1
|
Prasai A, Ivashchenko O, Maskova K, Bykova S, Schmidt Cernohorska M, Stepanek O, Huranova M. BBSome-deficient cells activate intraciliary CDC42 to trigger actin-dependent ciliary ectocytosis. EMBO Rep 2025; 26:36-60. [PMID: 39587330 PMCID: PMC11724091 DOI: 10.1038/s44319-024-00326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of the BBSome, a cargo adaptor essential for export of transmembrane receptors from cilia. Although actin-dependent ectocytosis has been proposed to compensate defective cargo retrieval, its molecular basis remains unclear, especially in relation to BBS pathology. In this study, we investigated how actin polymerization and ectocytosis are regulated within the cilium. Our findings reveal that ciliary CDC42, a RHO-family GTPase triggers in situ actin polymerization, ciliary ectocytosis, and cilia shortening in BBSome-deficient cells. Activation of the Sonic Hedgehog pathway further enhances CDC42 activity specifically in BBSome-deficient cilia. Inhibition of CDC42 in BBSome-deficient cells decreases the frequency and duration of ciliary actin polymerization events, causing buildup of G protein coupled receptor 161 (GPR161) in bulges along the axoneme during Sonic Hedgehog signaling. Overall, our study identifies CDC42 as a key trigger of ciliary ectocytosis. Hyperactive ciliary CDC42 and ectocytosis and the resulting loss of ciliary material might contribute to BBS disease severity.
Collapse
Affiliation(s)
- Avishek Prasai
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Department of Developmental and Cell Biology, Charles University, Prague, Czech Republic
- Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Olha Ivashchenko
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Department of Developmental and Cell Biology, Charles University, Prague, Czech Republic
| | - Kristyna Maskova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sofiia Bykova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Schmidt Cernohorska
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Ondrej Stepanek
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martina Huranova
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
2
|
Mehdipour M, Park S, Huang GN. Unlocking cardiomyocyte renewal potential for myocardial regeneration therapy. J Mol Cell Cardiol 2023; 177:9-20. [PMID: 36801396 PMCID: PMC10699255 DOI: 10.1016/j.yjmcc.2023.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/28/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. Cardiomyocytes are irreversibly lost due to cardiac ischemia secondary to disease. This leads to increased cardiac fibrosis, poor contractility, cardiac hypertrophy, and subsequent life-threatening heart failure. Adult mammalian hearts exhibit notoriously low regenerative potential, further compounding the calamities described above. Neonatal mammalian hearts, on the other hand, display robust regenerative capacities. Lower vertebrates such as zebrafish and salamanders retain the ability to replenish lost cardiomyocytes throughout life. It is critical to understand the varying mechanisms that are responsible for these differences in cardiac regeneration across phylogeny and ontogeny. Adult mammalian cardiomyocyte cell cycle arrest and polyploidization have been proposed as major barriers to heart regeneration. Here we review current models about why adult mammalian cardiac regenerative potential is lost including changes in environmental oxygen levels, acquisition of endothermy, complex immune system development, and possible cancer risk tradeoffs. We also discuss recent progress and highlight conflicting reports pertaining to extrinsic and intrinsic signaling pathways that control cardiomyocyte proliferation and polyploidization in growth and regeneration. Uncovering the physiological brakes of cardiac regeneration could illuminate novel molecular targets and offer promising therapeutic strategies to treat heart failure.
Collapse
Affiliation(s)
- Melod Mehdipour
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sangsoon Park
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Welsh SA, Gardini A. Genomic regulation of transcription and RNA processing by the multitasking Integrator complex. Nat Rev Mol Cell Biol 2023; 24:204-220. [PMID: 36180603 PMCID: PMC9974566 DOI: 10.1038/s41580-022-00534-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
In higher eukaryotes, fine-tuned activation of protein-coding genes and many non-coding RNAs pivots around the regulated activity of RNA polymerase II (Pol II). The Integrator complex is the only Pol II-associated large multiprotein complex that is metazoan specific, and has therefore been understudied for years. Integrator comprises at least 14 subunits, which are grouped into distinct functional modules. The phosphodiesterase activity of the core catalytic module is co-transcriptionally directed against several RNA species, including long non-coding RNAs (lncRNAs), U small nuclear RNAs (U snRNAs), PIWI-interacting RNAs (piRNAs), enhancer RNAs and nascent pre-mRNAs. Processing of non-coding RNAs by Integrator is essential for their biogenesis, and at protein-coding genes, Integrator is a key modulator of Pol II promoter-proximal pausing and transcript elongation. Recent studies have identified an Integrator-specific serine/threonine-protein phosphatase 2A (PP2A) module, which targets Pol II and other components of the basal transcription machinery. In this Review, we discuss how the activity of Integrator regulates transcription, RNA processing, chromatin landscape and DNA repair. We also discuss the diverse roles of Integrator in development and tumorigenesis.
Collapse
|
4
|
Pfleiderer MM, Galej WP. Emerging insights into the function and structure of the Integrator complex. Transcription 2021; 12:251-265. [PMID: 35311473 PMCID: PMC9006982 DOI: 10.1080/21541264.2022.2047583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
The Integrator was originally discovered as a specialized 3'-end processing endonuclease complex required for maturation of RNA polymerase II (RNAPII)-dependent small nuclear RNAs (snRNAs). Since its discovery, Integrator's spectrum of substrates was significantly expanded to include non-polyadenylated long noncoding RNAs (lncRNA), enhancer RNAs (eRNAs), telomerase RNA (tertRNA), several Herpesvirus transcripts, and messenger RNAs (mRNAs). Recently emerging transcriptome-wide studies reveled an important role of the Integrator in protein-coding genes, where it contributes to gene expression regulation through promoter-proximal transcription attenuation. These new functional data are complemented by several structures of Integrator modules and higher-order complexes, providing mechanistic insights into Integrator-mediated processing events. In this work, we summarize recent progress in our understanding of the structure and function of the Integrator complex.
Collapse
|
5
|
Jia Y, Cheng Z, Bharath SR, Sun Q, Su N, Huang J, Song H. Crystal structure of the INTS3/INTS6 complex reveals the functional importance of INTS3 dimerization in DSB repair. Cell Discov 2021; 7:66. [PMID: 34400606 PMCID: PMC8368002 DOI: 10.1038/s41421-021-00283-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
SOSS1 is a single-stranded DNA (ssDNA)-binding protein complex that plays a critical role in double-strand DNA break (DSB) repair. SOSS1 consists of three subunits: INTS3, SOSSC, and hSSB1, with INTS3 serving as a scaffold to stabilize this complex. Moreover, the integrator complex subunit 6 (INTS6) participates in the DNA damage response through direct binding to INTS3, but how INTS3 interacts with INTS6, thereby impacting DSB repair, is not clear. Here, we determined the crystal structure of the C-terminus of INTS3 (INTS3c) in complex with the C-terminus of INTS6 (INTS6c) at a resolution of 2.4 Å. Structural analysis revealed that two INTS3c subunits dimerize and interact with INTS6c via conserved residues. Subsequent biochemical analyses confirmed that INTS3c forms a stable dimer and INTS3 dimerization is important for recognizing the longer ssDNA. Perturbation of INTS3c dimerization and disruption of the INTS3c/INTS6c interaction impair the DSB repair process. Altogether, these results unravel the underappreciated role of INTS3 dimerization and the molecular basis of INTS3/INTS6 interaction in DSB repair.
Collapse
Affiliation(s)
- Yu Jia
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zixiu Cheng
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sakshibeedu R Bharath
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore City, Singapore
| | - Qiangzu Sun
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Nannan Su
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Haiwei Song
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China. .,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore City, Singapore. .,Department of Biochemistry, National University of Singapore, 14 Science Drive, Singapore City, Singapore.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The loss of contractile function after heart injury remains one of the major healthcare issues of our time. One strategy to deal with this problem would be to increase the number of cardiomyocytes to enhance cardiac function. In the last couple of years, reactivation of cardiomyocyte proliferation has repeatedly demonstrated to aid in functional recovery after cardiac injury. RECENT FINDINGS The Tgf-β superfamily plays key roles during development of the heart and populating the embryonic heart with cardiomyocytes. In this review, we discuss the role of Tgf-β signaling in regulating cardiomyocyte proliferation during development and in the setting of cardiac regeneration. Although various pathways to induce cardiomyocyte proliferation have been established, the extent to which cardiomyocyte proliferation requires or involves activation of the Tgf-β superfamily is not entirely clear. More research is needed to better understand cross-talk between pathways that regulate cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Daniel W Sorensen
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Jop H van Berlo
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA. .,Integrative Biology and Physiology graduate program, University of Minnesota, Minneapolis, MN, USA. .,Cancer and Cardiovascular Research Building, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Ectopic expression of BBS1 rescues male infertility, but not retinal degeneration, in a BBS1 mouse model. Gene Ther 2021; 29:227-235. [PMID: 33664503 PMCID: PMC9422088 DOI: 10.1038/s41434-021-00241-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a rare ciliopathy for which there are no current effective treatments. BBS is a genetically heterogeneous disease, though the M390R mutation in BBS1 is involved in approximately 25% of all genetic diagnoses of BBS. The principle features of BBS include retinal degeneration, obesity, male infertility, polydactyly, intellectual disability, and renal abnormalities. Patients with mutations in BBS genes often present with night blindness within the first decade of life, which progresses to complete blindness. This is due to progressive loss of photoreceptor cells. Male infertility is caused by a lack of spermatozoa flagella, rendering them immobile. In this study, we have crossed the wild-type human BBS1 gene, driven by the CAG promoter, onto the Bbs1M390R/M390R mouse model to determine if ectopic expression of BBS1 rescues male infertility and retinal degeneration. qRT-PCR indicates that the BBS1 transgene is expressed in multiple tissues throughout the mouse, with the highest expression seen in the testes, and much lower expression in the eye and hypothalamus. Immunohistochemistry of the transgene in the eye showed little if any expression in the photoreceptor outer nuclear layer. When male Bbs1M30R/M390R;BBS1TG+ mice are housed with WT females, they are able to sire offspring, indicating that the male infertility phenotype of BBS is rescued by the transgene. Using electroretinography (ERGs) to measure retinal function and optical coherence tomography to measure retinal thickness, we show that the transgene does not confer protection against retinal degeneration in Bbs1M300R/M390R;BBS1TG+ mice. The results of this study indicate the male infertility aspect of BBS is an attractive target for gene therapy.
Collapse
|
8
|
Awatade NT, Wong SL, Capraro A, Pandzic E, Slapetova I, Zhong L, Turgutoglu N, Fawcett LK, Whan RM, Jaffe A, Waters SA. Significant functional differences in differentiated Conditionally Reprogrammed (CRC)- and Feeder-free Dual SMAD inhibited-expanded human nasal epithelial cells. J Cyst Fibros 2021; 20:364-371. [PMID: 33414087 DOI: 10.1016/j.jcf.2020.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patient-derived airway cells differentiated at Air Liquid Interface (ALI) are valuable models for Cystic fibrosis (CF) precision therapy. Different culture expansion methods have been established to extend expansion capacity of airway basal cells, while retaining functional airway epithelium physiology. Considerable variation in response to CFTR modulators is observed in cultures even within the same CFTR genotype and despite the use of similar ALI culture techniques. We aimed to address culture expansion method impact on differentiation. METHODS Nasal epithelial brushings from 14 individuals (CF=9; non-CF=5) were collected, then equally divided and expanded under conditional reprogramming culture (CRC) and feeder-serum-free "dual-SMAD inhibition" (SMADi) methods. Expanded cells from each culture were differentiated with proprietary PneumaCult™-ALI media. Morphology (Immunofluorescence), global proteomics (LC-MS/MS) and function (barrier integrity, cilia motility, and ion transport) were compared in CRCALI and SMADiALI under basal and CFTR corrector treated (VX-809) conditions. RESULTS No significant difference in the structural morphology or baseline global proteomics profile were observed. Barrier integrity and cilia motility were significantly different, despite no difference in cell junction morphology or cilia abundance. Epithelial Sodium Channels and Calcium-activated Chloride Channel activity did not differ but CFTR mediated chloride currents were significantly reduced in SMADiALI compare to their CRCALI counterparts. CONCLUSION Alteration of cellular physiological function in vitro were more prominent than structural and differentiation potential in airway ALI. Since initial expansion culture conditions significantly influence CFTR activity, this could lead to false conclusions if data from different labs are compared against each other without specific reference ranges.
Collapse
Affiliation(s)
- Nikhil T Awatade
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Sharon L Wong
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Alexander Capraro
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Elvis Pandzic
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Iveta Slapetova
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Ling Zhong
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Nihan Turgutoglu
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia
| | - Laura K Fawcett
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Renee M Whan
- Biomedical Imaging Facility, University of New South Wales, Sydney, NSW, Australia
| | - Adam Jaffe
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia
| | - Shafagh A Waters
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Molecular and Integrative Cystic Fibrosis Research Centre (miCF_RC), University of New South Wales and Sydney Children's Hospital, Sydney, NSW, Australia; Department of Respiratory Medicine, Sydney Children's Hospital, Sydney, NSW, Australia.
| |
Collapse
|
9
|
Tao T, Wang L, Chong W, Yang L, Li G. Characteristics of genotype and phenotype in Chinese patients with Bardet-Biedl syndrome. Int Ophthalmol 2020; 40:2325-2343. [PMID: 32448990 DOI: 10.1007/s10792-020-01415-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/02/2020] [Indexed: 12/31/2022]
Abstract
PURPOSE To investigate complex and different phenotypes in seven Chinese patients diagnosed with Bardet-Biedl syndrome (BBS) and carrying pathogenic mutations. METHODS Seven unrelated BBS patients were enrolled. Their medical and ophthalmic histories were reviewed, and comprehensive clinical examinations, such as fundus photography, optical coherence tomography, and medical imaging, were performed. A specific hereditary eye disease enrichment panel based on exome-capture technology was used to collect and amplify the protein-coding regions of 441 targeted hereditary eye disease genes, followed by high-throughput sequencing using the Illumina HiSeq platform. RESULTS All patients exhibited the primary clinical phenotype of BBS. Seven BBS mutations were found in five patients (BBS7 in two patients, BBS10 in two patients, BBS12 in one patient), for a detection rate of 71% (5/7). The ratio of novel to known BBS mutations was 5:2. CONCLUSIONS This study showed the phenotypic and genotypic spectrum of BBS patients from China, and the findings underscore the importance of obtaining comprehensive clinical observations and molecular analyses for ciliopathies.
Collapse
Affiliation(s)
- Tianchang Tao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, People's Republic of China
| | - Lei Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, People's Republic of China
| | - Weihua Chong
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, People's Republic of China
| | - Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Restoration of Damaged Ocular Nerve Beijing, Beijing, People's Republic of China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Lab, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol 2020; 8:123. [PMID: 32258028 PMCID: PMC7093020 DOI: 10.3389/fcell.2020.00123] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and fibrosis are two pathological features of chronic kidney disease (CKD). Transforming growth factor-β (TGF-β) has been long considered as a key mediator of renal fibrosis. In addition, TGF-β also acts as a potent anti-inflammatory cytokine that negatively regulates renal inflammation. Thus, blockade of TGF-β inhibits renal fibrosis while promoting inflammation, revealing a diverse role for TGF-β in CKD. It is now well documented that TGF-β1 activates its downstream signaling molecules such as Smad3 and Smad3-dependent non-coding RNAs to transcriptionally and differentially regulate renal inflammation and fibrosis, which is negatively regulated by Smad7. Therefore, treatments by rebalancing Smad3/Smad7 signaling or by specifically targeting Smad3-dependent non-coding RNAs that regulate renal fibrosis or inflammation could be a better therapeutic approach. In this review, the paradoxical functions and underlying mechanisms by which TGF-β1 regulates in renal inflammation and fibrosis are discussed and novel therapeutic strategies for kidney disease by targeting downstream TGF-β/Smad signaling and transcriptomes are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|
11
|
Li M, Yu X. The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy. Oncogene 2015; 34:3349-56. [PMID: 25220415 PMCID: PMC4362780 DOI: 10.1038/onc.2014.295] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022]
Abstract
DNA damage is a deleterious threat, but occurs daily in all types of cells. In response to DNA damage, poly(ADP-ribosyl)ation, a unique post-translational modification, is immediately catalyzed by poly(ADP-ribose) polymerases (PARPs) at DNA lesions, which facilitates DNA damage repair. Recent studies suggest that poly(ADP-ribosyl)ation is one of the first steps of cellular DNA damage response and governs early DNA damage response pathways. Suppression of DNA damage-induced poly(ADP-ribosyl)ation by PARP inhibitors impairs early DNA damage response events. Moreover, PARP inhibitors are emerging as anti-cancer drugs in phase III clinical trials for BRCA-deficient tumors. In this review, we discuss recent findings on poly(ADP-ribosyl)ation in DNA damage response as well as the molecular mechanism by which PARP inhibitors selectively kill tumor cells with BRCA mutations.
Collapse
Affiliation(s)
- Mo Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, Michigan, 48109, USA
| | - Xiaochun Yu
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, 1150 W. Medical Center Drive, 5560 MSRBII, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|