1
|
Ouyang J, Chai H, Sun C, Wang S, She C, Geng D, Xu W. Titanium Particles Activate Osteocytic Connexin 43 to Induce Oxidative Stress and Osteoclastogenesis Through the JAK-STAT Pathway. Antioxid Redox Signal 2025. [PMID: 40207369 DOI: 10.1089/ars.2024.0894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Aims: Periprosthetic osteolysis (PPO), a leading cause of aseptic loosening in joint replacement, arose from complex interactions among osteoblasts, osteoclasts, and osteocytes. Given the pivotal role of connexin 43 (Cx43) in osteocyte communication and bone remodeling, investigating its function was essential for understanding the mechanisms of osteolysis. Our previous studies showed that titanium (Ti) particles increased Cx43 expression in osteocytes. However, the role of Cx43 in osteolysis remained unclear. This study investigated the role of Cx43-mediated regulation of osteocytes on osteoclastogenesis in wear debris-induced osteolysis. Results: Using Dmp1-cre conditional Cx43 knockout mice and the MLO-Y4 osteocyte cell line, we demonstrated that Cx43 deficiency reduced bone resorption and osteoclastogenesis, thereby improving bone remodeling in a Ti particle-induced osteolysis model. Sequencing analysis revealed that Cx43 gene expression changes might be linked to oxidative stress and the Janus Kinase (JAK)-STAT pathway. Elevated Cx43 expression in osteocytes stimulated by Ti particles increased STAT1 protein phosphorylation, induced oxidative stress, elevated the Receptor Activator of Nuclear Factor Kappa-Β Ligand (RANKL)/Osteoprotegerin (OPG) ratio, and promoted osteoclast activation and bone resorption. Conversely, Cx43 gene knockout decreased STAT1 protein phosphorylation and enhanced Nuclear Factor Erythroid 2-Related Factor 2 (NrF2) protein expression. Blocking the JAK-STAT signaling pathway activated by Cx43 increased NrF2 expression, reduced reactive oxygen species levels, and subsequently decreased the RANKL/OPG ratio. Innovation and Conclusions: This study identified a novel mechanism where Cx43 in osteocytes promoted osteoclastogenesis through JAK-STAT pathway activation and oxidative stress in wear debris-induced osteolysis. These findings highlighted the critical role of Cx43 in bone resorption and suggested targeting Cx43 or the JAK-STAT pathway as potential therapeutic strategies to mitigate osteolysis and improve implant longevity. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Jiawei Ouyang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Chai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Rheumatology and Immunology, The Second Hospital of Shanxi Medical University, Shanxi, China
| | - Chunguang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shendong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang She
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
Zhou R, Hu W, Ma PX, Liu CJ. Versatility of 14-3-3 proteins and their roles in bone and joint-related diseases. Bone Res 2024; 12:58. [PMID: 39406741 PMCID: PMC11480210 DOI: 10.1038/s41413-024-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Bone and joint-related diseases, including osteoarthritis (OA), rheumatoid arthritis (RA), and bone tumors, pose significant health challenges due to their debilitating effects on the musculoskeletal system. 14-3-3 proteins, a family of conserved regulatory molecules, play a critical role in the pathology of these diseases. This review discusses the intricate structure and multifunctionality of 14-3-3 proteins, their regulation of signaling pathways, and their interactions with other proteins. We underscore the significance of 14-3-3 proteins in the regulation of osteoblasts, osteoclasts, chondrocytes, and bone remodeling, all key factors in the maintenance and dysfunction of bone and joint systems. Specific focus is directed toward elucidating the contribution of 14-3-3 proteins in the pathology of OA, RA, and bone malignancies, where dysregulated 14-3-3-mediated signaling cascades have been implicated in the disease processes. This review illuminates how the perturbation of 14-3-3 protein interactions can lead to the pathological manifestations observed in these disorders, including joint destruction and osteolytic activity. We highlight cutting-edge research that positions 14-3-3 proteins as potential biomarkers for disease progression and as innovative therapeutic targets, offering new avenues for disease intervention and management.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Weirong Hu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Peter X Ma
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Zhao D, Wu J, Acosta FM, Xu H, Jiang JX. Connexin 43 hemichannels and prostaglandin E 2 release in anabolic function of the skeletal tissue to mechanical stimulation. Front Cell Dev Biol 2023; 11:1151838. [PMID: 37123401 PMCID: PMC10133519 DOI: 10.3389/fcell.2023.1151838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
Bone adapts to changes in the physical environment by modulating remodeling through bone resorption and formation to maintain optimal bone mass. As the most abundant connexin subtype in bone tissue, connexin 43 (Cx43)-forming hemichannels are highly responsive to mechanical stimulation by permitting the exchange of small molecules (<1.2 kDa) between bone cells and the extracellular environment. Upon mechanical stimulation, Cx43 hemichannels facilitate the release of prostaglandins E2 (PGE2), a vital bone anabolic factor from osteocytes. Although most bone cells are involved in mechanosensing, osteocytes are the principal mechanosensitive cells, and PGE2 biosynthesis is greatly enhanced by mechanical stimulation. Mechanical stimulation-induced PGE2 released from osteocytic Cx43 hemichannels acts as autocrine effects that promote β-catenin nuclear accumulation, Cx43 expression, gap junction function, and protects osteocytes against glucocorticoid-induced osteoporosis in cultured osteocytes. In vivo, Cx43 hemichannels with PGE2 release promote bone formation and anabolism in response to mechanical loading. This review summarizes current in vitro and in vivo understanding of Cx43 hemichannels and extracellular PGE2 release, and their roles in bone function and mechanical responses. Cx43 hemichannels could be a significant potential new therapeutic target for treating bone loss and osteoporosis.
Collapse
Affiliation(s)
- Dezhi Zhao
- School of Medicine, Northwest University, Xi’an, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jiawei Wu
- School of Medicine, Northwest University, Xi’an, China
| | - Francisca M. Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| |
Collapse
|
4
|
Pun R, Kim MH, North BJ. Role of Connexin 43 phosphorylation on Serine-368 by PKC in cardiac function and disease. Front Cardiovasc Med 2023; 9:1080131. [PMID: 36712244 PMCID: PMC9877470 DOI: 10.3389/fcvm.2022.1080131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication mediated by gap junction channels and hemichannels composed of Connexin 43 (Cx43) is vital for the propagation of electrical impulses through cardiomyocytes. The carboxyl terminal tail of Cx43 undergoes various post-translational modifications including phosphorylation of its Serine-368 (S368) residue. Protein Kinase C isozymes directly phosphorylate S368 to alter Cx43 function and stability through inducing conformational changes affecting channel permeability or promoting internalization and degradation to reduce intercellular communication between cardiomyocytes. Recent studies have implicated this PKC/Cx43-pS368 circuit in several cardiac-associated diseases. In this review, we describe the molecular and cellular basis of PKC-mediated Cx43 phosphorylation and discuss the implications of Cx43 S368 phosphorylation in the context of various cardiac diseases, such as cardiomyopathy, as well as the therapeutic potential of targeting this pathway.
Collapse
Affiliation(s)
- Renju Pun
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Michael H. Kim
- CHI Health Heart Institute, School of Medicine, Creighton University, Omaha, NE, United States
| | - Brian J. North
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States,*Correspondence: Brian J. North,
| |
Collapse
|
5
|
Zeng Y, Riquelme MA, Hua R, Zhang J, Acosta FM, Gu S, Jiang JX. Mechanosensitive piezo1 calcium channel activates connexin 43 hemichannels through PI3K signaling pathway in bone. Cell Biosci 2022; 12:191. [PMID: 36457052 PMCID: PMC9716748 DOI: 10.1186/s13578-022-00929-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Mechanical loading promotes bone formation and osteocytes are a major mechanosensory cell in the bone. Both Piezo1 channels and connexin 43 hemichannels (Cx43 HCs) in osteocytes are important players in mechanotransduction and anabolic function by mechanical loading. However, the mechanism underlying mechanotransduction involving Piezo1 channels and Cx43 HCs in osteocytes and bone remains unknown. RESULTS We showed that, like mechanical loading, Piezo1 specific agonist Yoda1 was able to increase intracellular Ca2+ signaling and activate Cx43 HCs, while Yoda1 antagonist Dooku1 inhibited Ca2+ and Cx43 HC activation induced by both mechanical loading and Yoda1. Moreover, the intracellular Ca2+ signal activated by Yoda1 was reduced by the inhibition of Cx43 HCs and pannexin1 (Panx1) channels, as well as ATP-P2X receptor signaling. Piezo1 and Cx43 HCs were co-localized on the osteocyte cell surface, and Yoda1-activated PI3K-Akt signaling regulated the opening of Cx43 HCs. Furthermore, Cx43 HCs opening by mechanical loading on tibias was ablated by inhibition of Piezo1 activation in vivo. CONCLUSION We demonstrated that upon mechanical stress, increased intracellular Ca2+ activated by Piezo1 regulates the opening of HCs through PI3K-Akt and opened Cx43 HCs, along with Panx1 channels, and ATP-P2X signaling sustain the intracellular Ca2+ signal, leading to bone anabolic function.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jingruo Zhang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Francisca M Acosta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
6
|
Zhao D, Hua R, Riquelme MA, Cheng H, Guda T, Xu H, Gu S, Jiang JX. Osteocytes regulate bone anabolic response to mechanical loading in male mice via activation of integrin α5. Bone Res 2022; 10:49. [PMID: 35851577 PMCID: PMC9293884 DOI: 10.1038/s41413-022-00222-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 12/18/2022] Open
Abstract
Physical mechanical stimulation can maintain and even increase bone mass. Here, we report an important role of osteocytic integrin α5 in regulating the anabolic response of bone to mechanical loading using an Itga5 conditional gene knockout (cKO) mouse model. Integrin α5 gene deletion increased apoptotic osteocytes and reduced cortical anabolic responses to tibial compression including decreased endosteal osteoblasts and bone formation, and increased endosteal osteoclasts and bone resorption, contributing to the decreased bone area fraction and biomechanical properties, leading to an enlarged bone marrow area in cKO mice. Similar disruption of anabolic responses to mechanical loading was also detected in cKO trabecular bone. Moreover, integrin α5 deficiency impeded load-induced Cx43 hemichannel opening, and production and release of PGE2, an anabolic factor, resulting in attenuated effects of the loading on catabolic sclerostin (SOST) reduction and anabolic β-catenin increase. Together, this study shows an indispensable role of integrin α5 in osteocytes in the anabolic action of mechanical loading on skeletal tissue through activation of hemichannels and PGE2-evoked gene expression. Integrin α5 could act as a potential new therapeutic target for bone loss, especially in the elderly population with impeded mechanical sensitivity.
Collapse
Affiliation(s)
- Dezhi Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, University of Texas, San Antonio, TX, USA
| | - Huiyun Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
7
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
8
|
Zhu L, Wu Y, Yoon CW, Wang Y. Mechanogenetics for cellular engineering and cancer immunotherapy. Curr Opin Biotechnol 2020; 66:88-94. [PMID: 32717634 DOI: 10.1016/j.copbio.2020.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 12/14/2022]
Abstract
Recent synthetic biology advancements have shown that cells can be engineered to respond to external stimuli such as chemical compounds and light, which significantly improves the specificity and controllability of CAR T therapy. However, the lack of both spatiotemporal and depth control is still the main issue in the clinic of CAR T treatment. At the same time, mechanogenetics, capable of penetrating deep tissues with high spatiotemporal precision, is rapidly evolving and advancing to reveal its potential for cancer immunotherapy. In the past few years, researchers have demonstrated the precise and remote control of engineered cells with mechanical perturbation originated from ultrasound, which may become a new solution to circumvent the limitations of CAR T therapy in the future. This review will discuss mechanobiology and the state-of art designs of controllable CAR T cells. A specific focus of this review will be on the mechanical control of CAR T therapy.
Collapse
Affiliation(s)
- Linshan Zhu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Yiqian Wu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Chi Woo Yoon
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0435, USA.
| |
Collapse
|
9
|
Fan J, Chen Y, Yang D, Shen J, Guo X. Multi-walled carbon nanotubes induce IL-1β secretion by activating hemichannels-mediated ATP release in THP-1 macrophages. Nanotoxicology 2020; 14:929-946. [PMID: 32538272 DOI: 10.1080/17435390.2020.1777476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are known to induce pulmonary inflammatory effects through stimulating pro-inflammatory cytokine secretion from alveolar macrophages. Despite extensive studies on MWCNTs' pro-inflammatory reactivity, the understanding of molecular mechanisms involved is still incomplete. In this study, we investigated hemichannel's involvement in MWCNTs-induced macrophage IL-1β release. Our results showed that the unmodified and COOH MWCNTs could induce ATP release and ATP-P2X7R axis-dependent IL-1β secretion from THP-1 macrophages. By using various inhibitors, we confirmed that the MWCNTs-induced ATP release was primarily through hemichannels. EtBr dye uptake assay detected significant hemichannels opening in MWCNTs exposed THP-1 macrophages. Inhibition of hemichannels by CBX, 43Gap27, or 10Panx1 pretreatment results in decreased ATP and IL-1β release. The addition of ATP restored the reduced IL-1β secretion level from hemichannel inhibition. We also confirmed with five other types of MWCNTs that the induction of hemichannels by MWCNTs strongly correlates with their capacity to induce IL-1β secretion. Taken together, we conclude that hemichannels-mediated ATP release and subsequent NLRP3 inflammasome activation through P2X7R may be one mechanism by which MWCNTs induce macrophage IL-1β secretion. Our findings may provide a novel molecular mechanism for MWCNTs induced IL-1β secretion.
Collapse
Affiliation(s)
- Jingpu Fan
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Yiyong Chen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Jie Shen
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China
| |
Collapse
|
10
|
Riquelme MA, Cardenas ER, Xu H, Jiang JX. The Role of Connexin Channels in the Response of Mechanical Loading and Unloading of Bone. Int J Mol Sci 2020; 21:ijms21031146. [PMID: 32050469 PMCID: PMC7038207 DOI: 10.3390/ijms21031146] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
The skeleton adapts to mechanical loading to promote bone formation and remodeling. While most bone cells are involved in mechanosensing, it is well accepted that osteocytes are the principal mechanosensory cells. The osteocyte cell body and processes are surrounded by a fluid-filled space, forming an extensive lacuno-canalicular network. The flow of interstitial fluid is a major stress-related factor that transmits mechanical stimulation to bone cells. The long dendritic processes of osteocytes form a gap junction channel network connecting not only neighboring osteocytes, but also cells on the bone surface, such as osteoblasts and osteoclasts. Mechanosensitive osteocytes also form hemichannels that mediate the communication between the cytoplasmic and extracellular microenvironment. This paper will discuss recent research progress regarding connexin (Cx)-forming gap junctions and hemichannels in osteocytes, osteoblasts, and other bone cells, including those richly expressing Cx43. We will then cover the recent progress regarding the regulation of these channels by mechanical loading and the role of integrins and signals in mediating Cx43 channels, and bone cell function and viability. Finally, we will summarize the recent studies regarding bone responses to mechanical unloading in Cx43 transgenic mouse models. The osteocyte has been perceived as the center of bone remodeling, and connexin channels enriched in osteocytes are a likely major player in meditating the function of bone. Based on numerous studies, connexin channels may present as a potential new therapeutic target in the treatment of bone loss and osteoporosis. This review will primarily focus on Cx43, with some discussion in other connexins expressed in bone cells.
Collapse
Affiliation(s)
- Manuel A. Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
| | - Eduardo R. Cardenas
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (M.A.R.); (E.R.C.)
- Correspondence: ; Tel.: +1-210-562-4094
| |
Collapse
|
11
|
Chepied A, Daoud-Omar Z, Meunier-Balandre AC, Laird DW, Mesnil M, Defamie N. Involvement of the Gap Junction Protein, Connexin43, in the Formation and Function of Invadopodia in the Human U251 Glioblastoma Cell Line. Cells 2020; 9:cells9010117. [PMID: 31947771 PMCID: PMC7017254 DOI: 10.3390/cells9010117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/02/2019] [Accepted: 12/31/2019] [Indexed: 12/18/2022] Open
Abstract
The resistance of glioblastomas to treatments is mainly the consequence of their invasive capacities. Therefore, in order to better treat these tumors, it is important to understand the molecular mechanisms which are responsible for this behavior. Previous work suggested that gap junction proteins, the connexins, facilitate the aggressive nature of glioma cells. Here, we show that one of them—connexin43 (Cx43)—is implicated in the formation and function of invadopodia responsible for invasion capacity of U251 human glioblastoma cells. Immunofluorescent approaches—combined with confocal analyses—revealed that Cx43 was detected in all the formation stages of invadopodia exhibiting proteolytic activity. Clearly, Cx43 appeared to be localized in invadopodia at low cell density and less associated with the establishment of gap junctions. Accordingly, lower extracellular matrix degradation correlated with less mature invadopodia and MMP2 activity when Cx43 expression was decreased by shRNA strategies. Moreover, the kinetics of invadopodia formation could be dependent on Cx43 dynamic interactions with partners including Src and cortactin. Interestingly, it also appeared that invadopodia formation and MMP2 activity are dependent on Cx43 hemichannel activity. In conclusion, these results reveal that Cx43 might be involved in the formation and function of the invadopodia of U251 glioblastoma cells.
Collapse
Affiliation(s)
- Amandine Chepied
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Zeinaba Daoud-Omar
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Annie-Claire Meunier-Balandre
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Dale W. Laird
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Marc Mesnil
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
| | - Norah Defamie
- Equipe 4CS, Laboratoire Signalisation et Transports Ioniques Membranaires (STIM), CNRS ERL 7003, Pôle Biologie Santé, University of Poitiers, 86073 Poitiers, France; (A.C.); (Z.D.-O.); (A.-C.M.-B.); (M.M.)
- Correspondence:
| |
Collapse
|
12
|
Connexin43 enhances Wnt and PGE2-dependent activation of β-catenin in osteoblasts. Pflugers Arch 2019; 471:1235-1243. [PMID: 31240382 DOI: 10.1007/s00424-019-02295-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/06/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022]
Abstract
Connexin43 is an important modulator of many signaling pathways in bone. β-Catenin, a key regulator of the osteoblast differentiation and function, is among the pathways downstream of connexin43-dependent intercellular communication. There are striking overlaps between the functions of these two proteins in bone cells. However, differential effects of connexin43 on β-catenin activity have been reported. Here, we examined how connexin43 influenced both Wnt-dependent and Wnt-independent activation of β-catenin in osteoblasts in vitro. Our data show that loss of connexin43 in primary osteoblasts or connexin43 overexpression in UMR106 cells regulated active β-catenin and phospho-Akt levels, with loss of connexin43 inhibiting and connexin43 overexpression increasing the levels of active β-catenin and phospho-Akt. Increasing connexin43 expression synergistically enhanced Wnt3a-dependent activation of β-catenin protein and β-catenin transcriptional activity, as well as Wnt-independent activation of β-catenin by prostaglandin E2 (PGE2). Finally, we show that the activation of β-catenin by PGE2 required signaling through the phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase 3 beta (GSK3β) pathway, as the PI3K inhibitor, LY-294002, disrupted the synergy between connexin43 and PGE2. These data show that connexin43 regulates Akt and β-catenin activity and synergistically enhances both Wnt-dependent and Wnt-independent β-catenin signaling in osteoblasts.
Collapse
|
13
|
Deng W, Shao F, He Q, Wang Q, Shi W, Yu Q, Cao X, Feng C, Bi S, Chen J, Ma P, Li Y, Gong A, Tong S, Yu J, Spector M, Xu X, Zhang Z. EMSCs Build an All-in-One Niche via Cell-Cell Lipid Raft Assembly for Promoted Neuronal but Suppressed Astroglial Differentiation of Neural Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806861. [PMID: 30633831 DOI: 10.1002/adma.201806861] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/29/2018] [Indexed: 05/11/2023]
Abstract
The therapeutic efficiency of allogenic/intrinsic neural stem cells (NSCs) after spinal cord injury is severely compromised because the hostile niche at the lesion site incurs massive astroglial but not neuronal differentiation of NSCs. Although many attempts are made to reconstruct a permissive niche for nerve regeneration, solely using a living cell material to build an all-in-one, multifunctional, permissive niche for promoting neuronal while inhibiting astroglial differentiation of NSCs is not reported. Here, ectomesenchymal stem cells (EMSCs) are reported to serve as a living, smart material that creates a permissive, all-in-one niche which provides neurotrophic factors, extracellular matrix molecules, cell-cell contact, and favorable substrate stiffness for directing NSC differentiation. Interestingly, in this all-in-one niche, a corresponding all-in-one signal-sensing platform is assembled through recruiting various niche signaling molecules into lipid rafts for promoting neuronal differentiation of NSCs, and meanwhile, inhibiting astrocyte overproliferation through the connexin43/YAP/14-3-3θ pathway. In vivo studies confirm that EMSCs can promote intrinsic NSC neuronal differentiation and domesticating astrocyte behaviors for nerve regeneration. Collectively, this study represents an all-in-one niche created by a single-cell material-EMSCs for directing NSC differentiation.
Collapse
Affiliation(s)
- Wenwen Deng
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Fengxia Shao
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Qinghua He
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Qiang Wang
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Wentao Shi
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Qingtong Yu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Xia Cao
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Chunlai Feng
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Shiqi Bi
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Jiaxin Chen
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Ping Ma
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Yang Li
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Aihua Gong
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| | - Shanshan Tong
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Jiangnan Yu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Myron Spector
- Department of Orthopedic Surgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Ximing Xu
- School of Pharmacy, Jiangsu University, Laboratory of Drug Delivery and Tissue Regeneration and Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, 212001, P. R. China
| | - Zhijian Zhang
- School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212001, P. R. China
| |
Collapse
|
14
|
Xing L, Yang T, Cui S, Chen G. Connexin Hemichannels in Astrocytes: Role in CNS Disorders. Front Mol Neurosci 2019; 12:23. [PMID: 30787868 PMCID: PMC6372977 DOI: 10.3389/fnmol.2019.00023] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
In the central nervous system (CNS), astrocytes form networks interconnected by gap junctions made from connexins of the subtypes Cx30 and Cx43. When unopposed by an adjoining hemichannel, astrocytic connexins can act as hemichannels to control the release of small molecules such as ATP and glutamate into the extracellular space. Accruing evidence indicates that astrocytic connexins are crucial for the coordination and maintenance of physiologic CNS activity. Here we provide an update on the role of astrocytic connexins in neurodegenerative disorders, glioma, and ischemia. In addition, we address the regulation of Cx43 in chronic pain.
Collapse
Affiliation(s)
- LingYan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Tuo Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ShuSen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Basheer WA, Shaw RM. Connexin 43 and CaV1.2 Ion Channel Trafficking in Healthy and Diseased Myocardium. Circ Arrhythm Electrophysiol 2018; 9:e001357. [PMID: 27266274 DOI: 10.1161/circep.115.001357] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/29/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Wassim A Basheer
- From the Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (W.A.B., R.M.S.); and Department of Medicine, University of California Los Angeles (R.M.S.)
| | - Robin M Shaw
- From the Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (W.A.B., R.M.S.); and Department of Medicine, University of California Los Angeles (R.M.S.).
| |
Collapse
|
16
|
Sorgen PL, Trease AJ, Spagnol G, Delmar M, Nielsen MS. Protein⁻Protein Interactions with Connexin 43: Regulation and Function. Int J Mol Sci 2018; 19:E1428. [PMID: 29748463 PMCID: PMC5983787 DOI: 10.3390/ijms19051428] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
Connexins are integral membrane building blocks that form gap junctions, enabling direct cytoplasmic exchange of ions and low-molecular-mass metabolites between adjacent cells. In the heart, gap junctions mediate the propagation of cardiac action potentials and the maintenance of a regular beating rhythm. A number of connexin interacting proteins have been described and are known gap junction regulators either through direct effects (e.g., kinases) or the formation of larger multifunctional complexes (e.g., cytoskeleton scaffold proteins). Most connexin partners can be categorized as either proteins promoting coupling by stimulating forward trafficking and channel opening or inhibiting coupling by inducing channel closure, internalization, and degradation. While some interactions have only been implied through co-localization using immunohistochemistry, others have been confirmed by biophysical methods that allow detection of a direct interaction. Our understanding of these interactions is, by far, most well developed for connexin 43 (Cx43) and the scope of this review is to summarize our current knowledge of their functional and regulatory roles. The significance of these interactions is further exemplified by demonstrating their importance at the intercalated disc, a major hub for Cx43 regulation and Cx43 mediated effects.
Collapse
Affiliation(s)
- Paul L Sorgen
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Andrew J Trease
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Gaelle Spagnol
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mario Delmar
- Leon H Charney Division of Cardiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Morten S Nielsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
17
|
Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girão H. Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130:3619-3630. [PMID: 29025971 DOI: 10.1242/jcs.200667] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
Collapse
Affiliation(s)
- Teresa M Ribeiro-Rodrigues
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Tânia Martins-Marques
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal.,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Sandrine Morel
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Brenda R Kwak
- Dept. of Pathology and Immunology, and Dept. of Medical Specialties - Cardiology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Henrique Girão
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal .,CNC.IBILI, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
18
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
19
|
Xu H, Liu R, Ning D, Zhang J, Yang R, Riquelme MA, Li J, Jiang JX, Shang P. Biological responses of osteocytic connexin 43 hemichannels to simulated microgravity. J Orthop Res 2017; 35:1195-1202. [PMID: 26945892 PMCID: PMC5726230 DOI: 10.1002/jor.23224] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/23/2016] [Indexed: 02/04/2023]
Abstract
Connexin 43 (Cx43) hemichannels and gap junctions in osteocytes are responsive to mechanical loading, which is important for bone formation and remodeling. However, the mechanism of these Cx43-forming channels in the process of mechanical unloading is still not very clear. In this study, unloading caused by weightlessness was simulated by using a random position machine (RPM). Osteocytic MLO-Y4 cells were subjected to 2 h of RPM treatment, and levels of Cx43 mRNA and total and cell surface expressed protein were determined by quantitative real-time PCR, western blotting, and biotinylation analysis. Although mRNA was elevated by RPM, total protein level of Cx43 was not altered; however, surface biotinylated Cx43 was significantly reduced. Interestingly, RPM promoted the retention of Cx43 in the Golgi apparatus detected by co-immunofluorescence with antibodies against Cx43 and 58 K Golgi marker protein. Dye uptake assay showed that hemichannels were induced open after RPM for 2 h. Consistently, prostaglandin E2 release was increased and this increase was completely attenuated with the treatment of a Cx43 hemichannel blocking antibody. Together, this study demonstrates increased activity of Cx43 hemichannels to RPM, and active Cx43 hemichannels with prostaglandin E2 release are likely to module biological function under simulated weightless conditions. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1195-1202, 2017.
Collapse
Affiliation(s)
- Huiyun Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruofei Liu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Dandan Ning
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jian Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruixin Yang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Manuel A. Riquelme
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Jingbao Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jean X. Jiang
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Peng Shang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
20
|
Epifantseva I, Shaw RM. Intracellular trafficking pathways of Cx43 gap junction channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:40-47. [PMID: 28576298 DOI: 10.1016/j.bbamem.2017.05.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Irina Epifantseva
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.; Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA..
| |
Collapse
|
21
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
22
|
Connexin43 plays diverse roles in co-ordinating cell migration and wound closure events. Biochem Soc Trans 2016; 43:482-8. [PMID: 26009195 DOI: 10.1042/bst20150034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic wounds are not only debilitating to patients, but also impose a huge financial burden on healthcare providers, as current treatments are not particularly effective. Wound healing is a highly co-ordinated process involving a vast array of signalling molecules and different cell types, therefore a substantial amount of research has been carried out in the quest to develop new therapies. The gap junction (GJ) protein connexin43 (Cx43) is one of the many molecules whose expression has been found to be up-regulated in chronic wounds and as a result targeting it may have therapeutic potential. Two different approaches have been adopted to investigate this: knockdown of Cx43 using antisense oligonucleotides and connexin mimetic peptides (CMPs) which inhibit the function of Cx43 without affecting gene expression. These peptides are targeted to the C-terminal domain or the extracellular loops of Cx43 and thus are likely to function by different means. However, both block channel function and have been shown to enhance cell migration rates. In recent years, non-channel functions have emerged for Cx43, many of which are linked to cytoskeletal dynamics and the extracellular matrix (ECM), showing that Cx43 plays diverse roles in co-ordinating wound closure events. It is clear that both CMPs and antisense oligonucleotides hold therapeutic potential, however maintaining Cx43 expression may be beneficial to the cell by preserving other non-channel functions of Cx43. Recent data in the field will be discussed in this article.
Collapse
|
23
|
Sala G, Badalamenti S, Ponticelli C. The Renal Connexome and Possible Roles of Connexins in Kidney Diseases. Am J Kidney Dis 2015; 67:677-87. [PMID: 26613807 DOI: 10.1053/j.ajkd.2015.09.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 09/30/2015] [Indexed: 12/21/2022]
Abstract
Connexins are membrane-spanning proteins that allow for the formation of cell-to-cell channels and cell-to-extracellular space hemichannels. Many connexin subtypes are expressed in kidney cells. Some mutations in connexin genes have been linked to various human pathologies, including cardiovascular, neurodegenerative, lung, and skin diseases, but the exact role of connexins in kidney disease remains unclear. Some hypotheses about a connection between genetic mutations, endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) in kidney pathology have been explored. The potential relationship of kidney disease to abnormal production of connexin proteins, mutations in their genes together with ER stress, or the UPR is still a matter of debate. In this scenario, it is tantalizing to speculate about a possible role of connexins in the setting of kidney pathologies that are thought to be caused by a deregulated podocyte protein expression, the so-called podocytopathies. In this article, we give examples of the roles of connexins in kidney (patho)physiology and propose avenues for further research concerning connexins, ER stress, and UPR in podocytopathies that may ultimately help refine drug treatment.
Collapse
Affiliation(s)
- Gabriele Sala
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy.
| | - Salvatore Badalamenti
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy
| | - Claudio Ponticelli
- Nephrology and Dialysis Unit, Humanitas Clinical Research Center, Rozzano (Milano), Italy
| |
Collapse
|
24
|
Basheer W, Shaw R. The "tail" of Connexin43: An unexpected journey from alternative translation to trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1848-56. [PMID: 26526689 DOI: 10.1016/j.bbamcr.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022]
Abstract
With each heartbeat, Connexin43 (Cx43) cell-cell communication gap junctions are needed to rapidly spread and coordinate excitation signals for an effective heart contraction. The correct formation and delivery of channels to their respective membrane subdomain is referred to as protein trafficking. Altered Cx43 trafficking is a dangerous complication of diseased myocardium which contributes to the arrhythmias of sudden cardiac death. Cx43 has also been found to regulate many other cellular processes that cannot be explained by cell-cell communication. We recently identified the existence of up to six endogenous internally translated Cx43 N-terminal truncated isoforms from the same full-length mRNA molecule. This is the first evidence that alternative translation is possible for human ion channels and in human heart. Interestingly, we found that these internally translated isoforms, more specifically the 20 kDa isoform (GJA1-20k), is important for delivery of Cx43 to its respective membrane subdomain. This review covers recent advances in Cx43 trafficking and potential importance of alternatively translated Cx43 truncated isoforms. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Wassim Basheer
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robin Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Thuringer D, Berthenet K, Cronier L, Solary E, Garrido C. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells. Oncotarget 2015; 6:28800-15. [PMID: 26320187 PMCID: PMC4745693 DOI: 10.18632/oncotarget.4894] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/24/2015] [Indexed: 12/30/2022] Open
Abstract
A gradual loss of functional gap junction between tumor cells has been reported with colorectal cancer (CRC) progression. Here, we explored if colon cancer cells could also affect gap junctions in blood capillary cells. Human microvascular endothelial cells (HMEC) were cultured with two CRC cell lines established from a unique patient. SW480 cells, derived from the primary tumor, migrate much faster across HMEC monolayer than SW620 cells derived from a metastatic site. The motile SW480 cells highly express and release HSP27 that increases gap junction formation with HMEC. Soluble HSP27 phosphorylates the connexin Cx43 on serine residues and induces its interaction with the oncoprotein 14-3-3, which promotes Cx43 delivery at the plasma membrane. The factors secreted by less motile SW620 cells do not affect Cx43 expression but up-regulate the expression of the connexin Cx32 through an activation of the chemokine receptor CXCR2. In turn, SW620 secreted factors induce tubulogenesis and ATP release. Altogether, cell lines derived from CRC primary tumor and metastasis differentially adapt endothelial cell functions by modulating connexin expression through released mediators.
Collapse
Affiliation(s)
| | | | - Laurent Cronier
- CNRS ERL7368, STIM Lab, University of Poitiers, 86022 Poitiers, France
| | - Eric Solary
- INSERM, U1170, Institut Gustave Roussy, 94508 Villejuif, France
| | - Carmen Garrido
- INSERM, U866 Faculty of Medecine, 21000 Dijon, France
- University of Bourgogne-Franche-Comté, 21000 Dijon, France
- CGFL, 21000 Dijon, France
| |
Collapse
|
26
|
Manipulating Cx43 expression triggers gene reprogramming events in dermal fibroblasts from oculodentodigital dysplasia patients. Biochem J 2015; 472:55-69. [PMID: 26349540 DOI: 10.1042/bj20150652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Oculodentodigital dysplasia (ODDD) is primarily an autosomal dominant disorder linked to over 70 GJA1 gene [connexin43 (Cx43)] mutations. For nearly a decade, our laboratory has been investigating the relationship between Cx43 and ODDD by expressing disease-linked mutants in reference cells, tissue-relevant cell lines, 3D organ cultures and by using genetically modified mouse models of human disease. Although salient features of Cx43 mutants have been revealed, these models do not necessarily reflect the complexity of the human context. To further overcome these limitations, we have acquired dermal fibroblasts from two ODDD-affected individuals harbouring D3N and V216L mutations in Cx43, along with familial controls. Using these ODDD patient dermal fibroblasts, which naturally produce less GJA1 gene product, along with RNAi and RNA activation (RNAa) approaches, we show that manipulating Cx43 expression triggers cellular gene reprogramming. Quantitative RT-PCR, Western blot and immunofluorescent analysis of ODDD patient fibroblasts show unusually high levels of extracellular matrix (ECM)-interacting proteins, including integrin α5β1, matrix metalloproteinases as well as secreted ECM proteins collagen-I and laminin. Cx43 knockdown in familial control cells produces similar effects on ECM expression, whereas Cx43 transcriptional up-regulation using RNAa decreases production of collagen-I. Interestingly, the enhanced levels of ECM-associated proteins in ODDD V216L fibroblasts is not only a consequence of increased ECM gene expression, but also due to an apparent deficit in collagen-I secretion which may further contribute to impaired collagen gel contraction in ODDD fibroblasts. These findings further illuminate the altered function of Cx43 in ODDD-affected individuals and highlight the impact of manipulating Cx43 expression in human cells.
Collapse
|
27
|
Martins-Marques T, Anjo SI, Pereira P, Manadas B, Girão H. Interacting Network of the Gap Junction (GJ) Protein Connexin43 (Cx43) is Modulated by Ischemia and Reperfusion in the Heart. Mol Cell Proteomics 2015; 14:3040-55. [PMID: 26316108 DOI: 10.1074/mcp.m115.052894] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 01/16/2023] Open
Abstract
The coordinated and synchronized cardiac muscle contraction relies on an efficient gap junction-mediated intercellular communication (GJIC) between cardiomyocytes, which involves the rapid anisotropic impulse propagation through connexin (Cx)-containing channels, namely of Cx43, the most abundant Cx in the heart. Expectedly, disturbing mechanisms that affect channel activity, localization and turnover of Cx43 have been implicated in several cardiomyopathies, such as myocardial ischemia. Besides gap junction-mediated intercellular communication, Cx43 has been associated with channel-independent functions, including modulation of cell adhesion, differentiation, proliferation and gene transcription. It has been suggested that the role played by Cx43 is dictated by the nature of the proteins that interact with Cx43. Therefore, the characterization of the Cx43-interacting network and its dynamics is vital to understand not only the molecular mechanisms underlying pathological malfunction of gap junction-mediated intercellular communication, but also to unveil novel and unanticipated biological functions of Cx43. In the present report, we applied a quantitative SWATH-MS approach to characterize the Cx43 interactome in rat hearts subjected to ischemia and ischemia-reperfusion. Our results demonstrate that, in the heart, Cx43 interacts with proteins related with various biological processes such as metabolism, signaling and trafficking. The interaction of Cx43 with proteins involved in gene transcription strengthens the emerging concept that Cx43 has a role in gene expression regulation. Importantly, our data shows that the interactome of Cx43 (Connexome) is differentially modulated in diseased hearts. Overall, the characterization of Cx43-interacting network may contribute to the establishment of new therapeutic targets to modulate cardiac function in physiological and pathological conditions. Data are available via ProteomeXchange with identifier PXD002331.
Collapse
Affiliation(s)
- Tania Martins-Marques
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Sandra Isabel Anjo
- §CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ¶Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Paulo Pereira
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal
| | - Bruno Manadas
- §CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ‖Biocant - Biotechnology Innovation Center, 3060-197, Cantanhede, Portugal
| | - Henrique Girão
- From the ‡Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Azinhaga de Sta Comba, 3000-354 Coimbra, Portugal;
| |
Collapse
|
28
|
Li X, Zhao H, Tan X, Kostrzewa RM, Du G, Chen Y, Zhu J, Miao Z, Yu H, Kong J, Xu X. Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia 2015; 63:1553-67. [PMID: 25988944 DOI: 10.1002/glia.22826] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Li
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Heqing Zhao
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Xianxing Tan
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Richard M. Kostrzewa
- Department of Pharmacology; Quillen College of Medicine, East Tennessee State University; Johnson City Tennessee
| | - Gang Du
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Yuanyuan Chen
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Jiangtao Zhu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Hailong Yu
- Department of Neurology; Subei People's Hospital; Yangzhou City China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science; Faculty of Medicine, University of Manitoba; Winnipeg Manitoba Canada
| | - Xingshun Xu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| |
Collapse
|
29
|
Abstract
Bone adaptation to changes in mechanical stimuli occurs by adjusting bone formation and resorption by osteoblasts and osteoclasts, to maintain optimal bone mass. Osteocytes coordinate the actions of these cells on the bone surface by sensing mechanical forces and producing cytokines that increase or prevent osteoblast and osteoclast differentiation and function. Channels formed by connexins (Cxs) and, in particular, connexin 43 (Cx43) in osteoblasts and osteocytes are central part of this mechanism to control bone mass. Cx43 hemichannels are opened by fluid flow and mediate the anti-apoptotic effect of mechanical stimulation in vitro, suggesting that Cx43 participates in mechanotransduction. However, mice lacking Cx43 in osteoblasts and/or osteocytes show an increased anabolic response to loading and decreased catabolic response to unloading. This evidence suggests that Cx43 channels expressed in osteoblastic cells are not required for the response to mechanical stimulation, but mediate the consequence of lack thereof. The molecular basis of these unexpected responses to mechanical stimulation is currently under investigation.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, and Roudebush Veterans Administration Medical Center, 635 Barnhill Drive, MS-5035, Indianapolis, IN, 46202, USA,
| | | | | |
Collapse
|
30
|
Xiao S, Shaw RM. Cardiomyocyte protein trafficking: Relevance to heart disease and opportunities for therapeutic intervention. Trends Cardiovasc Med 2014; 25:379-89. [PMID: 25649302 DOI: 10.1016/j.tcm.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
Abstract
Cardiomyocytes, the individual contractile units of heart muscle, are long-lived and robust. Given the longevity of these cells, it can be easy to overlook their dynamic intracellular environment that contain rapid protein movements and frequent protein turnover. Critical gene transcription and protein translation occur continuously, as well as trafficking and localization of proteins to specific functional zones of cell membrane. As heart failure becomes an increasingly important clinical entity, growing numbers of investigative teams are examining the cell biology of healthy and diseased cardiomyocytes. In this review, we introduce the major architectural structures and types of protein movements within cardiac cells, and then review recent studies that explore the regulation of such movements. We conclude by introducing current translational directions of the basic studies with a focus on novel areas of therapeutic development.
Collapse
Affiliation(s)
- Shaohua Xiao
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Robin M Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA; Department of Medicine, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
31
|
Smyth JW, Zhang SS, Sanchez JM, Lamouille S, Vogan JM, Hesketh GG, Hong T, Tomaselli GF, Shaw RM. A 14-3-3 mode-1 binding motif initiates gap junction internalization during acute cardiac ischemia. Traffic 2014; 15:684-99. [PMID: 24612377 PMCID: PMC4278178 DOI: 10.1111/tra.12169] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 02/03/2023]
Abstract
Altered phosphorylation and trafficking of connexin 43 (Cx43) during acute ischemia contributes to arrhythmogenic gap junction remodeling, yet the critical sequence and accessory proteins necessary for Cx43 internalization remain unresolved. 14-3-3 proteins can regulate protein trafficking, and a 14-3-3 mode-1 binding motif is activated upon phosphorylation of Ser373 of the Cx43 C-terminus. We hypothesized that Cx43(Ser373) phosphorylation is important to pathological gap junction remodeling. Immunofluorescence in human heart reveals the enrichment of 14-3-3 proteins at intercalated discs, suggesting interaction with gap junctions. Knockdown of 14-3-3τ in cell lines increases gap junction plaque size at cell-cell borders. Cx43(S373A) mutation prevents Cx43/14-3-3 complexing and stabilizes Cx43 at the cell surface, indicating avoidance of degradation. Using Langendorff-perfused mouse hearts, we detect phosphorylation of newly internalized Cx43 at Ser373 and Ser368 within 30 min of no-flow ischemia. Phosphorylation of Cx43 at Ser368 by protein kinase C and Ser255 by mitogen-activated protein kinase has previously been implicated in Cx43 internalization. The Cx43(S373A) mutant is resistant to phosphorylation at both these residues and does not undergo ubiquitination, revealing Ser373 phosphorylation as an upstream gatekeeper of a posttranslational modification cascade necessary for Cx43 internalization. Cx43(Ser373) phosphorylation is a potent target for therapeutic interventions to preserve gap junction coupling in the stressed myocardium.
Collapse
Affiliation(s)
- James W. Smyth
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center
| | - Shan-Shan Zhang
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center
| | - Jose M. Sanchez
- Department of Medicine, University of California San Francisco
| | - Samy Lamouille
- Department of Medicine, University of California San Francisco
| | - Jacob M. Vogan
- Department of Medicine, University of California San Francisco
| | | | - TingTing Hong
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center
- Department of Medicine, University of California Los Angeles
| | | | - Robin M. Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center
- Department of Medicine, University of California Los Angeles
| |
Collapse
|
32
|
Plotkin LI. Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol 2014; 5:131. [PMID: 24772090 PMCID: PMC3983496 DOI: 10.3389/fphys.2014.00131] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/15/2014] [Indexed: 12/13/2022] Open
Abstract
Cell function and survival are controlled by intracellular signals, and modulated by surrounding cells and the extracellular environment. Connexin channels participate in these processes by mediating cell-to-cell communication. In bone cells, gap junction channels were detected in the early 1970s, and are present among bone resorbing osteoclasts, bone forming osteoblasts, and osteocytes - mature osteoblasts embedded in the mineralized matrix. These channels are composed mainly by Cx43, although the expression of other connexins (45, 46, and 37) has also been reported. It is now believed that undocked Cx43 hemichannels (connexons) formed in unopposed cell membranes facing the extracellular environment participate in the interaction of bone cells with the extracellular environment, and in their communication with neighboring cells. Thus, we and others demonstrated the presence of active hemichannels in osteoblastic and osteocytic cells. These hemichannels open in response to pharmacological and mechanical stimulation. In particular, preservation of the viability of osteoblasts and osteocytes by the anti-osteoporotic drugs bisphosphonates depends on Cx43 expression in vitro and in vivo, and is mediated by undocked hemichannels. Cx43 hemichannels are also required for the release of prostaglandins and ATP by osteocytes, and for cell survival induced by mechanical stimulation in vitro. Moreover, they are required for the anti-apoptotic effect of parathyroid hormone in osteoblastic cells. This review summarizes the current knowledge on the presence and function of undocked connexons, and the role of hemichannel regulation for the maintenance of bone cell viability and, potentially, bone health.
Collapse
Affiliation(s)
- Lilian I. Plotkin
- Department Anatomy and Cell Biology, Indiana University School of MedicineIndianapolis, IN, USA
| |
Collapse
|