1
|
Stomper J, Niroula A, Belizaire R, McConkey M, Bandaru TS, Ebert BL. Sex differences in DNMT3A-mutant clonal hematopoiesis and the effects of estrogen. Cell Rep 2025; 44:115494. [PMID: 40178977 DOI: 10.1016/j.celrep.2025.115494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 02/03/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
Blood cancers are generally more common in males, and the prevalence of most mutations that drive clonal hematopoiesis and myeloid malignancies is higher in males. In contrast, hematopoietic DNMT3A mutations are more common in females. Among ∼450,000 participants in the UK Biobank, the prevalence of DNMT3A mutations and copy-number abnormalities is higher in females than males. In a murine model, Dnmt3a-mutant hematopoietic stem cells (HSCs) from unperturbed female mice had increased stemness gene expression compared to male and wild-type (WT) mice. Estrogen regulates HSCs, and we found that Dnmt3a mutations maintain stemness in the setting of estrogen-induced proliferative stress. Dnmt3a-mutant myeloid cells outcompeted WT cells under chronic estrogen treatment, an effect that was dependent on cell-intrinsic estrogen receptor alpha activity. Our studies indicate that estrogen might contribute to the female predominance of DNMT3A-mutant clonal hematopoiesis.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Abhishek Niroula
- Broad Institute, Cambridge, MA 02142, USA; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden; SciLifeLab, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Tagore Sanketh Bandaru
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
2
|
Comparative Proteomic Analysis of Drug Trichosanthin Addition to BeWo Cell Line. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051603. [PMID: 35268705 PMCID: PMC8911981 DOI: 10.3390/molecules27051603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Trichosanthin (TCS) is a traditional Chinese herbal medicine used to treat some gynecological diseases. Its effective component has diverse biological functions, including antineoplastic activity. The human trophoblast cell line BeWo was chosen as an experimental model for in vitro testing of a drug screen for anticancer properties of TCS. The MTT method was used in this study to get a primary screen result. The result showed that 100 mM had the best IC50 value. Proteomics analysis was then performed for further investigation of the drug effect of TCS on the BeWo cell line. In this differential proteomic expression analysis, the total proteins extracted from the BeWo cell line and their protein expression level after the drug treatment were compared by 2DE. Then, 24 unique three-fold differentially expressed proteins (DEPs) were successfully identified by MALDI-TOF/TOF MS. Label-free proteomics was run as a complemental method for the same experimental procedure. There are two proteins that were identified in both the 2DE and label-free methods. Among those identified proteins, bioinformatics analysis showed the importance of pathway and signal transduction and gives us the potential possibility for the disease treatment hypothesis.
Collapse
|
3
|
Caron P, Pobega E, Polo SE. DNA Double-Strand Break Repair: All Roads Lead to HeterochROMAtin Marks. Front Genet 2021; 12:730696. [PMID: 34539757 PMCID: PMC8440905 DOI: 10.3389/fgene.2021.730696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 12/21/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), chromatin modifications orchestrate DNA repair pathways thus safeguarding genome integrity. Recent studies have uncovered a key role for heterochromatin marks and associated factors in shaping DSB repair within the nucleus. In this review, we present our current knowledge of the interplay between heterochromatin marks and DSB repair. We discuss the impact of heterochromatin features, either pre-existing in heterochromatin domains or de novo established in euchromatin, on DSB repair pathway choice. We emphasize how heterochromatin decompaction and mobility further support DSB repair, focusing on recent mechanistic insights into these processes. Finally, we speculate about potential molecular players involved in the maintenance or the erasure of heterochromatin marks following DSB repair, and their implications for restoring epigenome function and integrity.
Collapse
Affiliation(s)
- Pierre Caron
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| | - Enrico Pobega
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| | - Sophie E Polo
- Epigenetics and Cell Fate Centre, CNRS, University of Paris, Paris, France
| |
Collapse
|
4
|
Schätzl T, Kaiser L, Deigner HP. Facioscapulohumeral muscular dystrophy: genetics, gene activation and downstream signalling with regard to recent therapeutic approaches: an update. Orphanet J Rare Dis 2021; 16:129. [PMID: 33712050 PMCID: PMC7953708 DOI: 10.1186/s13023-021-01760-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Whilst a disease-modifying treatment for Facioscapulohumeral muscular dystrophy (FSHD) does not exist currently, recent advances in complex molecular pathophysiology studies of FSHD have led to possible therapeutic approaches for its targeted treatment. Although the underlying genetics of FSHD have been researched extensively, there remains an incomplete understanding of the pathophysiology of FSHD in relation to the molecules leading to DUX4 gene activation and the downstream gene targets of DUX4 that cause its toxic effects. In the context of the local proximity of chromosome 4q to the nuclear envelope, a contraction of the D4Z4 macrosatellite induces lower methylation levels, enabling the ectopic expression of DUX4. This disrupts numerous signalling pathways that mostly result in cell death, detrimentally affecting skeletal muscle in affected individuals. In this regard different options are currently explored either to suppress the transcription of DUX4 gene, inhibiting DUX4 protein from its toxic effects, or to alleviate the symptoms triggered by its numerous targets.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstraße 25, 79104, Freiburg i. Br., Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Jakob-Kienzle-Straße 17, 78054, Villingen-Schwenningen, Germany.
- EXIM Department, Fraunhofer Institute IZI, Leipzig, Schillingallee 68, 18057, Rostock, Germany.
- Faculty of Science, Tuebingen University, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
5
|
A Three Protein-Coding Gene Prognostic Model Predicts Overall Survival in Bladder Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7272960. [PMID: 33150179 PMCID: PMC7603549 DOI: 10.1155/2020/7272960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/23/2020] [Accepted: 08/07/2020] [Indexed: 12/27/2022]
Abstract
Bladder cancer (BLCA) is the most common urinary tract tumor and is the 11th most malignant cancer worldwide. With the development of in-depth multisystem sequencing, an increasing number of prognostic molecular markers have been identified. In this study, we focused on the role of protein-coding gene methylation in the prognosis of BLCA. We downloaded BLCA clinical and methylation data from The Cancer Genome Atlas (TCGA) database and used this information to identify differentially methylated genes and construct a survival model using lasso regression. We assessed 365 cases, with complete information regarding survival status, survival time longer than 30 days, age, gender, and tumor characteristics (grade, stage, T, M, N), in our study. We identified 353 differentially methylated genes, including 50 hypomethylated genes and 303 hypermethylated genes. After annotation, a total of 227 genes were differentially expressed. Of these, 165 were protein-coding genes. Three genes (zinc finger protein 382 (ZNF382), galanin receptor 1 (GALR1), and structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1)) were selected for the final risk model. Patients with higher-risk scores represent poorer survival than patients with lower-risk scores in the training set (HR = 2.37, 95% CI 1.43-3.94, p = 0.001), in the testing group (HR = 1.85, 95% CI 1.16-2.94, p = 0.01), and in the total cohort (HR = 2.06, 95% CI 1.46-2.90, p < 0.001). Further univariate and multivariate analyses using the Cox regression method were conducted in these three groups, respectively. All the results indicated that risk score was an independent risk factor for BLCA. Our study screened the different methylation protein-coding genes in the BLCA tissues and constructed a robust risk model for predicting the outcome of BLCA patients. Moreover, these three genes may function in the mechanism of development and progression of BLCA, which should be fully clarified in the future.
Collapse
|
6
|
Vančevska A, Ahmed W, Pfeiffer V, Feretzaki M, Boulton SJ, Lingner J. SMCHD1 promotes ATM-dependent DNA damage signaling and repair of uncapped telomeres. EMBO J 2020; 39:e102668. [PMID: 32080884 DOI: 10.15252/embj.2019102668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMCHD1) has been implicated in X-chromosome inactivation, imprinting, and DNA damage repair, and mutations in SMCHD1 can cause facioscapulohumeral muscular dystrophy. More recently, SMCHD1 has also been identified as a component of telomeric chromatin. Here, we report that SMCHD1 is required for DNA damage signaling and non-homologous end joining (NHEJ) at unprotected telomeres. Co-depletion of SMCHD1 and the shelterin subunit TRF2 reduced telomeric 3'-overhang removal in time-course experiments, as well as the number of chromosome end fusions. SMCHD1-deficient cells displayed reduced ATM S1981 phosphorylation and diminished formation of γH2AX foci and of 53BP1-containing telomere dysfunction-induced foci (TIFs), indicating defects in DNA damage checkpoint signaling. Removal of TPP1 and subsequent activation of ATR signaling rescued telomere fusion events in TRF2-depleted SMCHD1 knockout cells. Together, these data indicate that SMCHD1 depletion reduces telomere fusions in TRF2-depleted cells due to defects in ATM-dependent checkpoint signaling and that SMCHD1 mediates DNA damage response activation upstream of ATM phosphorylation at uncapped telomeres.
Collapse
Affiliation(s)
- Aleksandra Vančevska
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,The Francis Crick Institute, London, UK
| | - Wareed Ahmed
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Verena Pfeiffer
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marianna Feretzaki
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
7
|
Midic U, Vincent KA, Wang K, Lokken A, Severance AL, Ralston A, Knott JG, Latham KE. Novel key roles for structural maintenance of chromosome flexible domain containing 1 (Smchd1) during preimplantation mouse development. Mol Reprod Dev 2019; 85:635-648. [PMID: 29900695 DOI: 10.1002/mrd.23001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022]
Abstract
Structural maintenance of chromosome flexible domain containing 1 (Smchd1) is a chromatin regulatory gene for which mutations are associated with facioscapulohumeral muscular dystrophy and arhinia. The contribution of oocyte- and zygote-expressed SMCHD1 to early development was examined in mice ( Mus musculus) using a small interfering RNA knockdown approach. Smchd1 knockdown compromised long-term embryo viability, with reduced embryo nuclear volumes at the morula stage, reduced blastocyst cell number, formation and hatching, and reduced viability to term. RNA sequencing analysis of Smchd1 knockdown morulae revealed aberrant increases in expression of a small number of trophectoderm (TE)-related genes and reduced expression of cell proliferation genes, including S-phase kinase-associated protein 2 ( Skp2). Smchd1 expression was elevated in embryos deficient for Caudal-type homeobox transcription factor 2 ( Cdx2, a key regulator of TE specification), indicating that Smchd1 is normally repressed by CDX2. These results indicate that Smchd1 plays an important role in the preimplantation embryo, regulating early gene expression and contributing to long-term embryo viability. These results extend the known functions of SMCHD1 to the preimplantation period and highlight important function for maternally expressed Smchd1 messenger RNA and protein.
Collapse
Affiliation(s)
- Uros Midic
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kailey A Vincent
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Kai Wang
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Alyson Lokken
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Ashley L Severance
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Amy Ralston
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan
| | - Jason G Knott
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| | - Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan
- Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
8
|
Montalvo-Quiros S, Aragoneses-Cazorla G, Garcia-Alcalde L, Vallet-Regí M, González B, Luque-Garcia JL. Cancer cell targeting and therapeutic delivery of silver nanoparticles by mesoporous silica nanocarriers: insights into the action mechanisms using quantitative proteomics. NANOSCALE 2019; 11:4531-4545. [PMID: 30806414 PMCID: PMC6667342 DOI: 10.1039/c8nr07667g] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An approach for safely delivering AgNPs to cancer cells and the evaluation of the affected cellular mechanism are presented. The use of mesoporous silica nanoparticles (MSNs) as nanovehicles decorated with transferrin (Tf, targeting agent) provides a nanoplatform for the nucleation and immobilization of AgNPs (MSNs-Tf-AgNPs). We performed the physico-chemical characterization of the nanosystems and evaluated their therapeutic potential using bioanalytical strategies to estimate the efficiency of the targeting, the degree of cellular internalization in two cell lines with different TfR expression, and the cytotoxic effects of the delivered AgNPs. In addition, cellular localization of the nanosystems in cells has been evaluated by a transmission electron microscopy analysis of ultrathin sections of human hepatocarcinoma (HepG2) cells exposed to MSNs-Tf-AgNPs. The in vitro assays demonstrate that only the nanosystem functionalized with Tf is able to transport the AgNPs inside the cells which overexpress transferrin receptors. Therefore, this novel nanosystem is able to deliver AgNPs specifically to cancer cells overexpressing Tf receptors and offers the possibility of a targeted therapy using reduced doses of silver nanoparticles as cytotoxic agents. Then, a quantitative proteomic experiment validated through the analysis of gene expression has been performed to identify the molecular mechanisms of action associated with the chemotherapeutic potential of the MSNs-Tf-AgNP nanocarriers.
Collapse
Affiliation(s)
- Sandra Montalvo-Quiros
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
9
|
Majerska J, Feretzaki M, Glousker G, Lingner J. Transformation-induced stress at telomeres is counteracted through changes in the telomeric proteome including SAMHD1. Life Sci Alliance 2018; 1:e201800121. [PMID: 30456372 PMCID: PMC6238619 DOI: 10.26508/lsa.201800121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
The authors apply telomeric chromatin analysis to identify factors that accumulate at telomeres during cellular transformation, promoting telomere replication and repair and counteracting oncogene-borne telomere replication stress. Telomeres play crucial roles during tumorigenesis, inducing cellular senescence upon telomere shortening and extensive chromosome instability during telomere crisis. However, it has not been investigated if and how cellular transformation and oncogenic stress alter telomeric chromatin composition and function. Here, we transform human fibroblasts by consecutive transduction with vectors expressing hTERT, the SV40 early region, and activated H-RasV12. Pairwise comparisons of the telomeric proteome during different stages of transformation reveal up-regulation of proteins involved in chromatin remodeling, DNA repair, and replication at chromosome ends. Depletion of several of these proteins induces telomere fragility, indicating their roles in replication of telomeric DNA. Depletion of SAMHD1, which has reported roles in DNA resection and homology-directed repair, leads to telomere breakage events in cells deprived of the shelterin component TRF1. Thus, our analysis identifies factors, which accumulate at telomeres during cellular transformation to promote telomere replication and repair, resisting oncogene-borne telomere replication stress.
Collapse
Affiliation(s)
- Jana Majerska
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marianna Feretzaki
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Galina Glousker
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Joachim Lingner
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute for Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Whelan DR, Lee WTC, Yin Y, Ofri DM, Bermudez-Hernandez K, Keegan S, Fenyo D, Rothenberg E. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat Commun 2018; 9:3882. [PMID: 30250272 PMCID: PMC6155164 DOI: 10.1038/s41467-018-06435-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023] Open
Abstract
Homologous recombination (HR) is a crucial pathway for the repair of DNA double-strand breaks. BRCA1/2 breast cancer proteins are key players in HR via their mediation of RAD51 nucleofilament formation and function; however, their individual roles and crosstalk in vivo are unknown. Here we use super-resolution (SR) imaging to map the spatiotemporal kinetics of HR proteins, revealing the interdependent relationships that govern the dynamic interplay and progression of repair events. We show that initial single-stranded DNA/RAD51 nucleofilament formation is mediated by RAD52 or, in the absence of RAD52, by BRCA2. In contrast, only BRCA2 can orchestrate later RAD51 recombinase activity during homology search and resolution. Furthermore, we establish that upstream BRCA1 activity is critical for BRCA2 function. Our analyses reveal the underlying epistatic landscape of RAD51 functional dependence on RAD52, BRCA1, and BRCA2 during HR and explain the phenotypic similarity of diseases associated with mutations in these proteins.
Collapse
Affiliation(s)
- Donna R Whelan
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.,Department of Pharmacy and Applied Science, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, VIC, Australia
| | - Wei Ting C Lee
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Yandong Yin
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Dylan M Ofri
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Keria Bermudez-Hernandez
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Sarah Keegan
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - David Fenyo
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, Perlmutter Cancer Center, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
11
|
Koury E, Harrell K, Smolikove S. Differential RPA-1 and RAD-51 recruitment in vivo throughout the C. elegans germline, as revealed by laser microirradiation. Nucleic Acids Res 2018; 46:748-764. [PMID: 29244155 PMCID: PMC5778493 DOI: 10.1093/nar/gkx1243] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/25/2017] [Accepted: 11/30/2017] [Indexed: 01/12/2023] Open
Abstract
Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence.
Collapse
Affiliation(s)
- Emily Koury
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Kailey Harrell
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Sarit Smolikove
- Department of Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
12
|
De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development. Nat Genet 2017; 49:249-255. [PMID: 28067911 DOI: 10.1038/ng.3765] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/13/2016] [Indexed: 12/15/2022]
Abstract
Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.
Collapse
|
13
|
Couturier AM, Fleury H, Patenaude AM, Bentley VL, Rodrigue A, Coulombe Y, Niraj J, Pauty J, Berman JN, Dellaire G, Di Noia JM, Mes-Masson AM, Masson JY. Roles for APRIN (PDS5B) in homologous recombination and in ovarian cancer prediction. Nucleic Acids Res 2016; 44:10879-10897. [PMID: 27924011 PMCID: PMC5159559 DOI: 10.1093/nar/gkw921] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/11/2016] [Accepted: 10/22/2016] [Indexed: 12/28/2022] Open
Abstract
APRIN (PDS5 cohesin associated factor B) interacts with both the cohesin complex and the BRCA2 tumor suppressor. How APRIN influences cohesion and DNA repair processes is not well understood. Here, we show that APRIN is recruited to DNA damage sites. We find that APRIN interacts directly with RAD51, PALB2 and BRCA2. APRIN stimulates RAD51-mediated DNA strand invasion. APRIN also binds DNA with an affinity for D-loop structures and single-strand (ss) DNA. APRIN is a new homologous recombination (HR) mediator as it counteracts the RPA inhibitory effect on RAD51 loading to ssDNA. We show that APRIN strongly improves the annealing of complementary-strand DNA and that it can stimulate this process in synergy with BRCA2. Unlike cohesin constituents, its depletion has no impact on class switch recombination, supporting a specific role for this protein in HR. Furthermore, we show that low APRIN expression levels correlate with a better survival in ovarian cancer patients and that APRIN depletion sensitizes cells to the PARP inhibitor Olaparib in xenografted zebrafish. Our findings establish APRIN as an important and specific actor of HR, with cohesin-independent functions.
Collapse
Affiliation(s)
- Anthony M Couturier
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Hubert Fleury
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada.,Department of Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Anne-Marie Patenaude
- Institut de Recherches Cliniques de Montréal and Department of Medicine, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Victoria L Bentley
- Dalhousie University, Faculty of Medicine, Department of Pathology, Halifax, NS B3H 4R2, Canada
| | - Amélie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Joshi Niraj
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Joris Pauty
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| | - Jason N Berman
- Dalhousie University, Faculty of Medicine, Departments of Microbiology and Immunology, Pediatrics and Pathology, Halifax, NS B3H 4R2, Canada
| | - Graham Dellaire
- Dalhousie University, Faculty of Medicine, Department of Pathology, Halifax, NS B3H 4R2, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal and Department of Medicine, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada; Institut du cancer de Montréal, Montréal, QC H2X 0A9, Canada.,Department of Medicine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Axis, 9 McMahon, Québec City, QC G1R 2J6, Canada .,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
14
|
Independent Mechanisms Target SMCHD1 to Trimethylated Histone H3 Lysine 9-Modified Chromatin and the Inactive X Chromosome. Mol Cell Biol 2015; 35:4053-68. [PMID: 26391951 PMCID: PMC4628070 DOI: 10.1128/mcb.00432-15] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
Abstract
The chromosomal protein SMCHD1 plays an important role in epigenetic silencing at diverse loci, including the inactive X chromosome, imprinted genes, and the facioscapulohumeral muscular dystrophy locus. Although homology with canonical SMC family proteins suggests a role in chromosome organization, the mechanisms underlying SMCHD1 function and target site selection remain poorly understood. Here we show that SMCHD1 forms an active GHKL-ATPase homodimer, contrasting with canonical SMC complexes, which exist as tripartite ring structures. Electron microscopy analysis demonstrates that SMCHD1 homodimers structurally resemble prokaryotic condensins. We further show that the principal mechanism for chromatin loading of SMCHD1 involves an LRIF1-mediated interaction with HP1γ at trimethylated histone H3 lysine 9 (H3K9me3)-modified chromatin sites on the chromosome arms. A parallel pathway accounts for chromatin loading at a minority of sites, notably the inactive X chromosome. Together, our results provide key insights into SMCHD1 function and target site selection.
Collapse
|
15
|
Hewitt JE. Loss of epigenetic silencing of the DUX4 transcription factor gene in facioscapulohumeral muscular dystrophy. Hum Mol Genet 2015; 24:R17-23. [PMID: 26113644 DOI: 10.1093/hmg/ddv237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
Current genetic and molecular evidence best supports an epigenetic mechanism for facioscapulohumeral muscular dystrophy (FSHD), whereby de-repression of the D4Z4 macrosatellite array leads to aberrant expression of the DUX4 transcription factor in skeletal muscle. This de-repression is triggered by either array contraction or (more rarely) by mutation of the SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) gene. Activation of DUX4 targets, including germline genes and several mammalian retrotransposons, then drives pathogenesis. A direct role for DUX4 mRNA in suppression of nonsense-mediated decay pathways has recently been demonstrated and may also contribute to muscle pathology. Loss of D4Z4 repression in FSHD is observed as hypomethylation of the array accompanied by loss of repressive chromatin marks. The molecular mechanisms of D4Z4 repression are poorly understood, but recent data have identified an Argonaute (AGO)-dependent siRNA pathway. Targeting this pathway by exogenous siRNAs could be a therapeutic strategy for FSHD.
Collapse
Affiliation(s)
- Jane E Hewitt
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
16
|
Matzke MA, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The Evolution of a Complex Epigenetic Pathway in Flowering Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:243-67. [PMID: 25494460 DOI: 10.1146/annurev-arplant-043014-114633] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
RNA-directed DNA methylation (RdDM) is an epigenetic process in plants that involves both short and long noncoding RNAs. The generation of these RNAs and the induction of RdDM rely on complex transcriptional machineries comprising two plant-specific, RNA polymerase II (Pol II)-related RNA polymerases known as Pol IV and Pol V, as well as a host of auxiliary factors that include both novel and refashioned proteins. We present current views on the mechanism of RdDM with a focus on evolutionary innovations that occurred during the transition from a Pol II transcriptional pathway, which produces mRNA precursors and numerous noncoding RNAs, to the Pol IV and Pol V pathways, which are specialized for RdDM and gene silencing. We describe recently recognized deviations from the canonical RdDM pathway, discuss unresolved issues, and speculate on the biological significance of RdDM for flowering plants, which have a highly developed Pol V pathway.
Collapse
Affiliation(s)
- Marjori A Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115, Taiwan; , ,
| | | | | |
Collapse
|
17
|
Tang M, Li Y, Zhang X, Deng T, Zhou Z, Ma W, Songyang Z. Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) promotes non-homologous end joining and inhibits homologous recombination repair upon DNA damage. J Biol Chem 2014; 289:34024-32. [PMID: 25294876 DOI: 10.1074/jbc.m114.601179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Structural maintenance of chromosomes flexible hinge domain containing 1 (SMCHD1) has been shown to be involved in gene silencing and DNA damage. However, the exact mechanisms of how SMCHD1 participates in DNA damage remains largely unknown. Here we present evidence that SMCHD1 recruitment to DNA damage foci is regulated by 53BP1. Knocking out SMCHD1 led to aberrant γH2AX foci accumulation and compromised cell survival upon DNA damage, demonstrating the critical role of SMCHD1 in DNA damage repair. Following DNA damage induction, SMCHD1 depletion resulted in reduced 53BP1 foci and increased BRCA1 foci, as well as less efficient non-homologous end joining (NHEJ) and elevated levels of homologous recombination (HR). Taken together, these results suggest an important function of SMCHD1 in promoting NHEJ and repressing HR repair in response to DNA damage.
Collapse
Affiliation(s)
- Mengfan Tang
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and
| | - Yujing Li
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and
| | - Xiya Zhang
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and
| | - Tingting Deng
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and
| | - Zhifen Zhou
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and
| | - Wenbin Ma
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and
| | - Zhou Songyang
- From the Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, SYSU-Baylor College of Medicine Joint Research Center for Biomedical Sciences, School of Life Sciences, Sun Yat-sen University, Guangzhou, China, 510275 and Verna and Marrs Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|