing simultaneously the molecular pathways orchestrating axon regeneration, inflammation, apoptosis and remyelination. We report about the networks for which miRNA-target bindings have been experimentally demonstrated or inferred based on target prediction data: in both cases, the connection between one miRNA and its downstream pathway is derived from a validated observation or is predicted from the literature. Hence, we discuss the importance of miRNAs in some pathological processes focusing on their functional structure as participating in a cooperative and/or convergence network.
Collapse
Affiliation(s)
- M Ghibaudi
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy.
| | - M Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| | - A Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Italian Institute of Neuroscience, Italy
| |
Collapse
|
33
|
Zhang X, Gong X, Qiu J, Zhang Y, Gong F. MicroRNA-210 contributes to peripheral nerve regeneration through promoting the proliferation and migration of Schwann cells. Exp Ther Med 2017; 14:2809-2816. [PMID: 28912843 PMCID: PMC5585723 DOI: 10.3892/etm.2017.4869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
Peripheral nerve injury impacts the daily life of affected individuals. MicroRNA (miR)-210 is a multifunctional miR and has effects on the proliferation, migration and differentiation of cells. However, whether miR-210 has effects on peripheral nerve regeneration has remained elusive. In the present study, the miR-210 levels in a rat model of sciatic nerve injury were evaluated by reverse-transcription quantitative PCR and the effects of miR-210 on the proliferation and migration of Schwann cells were explored. Elevated miR-210 levels were discovered in the sciatic nerve injury rat model. miR-210 mimics were found to promote the proliferation and migration of Schwann cells, while miR-210 inhibitor was found to inhibit the proliferation and migration of Schwann cells. Further study showed that miR-210 had effects on the expression of growth-associated protein-43, myelin-associated glycoprotein and myelin basic protein. These results showed that miR-210 had effects on the proliferation and migration of Schwann cells and may be involved in the peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xiaona Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xu Gong
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinpeng Qiu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yang Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Fengyan Gong
- Department of Gynaecology and Obstetrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
34
|
Boerboom A, Dion V, Chariot A, Franzen R. Molecular Mechanisms Involved in Schwann Cell Plasticity. Front Mol Neurosci 2017; 10:38. [PMID: 28261057 PMCID: PMC5314106 DOI: 10.3389/fnmol.2017.00038] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/31/2017] [Indexed: 01/09/2023] Open
Abstract
Schwann cell incredible plasticity is a hallmark of the utmost importance following nerve damage or in demyelinating neuropathies. After injury, Schwann cells undergo dedifferentiation before redifferentiating to promote nerve regeneration and complete functional recovery. This review updates and discusses the molecular mechanisms involved in the negative regulation of myelination as well as in the reprogramming of Schwann cells taking place early following nerve lesion to support repair. Significant advance has been made on signaling pathways and molecular components that regulate SC regenerative properties. These include for instance transcriptional regulators such as c-Jun or Notch, the MAPK and the Nrg1/ErbB2/3 pathways. This comprehensive overview ends with some therapeutical applications targeting factors that control Schwann cell plasticity and highlights the need to carefully modulate and balance this capacity to drive nerve repair.
Collapse
Affiliation(s)
| | - Valérie Dion
- GIGA-Neurosciences, University of Liège Liège, Belgium
| | - Alain Chariot
- GIGA-Molecular Biology of Diseases, University of LiègeLiège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO)Wavre, Belgium
| | | |
Collapse
|
35
|
Pan B, Shi ZJ, Yan JY, Li JH, Feng SQ. Long non-coding RNA NONMMUG014387 promotes Schwann cell proliferation after peripheral nerve injury. Neural Regen Res 2017; 12:2084-2091. [PMID: 29323050 PMCID: PMC5784359 DOI: 10.4103/1673-5374.221168] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Schwann cells play a critical role in peripheral nerve regeneration through dedifferentiation and proliferation. In a previous study, we performed microarray analysis of the sciatic nerve after injury. Accordingly, we predicted that long non-coding RNA NONMMUG014387 may promote Schwann cell proliferation after peripheral nerve injury, as bioinformatic analysis revealed that the target gene of NONMMUG014387 was collagen triple helix repeat containing 1 (Cthrc1). Cthrc1 may promote cell proliferation in a variety of cells by activating Wnt/PCP signaling. Nonetheless, bioinformatic analysis still needs to be verified by biological experiment. In this study, the candidate long non-coding RNA, NONMMUG014387, was overexpressed in mouse Schwann cells by recombinant adenovirus transfection. Plasmid pHBAd-MCMV-GFP-NONMMUG014387 and pHBAd-MCMV-GFP were transfected into Schwann cells. Schwann cells were divided into three groups: control (Schwann cells without intervention), Ad-GFP (Schwann cells with GFP overexpression), and Ad-NONMMUGO148387 (Schwann cells with GFP and NONMMUGO148387 overexpression). Cell Counting Kit-8 assay was used to evaluate proliferative capability of mouse Schwann cells after NONMMUG014387 overexpression. Polymerase chain reaction and western blot assay were performed to investigate target genes and downstream pathways of NONMMUG014387. Cell proliferation was significantly increased in Schwann cells overexpressing lncRNA NONMMUG014387 compared with the other two groups. Further, compared with the control group, mRNA and protein levels of Cthrc1, Wnt5a, ROR2, RhoA, Rac1, JNK, and ROCK were visibly up-regulated in the Ad-NONMMUGO148387 group. Our findings confirm that long non-coding RNA NONMMUG014387 can promote proliferation of Schwann cells surrounding the injury site through targeting Cthrc1 and activating the Wnt/PCP pathway.
Collapse
Affiliation(s)
- Bin Pan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhong-Ju Shi
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-Yin Yan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jia-He Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
36
|
Yi S, Wang QH, Zhao LL, Qin J, Wang YX, Yu B, Zhou SL. miR-30c promotes Schwann cell remyelination following peripheral nerve injury. Neural Regen Res 2017; 12:1708-1715. [PMID: 29171437 PMCID: PMC5696853 DOI: 10.4103/1673-5374.217351] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Differential expression of miRNAs occurs in injured proximal nerve stumps and includes miRNAs that are firstly down-regulated and then gradually up-regulated following nerve injury. These miRNAs might be related to a Schwann cell phenotypic switch. miR-30c, as a member of this group, was further investigated in the current study. Sprague-Dawley rats underwent sciatic nerve transection and proximal nerve stumps were collected at 1, 4, 7, 14, 21, and 28 days post injury for analysis. Following sciatic nerve injury, miR-30c was down-regulated, reaching a minimum on day 4, and was then upregulated to normal levels. Schwann cells were isolated from neonatal rat sciatic nerve stumps, then transfected with miR-30c agomir and co-cultured in vitro with dorsal root ganglia. The enhanced expression of miR-30c robustly increased the amount of myelin-associated protein in the co-cultured dorsal root ganglia and Schwann cells. We then modeled sciatic nerve crush injury in vivo in Sprague-Dawley rats and tested the effect of perineural injection of miR-30c agomir on myelin sheath regeneration. Fourteen days after surgery, sciatic nerve stumps were harvested and subjected to immunohistochemistry, western blot analysis, and transmission electron microscopy. The direct injection of miR-30c stimulated the formation of myelin sheath, thus contributing to peripheral nerve regeneration. Overall, our findings indicate that miR-30c can promote Schwann cell myelination following peripheral nerve injury. The functional study of miR-30c will benefit the discovery of new therapeutic targets and the development of new treatment strategies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Qi-Hui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jing Qin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Song-Lin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
37
|
Pan B, Liu Y, Yan JY, Wang Y, Yao X, Zhou HX, Lu L, Kong XH, Feng SQ. Gene expression analysis at multiple time-points identifies key genes for nerve regeneration. Muscle Nerve 2016; 55:373-383. [PMID: 27313142 DOI: 10.1002/mus.25225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The purpose of this study was to provide a comprehensive understanding of gene expression during Wallerian degeneration and axon regeneration after peripheral nerve injury. METHODS A microarray was used to detect gene expression in the distal nerve 0, 3, 7, and 14 days after sciatic nerve crush. Bioinformatic analysis was used to predict function of the differentially expressed mRNAs. Microarray results and the key pathways were validated by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Differentially expressed mRNAs at different time-points (3, 7, and 14 days) after injury were identified and compared with a control group (0 day). Nine general trends of changes in gene expression were identified. Key signal pathways and 9 biological processes closely associated with nerve regeneration were identified and verified. CONCLUSIONS Differentially expressed genes and biological processes and pathways associated with axonal regeneration may elucidate the molecular-biological mechanisms underlying peripheral nerve regeneration. Muscle Nerve 55: 373-383, 2017.
Collapse
Affiliation(s)
- Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yi Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Jia-Yin Yan
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Xue Yao
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Heng-Xing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| | - Xiao-Hong Kong
- School of Medicine, Nankai University, Nankai District, Tianjin, PR China
| | - Shi-Qing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, PR China
| |
Collapse
|
38
|
Jiang N, Cui Y, Liu J, Zhu X, Wu H, Yang Z, Ke Z. Multidimensional Roles of Collagen Triple Helix Repeat Containing 1 (CTHRC1) in Malignant Cancers. J Cancer 2016; 7:2213-2220. [PMID: 27994657 PMCID: PMC5166530 DOI: 10.7150/jca.16539] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor is one of the principal diseases that seriously threaten human health. Insight into sensitive cancer markers may open a new avenue for the early diagnosis and treatment of this disease. CTHRC1 has been identified as a cancer-related gene. It is a secretory glycoprotein that possesses multidimensional roles associated with wound repair, bone remodeling, hepatocytes fibrosis, adipose tissue formation, and so on. Our previous studies and numerous reports from other researchers have revealed that the ascended expression of CTHRC1 tends to go hand in hand with tumorigenesis, proliferation, invasion and metastasis in various human malignancies through a series of molecular mechanisms and signaling pathways. However, the detailed pathogenic mechanisms of CTHRC1 overexpression in human malignant cancers are not yet clear. Here, we shall focus our description on the functions, expression profile in several representative malignant tumors and a number of molecular mechanisms and signaling pathways involved with CTHRC1. This introductory discussion of CTHRC1 will serve as a reference for further research in understanding this intriguing cancer-related protein.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - YongMei Cui
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - JunXiu Liu
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - XiaoLin Zhu
- Department of Otolaryngology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Province Guangdong, P.R. China
| | - Hui Wu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - Zheng Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - ZunFu Ke
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| |
Collapse
|
39
|
Qian TM, Zhao LL, Wang J, Li P, Qin J, Liu YS, Yu B, Ding F, Gu XS, Zhou SL. miR-148b-3p promotes migration of Schwann cells by targeting cullin-associated and neddylation-dissociated 1. Neural Regen Res 2016; 11:1001-5. [PMID: 27482232 PMCID: PMC4962562 DOI: 10.4103/1673-5374.184504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that negatively adjust gene expression in multifarious biological processes. However, the regulatory effects of miRNAs on Schwann cells remain poorly understood. Previous microarray analysis results have shown that miRNA expression is altered following sciatic nerve transaction, thereby affecting proliferation and migration of Schwann cells. This study investigated whether miR-148b-3p could regulate migration of Schwann cells by directly targeting cullin-associated and neddylation-dissociated 1 (Cand1). Up-regulated expression of miR-148b-3p promoted Schwann cell migration, whereas silencing of miR-148b-3p inhibited Schwann cell migration in vitro. Further experiments confirmed that Cand1 was a direct target of miR-148b-3p, and Cand1 knockdown reversed suppression of the miR-148b-3p inhibitor on Schwann cell migration. These results suggested that miR-148b-3p promoted migration of Schwann cells by directly targeting Cand1 in vitro.
Collapse
Affiliation(s)
- Tian-Mei Qian
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Li-Li Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Jing Wang
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Ping Li
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Jing Qin
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Yi-Sheng Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Xiao-Song Gu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| | - Song-Lin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu Province, China
| |
Collapse
|
40
|
Li S, Zhang R, Yuan Y, Yi S, Chen Q, Gong L, Liu J, Ding F, Cao Z, Gu X. MiR-340 Regulates Fibrinolysis and Axon Regrowth Following Sciatic Nerve Injury. Mol Neurobiol 2016; 54:4379-4389. [PMID: 27344331 DOI: 10.1007/s12035-016-9965-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
After peripheral nerve injury, the degenerative debris and inflammatory alterations at the injury site may block the elongation of regenerating axons to reach target organs. Tissue plasminogen activator (tPA), a serine protease, has a capability of degrading matrix molecules and cell adhesions. In this study, we found that either tPA or miR-340 was differentially expressed in the injured nerve after sciatic nerve injury, and that the expressions of tPA and miR-340 were negatively correlated to each other. Moreover, miR-340 and tPA were co-localized in sciatic nerve. miR-340 regulated tPA through direct targeting of the 3'-UTR of tPA. Functionally, over- or under-expression of miR-340 reduced or augmented the fibrinolytic activity and migration ability of cultured Schwann cells as well as tPA secretion from the cells, respectively. In rats with sciatic nerve crush injury, dysregulation of the miR-340 expression in the injury site affected the cell debris removal and axonal regrowth. Obviously, unlike many previous studies that investigate the functional impact of miRNAs on peripheral nerve regeneration in the perspective of miRNA regulation of neural cell behaviors, the present study focused on miRNA regulation of debris clearance, thus updating our understanding of the regulatory roles of miRNAs in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shiying Li
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Ruirui Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Ying Yuan
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Jie Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China
| | - Zheng Cao
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, China.
| |
Collapse
|
41
|
Zhou S, Ding F, Gu X. Non-coding RNAs as Emerging Regulators of Neural Injury Responses and Regeneration. Neurosci Bull 2016; 32:253-64. [PMID: 27037691 DOI: 10.1007/s12264-016-0028-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are a large cluster of RNAs that do not encode proteins, but have multiple functions in diverse cellular processes. Mounting evidence indicates the involvement of ncRNAs in the physiology and pathophysiology of the central and peripheral nervous systems. It has been shown that numerous ncRNAs, especially microRNAs and long non-coding RNAs, are differentially expressed after insults such as acquired brain injury, spinal cord injury, and peripheral nerve injury. These ncRNAs affect neuronal survival, neurite regrowth, and glial phenotype primarily by targeting specific mRNAs, resulting in translation repression or degradation of the mRNAs. An increasing number of studies have investigated the regulatory roles of microRNAs and long non-coding RNAs in neural injury and regeneration, and thus a new research field is emerging. In this review, we highlight current progress in the field in an attempt to provide further insight into post-transcriptional changes occurring after neural injury, and to facilitate the potential use of ncRNAs for improving neural regeneration. We also suggest potential directions for future studies.
Collapse
Affiliation(s)
- Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
42
|
Xu Y, An BY, Xi XB, Li ZW, Li FY. MicroRNA-9 controls apoptosis of neurons by targeting monocyte chemotactic protein-induced protein 1 expression in rat acute spinal cord injury model. Brain Res Bull 2016; 121:233-40. [PMID: 26812136 DOI: 10.1016/j.brainresbull.2016.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/30/2015] [Accepted: 01/21/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE For the purpose of an early identification of intervention targets for acute spinal cord injury (ASCI), we investigated the changes in expression levels of microRNA-9 (miR-9) and MCPIP1 in rat ASCI model. METHOD A total of 108 healthy rats were randomly divided into non-ASCI group (n=18) and five ASCI groups, 6h, 12h, 24h, 3 days and 7 days, representing the experimental time points following ASCI (n=18 per group). Hematoxylin and eosin (HE) staining was used to assess the ASCI damage, and quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH) were employed for the detection of miR-9 and MCPIP1 mRNA expression. RESULTS HE staining results showed normal neuronal morphology in the non-ASCI group, but spinal cord tissue at 6h after ASCI showed developing neuronal necrosis. Acute inflammatory response was evident at 12h and 24h, with immune cells infiltrating into the gray matter. Vascular permeability increased and the nerve cells in gray-white matter exhibited extensive damage and necrosis at 24h and 7 days after ASCI. MiR-9 expression in ASCI tissue was significantly lower than that in normal spinal cord tissue. Statistical analysis showed a significant decrease in miR-9 expression in all the ASCI groups, compared to the non-ASCI group. Results from real-time PCR analysis revealed that MCPIP1 expression in all the ASCI groups was significantly higher than the non-ASCI group, and MCPIP1 expressions gradually increased with times at 6h-24h after ASCI. ISH revealed the following results after ASCI (1) miR-9 and MCPIP1 mRNA expression mainly distributed in ventral horn motor neurons, (2) miR-9 expression was high at 7 day after ASCI and (3) in the non-ASCI group, MCPIP1 expression was high at 6h, 12h, 24h and 3 days. CONCLUSION MCPIP1 is significantly up-regulated after ASCI. The negative relationship between MCPIP1 and miR-9 suggest that MCPIP1 mRNA could be a target of miR-9 during ASCI. Thus, miR-9 is a marker for apoptosis in neurons, and an excellent therapeutic target for ASCI patients.
Collapse
Affiliation(s)
- Yong Xu
- Shanghai Traumatology and Orthopedics Research Institute, Shanghai 200020, China; Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China.
| | - Bao-Yan An
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| | - Xiao-Bing Xi
- Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| | - Zhong-Wei Li
- Shanghai Traumatology and Orthopedics Research Institute, Shanghai 200020, China; Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| | - Fei-Yue Li
- Shanghai Traumatology and Orthopedics Research Institute, Shanghai 200020, China; Department of Traumatology, Ruijin Hospital, Shanghai Jiaotong University School of Medcine, Shanghai 200025, China
| |
Collapse
|
43
|
Yi S, Wang S, Zhao Q, Yao C, Gu Y, Liu J, Gu X, Li S. miR-sc3, a Novel MicroRNA, Promotes Schwann Cell Proliferation and Migration by Targeting Astn1. Cell Transplant 2016; 25:973-82. [PMID: 26786955 DOI: 10.3727/096368916x690520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs, miRs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level. We have previously identified a group of novel miRNAs in proximal sciatic nerve after sciatic nerve transection by Solexa sequencing, and miR-sc3 is a member of the group. In this study, we aimed to investigate the effects of miR-sc3 on phenotypic modulation of Schwann cells (SCs). miR-sc3 was highly expressed in the injured nerve after sciatic nerve transection. An increased and decreased expression of miR-sc3 promoted and reduced the proliferation and migration of primary SCs, respectively. miR-sc3 directly targeted astrotactin 1 (Astn1) and led to translational suppression of Astn1. There was an inverse association between the time-dependent expressions of miR-sc3 and Astn1 in proximal sciatic nerve after sciatic nerve transection. Overall, miR-sc3 affected SC proliferation and migration by targeting Astn1, thus playing the regulatory role in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhan C, Ma CB, Yuan HM, Cao BY, Zhu JJ. Macrophage-derived microvesicles promote proliferation and migration of Schwann cell on peripheral nerve repair. Biochem Biophys Res Commun 2015; 468:343-8. [DOI: 10.1016/j.bbrc.2015.10.097] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023]
|
45
|
Zhang Z, Yu B, Gu Y, Zhou S, Qian T, Wang Y, Ding G, Ding F, Gu X. Fibroblast-derived tenascin-C promotes Schwann cell migration through β1-integrin dependent pathway during peripheral nerve regeneration. Glia 2015; 64:374-85. [DOI: 10.1002/glia.22934] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 09/28/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Zhanhu Zhang
- Model Animal Research Center, Nanjing University; Nanjing China
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Yun Gu
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Tianmei Qian
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Yongjun Wang
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Guohui Ding
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai China
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| | - Xiaosong Gu
- Model Animal Research Center, Nanjing University; Nanjing China
- Jiangsu Key Laboratory of Neuroregeneration; Co-Innovation Center of Neuroregeneration, Nantong University; Nantong China
| |
Collapse
|
46
|
Progress and perspectives of neural tissue engineering. Front Med 2015; 9:401-11. [DOI: 10.1007/s11684-015-0415-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/06/2015] [Indexed: 10/22/2022]
|
47
|
Yu B, Zhou S, Yi S, Gu X. The regulatory roles of non-coding RNAs in nerve injury and regeneration. Prog Neurobiol 2015; 134:122-39. [PMID: 26432164 DOI: 10.1016/j.pneurobio.2015.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/05/2015] [Indexed: 12/16/2022]
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), have attracted much attention since their regulatory roles in diverse cell processes were recognized. Emerging studies demonstrate that many ncRNAs are differentially expressed after injury to the nervous system, significantly affecting nerve regeneration. In this review, we compile the miRNAs and lncRNAs that have been reported to be dysregulated following a variety of central and peripheral nerve injuries, including acquired brain injury, spinal cord injury, and peripheral nerve injury. We also list investigations on how these miRNAs and lncRNAs exert the regulatory actions in neurodegenerative and neuroregenerative processes through different mechanisms involving their interaction with target coding genes. We believe that comprehension of the expression profiles and the possible functions of ncRNAs during the processes of nerve injury and regeneration will help understand the molecular mechanisms responsible for post-nerve-injury changes, and may contribute to the potential use of ncRNAs as a diagnostic marker and therapeutic target for nerve injury.
Collapse
Affiliation(s)
- Bin Yu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Songlin Zhou
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Sheng Yi
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| |
Collapse
|
48
|
Hypoxia-Induced Upregulation of miR-132 Promotes Schwann Cell Migration After Sciatic Nerve Injury by Targeting PRKAG3. Mol Neurobiol 2015; 53:5129-39. [DOI: 10.1007/s12035-015-9449-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/16/2015] [Indexed: 12/01/2022]
|
49
|
Ronchi G, Haastert-Talini K, Fornasari BE, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci 2015; 43:351-64. [DOI: 10.1111/ejn.12974] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Giulia Ronchi
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of the ‘Cavalieri Ottolenghi’ Foundation (NICO); University of Torino; Orbassano Italy
| | - Kirsten Haastert-Talini
- Hannover Medical School; Institute of Neuroanatomy; Hannover Germany
- Center for Systems Neuroscience (ZSN); Hannover Germany
| | - Benedetta Elena Fornasari
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
| | - Isabelle Perroteau
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of Torino (NIT); University of Torino; Orbassano Italy
| | - Stefano Geuna
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of the ‘Cavalieri Ottolenghi’ Foundation (NICO); University of Torino; Orbassano Italy
- Neuroscience Institute of Torino (NIT); University of Torino; Orbassano Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences; University of Torino; Regione Gonzole 10 Orbassano 10043 Italy
- Neuroscience Institute of Torino (NIT); University of Torino; Orbassano Italy
| |
Collapse
|
50
|
Nguyen LH, Diao HJ, Chew SY. MicroRNAs and their potential therapeutic applications in neural tissue engineering. Adv Drug Deliv Rev 2015; 88:53-66. [PMID: 25980934 DOI: 10.1016/j.addr.2015.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 01/01/2023]
Abstract
The inherent poor regeneration capacity of nerve tissues, especially in the central nervous system, poses a grand challenge for neural tissue engineering. After injuries, the local microenvironment often contains potent inhibitory molecules and glial scars, which do not actively support axonal regrowth. MicroRNAs can direct fate of neural cells and are tightly controlled during nerve development. Thus, RNA interference using microRNAs is a promising method to enhance nerve regeneration. Although the physiological roles of microRNA expression levels in various cellular activities or disease conditions have been extensively investigated, the translational use of these understanding for neural tissue engineering remains limited. This review aims to highlight essential microRNAs that participate in cellular behaviors within the adult nervous system and their potential therapeutic applications. In addition, possible delivery methods are also suggested for effective gene silencing in neural tissue engineering.
Collapse
Affiliation(s)
- Lan Huong Nguyen
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Hua Jia Diao
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Sing Yian Chew
- Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.
| |
Collapse
|