1
|
Panmanee J, Phanchana M, Pearngam P, Petchyam N, Promthep K, Wisomka P, Kutpruek S, Pannengpetch S, Prasertporn T, Mukda S, Govitrapong P, Nopparat C. A Proteomics Profiling Reveals the Neuroprotective Effects of Melatonin on Exogenous β-amyloid-42 Induced Mitochondrial Impairment, Intracellular β-amyloid Accumulation and Tau Hyperphosphorylation in Human SH-SY5Y Cells. Cell Biol Int 2025; 49:659-673. [PMID: 40047119 PMCID: PMC12070025 DOI: 10.1002/cbin.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 05/14/2025]
Abstract
Alzheimer's disease (AD) is prevalent in the elderly population and characterized by the intracellular accumulation of neurofibrillary tangles (NFTs), composed of tau proteins, and extracellular deposition of beta-amyloid protein (Aβ). The present study aimed to investigate the neuroprotective effects of melatonin on Aβ42-induced AD-like pathology in SH-SY5Y cell lines. To assess the effects of melatonin on Aβ42-exposed cells, we performed a proteomics analysis of altered protein expression in Aβ42-treated cells, with or without melatonin Pretreatment, using label-free nano-LC-MS/MS. Experimental validations of pathways related to the neuroprotective effects of melatonin were carried out using Milliplex amyloid beta and tau magnetic bead assays, Western blot analysis, and measurements of mitochondrial membrane potential and ROS levels. Our results show that Aβ42 exposure led to an increase in an accumulation of intracellular Aβ42/40 and phosphorylated tau (Thr181)/Tau ratios. Pretreatment with melatonin effectively reduced the levels of these pathogenic proteins. Proteomics analysis has revealed protein markers associated with the Alzheimer's disease pathway, neuronal synapses, cellular apoptosis, and mitochondrial functions. Changes in proteins regulating the mitochondrial permeability transition pore, the electron transport chain, and mitochondrial oxidative stress were observed in Aβ42-treated cells. Pretreatment with melatonin protected the cells against Aβ42-induced cellular damages by regulating the expression of several proteins underpinning these biological processes, including the suppression of mitochondrial ROS generation and mitigation of mitochondrial membrane depolarization.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Research Center for Neuroscience, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
| | - Matthew Phanchana
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Phorutai Pearngam
- Biological Sciences ProgramMahidol University International College, Mahidol UniversityNakhon PathomThailand
| | - Nopphon Petchyam
- Center for Advanced Therapeutics, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
| | - Kornkanok Promthep
- Research Center for Neuroscience, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
| | - Ponlawit Wisomka
- Research Center for Neuroscience, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
| | - Suchanoot Kutpruek
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, LaksiBangkokThailand
| | - Supitcha Pannengpetch
- Center for Research and Innovation, Faculty of Medical TechnologyMahidol UniversityNakhon PathomThailand
| | - Tanya Prasertporn
- Research Center for Neuroscience, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, LaksiBangkokThailand
| | | |
Collapse
|
2
|
Saito ML, Sasaki T, Saito MR. Discovery of the Aβ receptor that controls the voltage-gated sodium channel activity: unraveling mechanisms underlying neuronal hyperexcitability. J Neurophysiol 2025; 133:1861-1885. [PMID: 40298589 DOI: 10.1152/jn.00530.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by a gradual decline in memory and cognitive abilities, often accompanied by personality changes and impairments in motor functions. Increased neuronal activity in AD patients is associated with the symptoms of the disease, suggesting a link between hyperactivity and cognitive decline. In particular, amyloid beta peptides (Aβs), which are implicated in AD, have been found to enhance voltage-gated sodium channels (VGSCs), crucial for generating nerve impulses. However, the exact mechanisms underlying this interaction remain poorly understood. Therefore, it is crucial to identify the membrane receptor that binds to Aβ and regulates VGSC activity. In this report, we employed the patch-clamp method to monitor alterations in VGSCs induced by Aβ. Through gene silencing and antibody treatment, we determined that the receptor responsible for regulating VGSCs corresponds to the type I taste receptor (T1R2/T1R3). Our discovery not only advances the understanding of Aβ's physiological role but also opens avenues for developing molecules that can inhibit or alter Aβ binding, potentially regulating neuronal hyperactivity in AD.NEW & NOTEWORTHY Alzheimer's disease (AD) is marked by memory loss and cognitive decline, with neuronal hyperactivity linked to amyloid beta peptides (Aβs) that enhance sodium channels. Using patch-clamp techniques, we determined that the receptor for Aβ corresponds to the type I taste receptor (T1R2/T1R3). This discovery reveals Aβ's physiological roles and offers a new molecular target for developing therapies to inhibit or modify Aβ binding, potentially regulating neurohyperactivity in AD.
Collapse
Affiliation(s)
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
3
|
Zhang H, Ben Zablah Y, Zhang H, Jia Z. Rho Signaling in Synaptic Plasticity, Memory, and Brain Disorders. Front Cell Dev Biol 2021; 9:729076. [PMID: 34671600 PMCID: PMC8520953 DOI: 10.3389/fcell.2021.729076] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Memory impairments are associated with many brain disorders such as autism, Alzheimer's disease, and depression. Forming memories involves modifications of synaptic transmission and spine morphology. The Rho family small GTPases are key regulators of synaptic plasticity by affecting various downstream molecules to remodel the actin cytoskeleton. In this paper, we will review recent studies on the roles of Rho proteins in the regulation of hippocampal long-term potentiation (LTP) and long-term depression (LTD), the most extensively studied forms of synaptic plasticity widely regarded as cellular mechanisms for learning and memory. We will also discuss the involvement of Rho signaling in spine morphology, the structural basis of synaptic plasticity and memory formation. Finally, we will review the association between brain disorders and abnormalities of Rho function. It is expected that studying Rho signaling at the synapse will contribute to the understanding of how memory is formed and disrupted in diseases.
Collapse
Affiliation(s)
- Haorui Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haiwang Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal Degeneration in AD: The Contribution of Aβ and Tau. Front Aging Neurosci 2020; 12:581767. [PMID: 33192476 PMCID: PMC7593241 DOI: 10.3389/fnagi.2020.581767] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Cristian Gerónimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
5
|
Moutin MJ, Bosc C, Peris L, Andrieux A. Tubulin post-translational modifications control neuronal development and functions. Dev Neurobiol 2020; 81:253-272. [PMID: 33325152 PMCID: PMC8246997 DOI: 10.1002/dneu.22774] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/26/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Microtubules (MTs) are an essential component of the neuronal cytoskeleton; they are involved in various aspects of neuron development, maintenance, and functions including polarization, synaptic plasticity, and transport. Neuronal MTs are highly heterogeneous due to the presence of multiple tubulin isotypes and extensive post‐translational modifications (PTMs). These PTMs—most notably detyrosination, acetylation, and polyglutamylation—have emerged as important regulators of the neuronal microtubule cytoskeleton. With this review, we summarize what is currently known about the impact of tubulin PTMs on microtubule dynamics, neuronal differentiation, plasticity, and transport as well as on brain function in normal and pathological conditions, in particular during neuro‐degeneration. The main therapeutic approaches to neuro‐diseases based on the modulation of tubulin PTMs are also summarized. Overall, the review indicates how tubulin PTMs can generate a large number of functionally specialized microtubule sub‐networks, each of which is crucial to specific neuronal features.
Collapse
Affiliation(s)
- Marie-Jo Moutin
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Christophe Bosc
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Leticia Peris
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| | - Annie Andrieux
- Grenoble Institut Neurosciences, University Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble, France
| |
Collapse
|
6
|
Teravskis PJ, Ashe KH, Liao D. The Accumulation of Tau in Postsynaptic Structures: A Common Feature in Multiple Neurodegenerative Diseases? Neuroscientist 2020; 26:503-520. [PMID: 32389059 DOI: 10.1177/1073858420916696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increasingly, research suggests that neurodegenerative diseases and dementias are caused not by unique, solitary cellular mechanisms, but by multiple contributory mechanisms manifesting as heterogeneous clinical presentations. However, diverse neurodegenerative diseases also share common pathological hallmarks and cellular mechanisms. One such mechanism involves the redistribution of the microtubule associated protein tau from the axon into the somatodendritic compartment of neurons, followed by the mislocalization of tau into dendritic spines, resulting in postsynaptic functional deficits. Here we review various signaling pathways that trigger the redistribution of tau to the cell body and dendritic tree, and its mislocalization to dendritic spines. The convergence of multiple pathways in different disease models onto this final common pathway suggests that it may be an attractive pathway to target for developing new treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter J Teravskis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Karen H Ashe
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.,N. Budd Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, USA.,Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Medical Center, Minneapolis, MN, USA
| | - Dezhi Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
RhoA-GTPase Modulates Neurite Outgrowth by Regulating the Expression of Spastin and p60-Katanin. Cells 2020; 9:cells9010230. [PMID: 31963385 PMCID: PMC7016723 DOI: 10.3390/cells9010230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/17/2022] Open
Abstract
RhoA-GTPase (RhoA) is widely regarded as a key molecular switch to inhibit neurite outgrowth by rigidifying the actin cytoskeleton. However, during neurite outgrowth, whether and how microtubule dynamics are regulated by RhoA remains to be elucidated. Herein, CT04 and Y27632 were used to inactivate RhoA and its downstream effector Rho-associated coiled coil-forming kinase (ROCK), while the RhoAQ63L lentiviral vector was utilized to overexpress the constitutively activated RhoA in dorsal root ganglion (DRG) neurons or neuronal differentiated PC12 cells. The current data illustrate that the RhoA signaling pathway negatively modulates neurite outgrowth and elevates the expression of Glu-tubulin (a marker for a stabilized microtubule). Meanwhile, the microtubule-severing proteins spastin and p60-katanin were downregulated by the RhoA signaling pathway. When spastin and p60-katanin were knocked down, the effects of RhoA inhibition on neurite outgrowth were significantly reversed. Taken together, this study demonstrates that the RhoA pathway-mediated inhibition of neurite outgrowth is not only related to the modulation of microfilament dynamics but is also attributable to the regulation of the expression of spastin and p60-katanin and thus influences microtubule dynamics.
Collapse
|
8
|
Faridi A, Sun Y, Mortimer M, Aranha RR, Nandakumar A, Li Y, Javed I, Kakinen A, Fan Q, Purcell AW, Davis TP, Ding F, Faridi P, Ke PC. Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. NANO RESEARCH 2019; 12:2827-2834. [PMID: 31695851 PMCID: PMC6834229 DOI: 10.1007/s12274-019-2520-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/15/2019] [Accepted: 09/15/2019] [Indexed: 05/20/2023]
Abstract
The amyloid aggregation of peptides and proteins is a hallmark of neurological disorders and type 2 diabetes. Human islet amyloid polypeptide (IAPP), co-secreted with insulin by pancreatic β-cells, plays dual roles in both glycemic control and the pathology of type 2 diabetes. While IAPP can activate the NLRP3 inflammasome and modulate cellular autophagy, apoptosis and extracellular matrix metabolism, no data is available concerning intracellular protein expression upon exposure to the polypeptide. More surprisingly, how intracellular protein expression is modulated by nanoparticle inhibitors of protein aggregation remains entirely unknown. In this study, we first examined the changing proteomes of βTC6, a pancreatic β-cell line, upon exposure to monomeric, oligomeric and fibrillar IAPP, and detailed cellular protein expression rescued by graphene quantum dots (GQDs), an IAPP inhibitor. We found that 29 proteins were significantly dysregulated by the IAPP species, while majority of these proteins were nucleotide-binding proteins. Collectively, our liquid chromatography tandem-mass spectrometry, fluorescence quenching, helium ion microscopy, cytotoxicity and discreet molecular dynamics simulations data revealed a remarkable capacity of GQDs in regulating aberrant protein expression through H-bonding and hydrophobic interactions, pointing to nanomedicine as a new frontier against human amyloid diseases.
Collapse
Affiliation(s)
- Ava Faridi
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, China
| | - Ritchlynn R Aranha
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Aparna Nandakumar
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yuhuan Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Qingqing Fan
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Anthony W Purcell
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pouya Faridi
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
9
|
Pchitskaya EI, Zhemkov VA, Bezprozvanny IB. Dynamic Microtubules in Alzheimer's Disease: Association with Dendritic Spine Pathology. BIOCHEMISTRY (MOSCOW) 2018; 83:1068-1074. [PMID: 30472945 DOI: 10.1134/s0006297918090080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is the most common incurable neurodegenerative disorder that affects the processes of memory formation and storage. The loss of dendritic spines and alteration in their morphology in AD correlate with the extent of patient's cognitive decline. Tubulin had been believed to be restricted to dendritic shafts, until recent studies demonstrated that dynamically growing tubulin microtubules enter dendritic spines and promote their maturation. Abnormalities of tubulin cytoskeleton may contribute to the process of dendritic spine shape alteration and their subsequent loss in AD. In this review, association between tubulin cytoskeleton dynamics and dendritic spine morphology is discussed in the context of dendritic spine alterations in AD. Potential implications of these findings for the development of AD therapy are proposed.
Collapse
Affiliation(s)
- E I Pchitskaya
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
| | - V A Zhemkov
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - I B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Department of Medical Physics, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia. .,Department of Physiology, UT Southwestern Medical Center at Dallas, 75390 Dallas, TX, USA
| |
Collapse
|
10
|
Courtemanche N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys Rev 2018; 10:1553-1569. [PMID: 30392063 DOI: 10.1007/s12551-018-0468-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell and Developmental Biology, University of Minnesota, 420 Washington Ave SE, 6-130 MCB, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Qu X, Yuan FN, Corona C, Pasini S, Pero ME, Gundersen GG, Shelanski ML, Bartolini F. Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ 1-42 synaptotoxicity. J Cell Biol 2017; 216:3161-3178. [PMID: 28877993 PMCID: PMC5626542 DOI: 10.1083/jcb.201701045] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/15/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Oligomeric Amyloid β1-42 (Aβ) plays a crucial synaptotoxic role in Alzheimer's disease, and hyperphosphorylated tau facilitates Aβ toxicity. The link between Aβ and tau, however, remains controversial. In this study, we find that in hippocampal neurons, Aβ acutely induces tubulin posttranslational modifications (PTMs) and stabilizes dynamic microtubules (MTs) by reducing their catastrophe frequency. Silencing or acute inhibition of the formin mDia1 suppresses these activities and corrects the synaptotoxicity and deficits of axonal transport induced by Aβ. We explored the mechanism of rescue and found that stabilization of dynamic MTs promotes tau-dependent loss of dendritic spines and tau hyperphosphorylation. Collectively, these results uncover a novel role for mDia1 in Aβ-mediated synaptotoxicity and demonstrate that inhibition of MT dynamics and accumulation of PTMs are driving factors for the induction of tau-mediated neuronal damage.
Collapse
Affiliation(s)
- Xiaoyi Qu
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| | - Feng Ning Yuan
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| | - Carlo Corona
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| | - Silvia Pasini
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| | - Maria Elena Pero
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY.,Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Gregg G Gundersen
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| | - Michael L Shelanski
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| | - Francesca Bartolini
- Department of Pathology, Anatomy and Cell Biology, Columbia University, New York, NY
| |
Collapse
|
12
|
De Conto F, Fazzi A, Razin SV, Arcangeletti MC, Medici MC, Belletti S, Chezzi C, Calderaro A. Mammalian Diaphanous-related formin-1 restricts early phases of influenza A/NWS/33 virus (H1N1) infection in LLC-MK2 cells by affecting cytoskeleton dynamics. Mol Cell Biochem 2017; 437:185-201. [PMID: 28744815 DOI: 10.1007/s11010-017-3107-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022]
Abstract
Viruses depend on cellular machinery to efficiently replicate. The host cytoskeleton is one of the first cellular systems hijacked by viruses in order to ensure their intracellular transport and promote the development of infection. Our previous results demonstrated that stable microfilaments and microtubules interfered with human influenza A/NWS/33 virus (H1N1) infection in semi-permissive LLC-MK2 cells. Although formins play a key role in cytoskeletal remodelling, few studies addressed a possible role of these proteins in development of viral infection. Here, we have demonstrated that mammalian Diaphanous-related formin-1 (mDia1) is involved in the control of cytoskeleton dynamics during human influenza A virus infection. First, by employing cytoskeleton-perturbing drugs, we evidenced a cross-talk occurring between microtubules and microfilaments that also has implications on the intracellular localization of mDia1. In influenza A/NWS/33 virus-infected LLC-MK2 cells, mDia1 showed a highly dynamic intracellular localization and partially co-localized with actin and tubulin. A depletion of mDia1 by RNA-mediated RNA interference was found to improve the outcome of influenza A/NWS/33 virus infection and to increase the dynamics of microfilament and microtubule networks in LLC-MK2 cells. Consistent with these findings, observations made in epithelial respiratory cells from paediatric patients with acute respiratory disease assessed that the expression of mDia1 is stimulated by influenza A virus but not by respiratory syncytial virus. Taken together, the obtained results suggest that mDia1 restricts the initiation of influenza A/NWS/33 virus infection in LLC-MK2 cells by counteracting cytoskeletal dynamics.
Collapse
Affiliation(s)
- Flora De Conto
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - Alessandra Fazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences and Lomonosow Moscow State University, Moscow, Russia
| | | | | | - Silvana Belletti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Chezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
13
|
Cong W, Meng X, Li J, Zhang Q, Chen F, Liu W, Wang Y, Cheng S, Yao X, Yan J, Kim S, Saykin AJ, Liang H, Shen L, for the Alzheimer’s Disease Neuroimaging Initiative. Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort. BMC Genomics 2017; 18:421. [PMID: 28558704 PMCID: PMC5450240 DOI: 10.1186/s12864-017-3798-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 05/16/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ1-42 are potential early diagnostic markers for probable Alzheimer's disease (AD). The influence of genetic variation on these CSF biomarkers has been investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies. The main objective of this study is to gain further biological insights via the integration of statistical gene associations in AD with physical protein interaction networks. RESULTS The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-tau/Aβ1-42 ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs), with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05 were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes, including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production (CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A). CONCLUSIONS This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework, and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4 enriched CMs that share not only genes related to tau phosphorylation or amyloid beta production but also multiple genes enriching several KEGG pathways such as Alzheimer's disease, colorectal cancer, gliomas, renal cell carcinoma, Huntington's disease, and others. This study demonstrated that integration of gene-level associations with CMs could yield statistically significant findings to offer valuable biological insights (e.g., functional interaction among the protein products of these genes) and suggest high confidence candidates for subsequent analyses.
Collapse
Affiliation(s)
- Wang Cong
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Xianglian Meng
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
- Harbin Huade University, No.288 Xue Yuan Rd. Limin Development Zone, Harbin, 150025 China
| | - Jin Li
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Qiushi Zhang
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
- College of Information Engineering, Northeast Dianli University, 169 Changchun Street, Jilin City, Jilin 132012 China
| | - Feng Chen
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Wenjie Liu
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Ying Wang
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Sipu Cheng
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Xiaohui Yao
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St, Suite 4100, Indianapolis, IN 46202 USA
- School of Informatics and Computing, Indiana University, 719 Indiana Avenue, Indianapolis, IN 46202 USA
| | - Jingwen Yan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St, Suite 4100, Indianapolis, IN 46202 USA
- School of Informatics and Computing, Indiana University, 719 Indiana Avenue, Indianapolis, IN 46202 USA
- Indiana University Network Science Institute, Bloomington, IN 47405 USA
| | - Sungeun Kim
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St, Suite 4100, Indianapolis, IN 46202 USA
- Indiana University Network Science Institute, Bloomington, IN 47405 USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St, Suite 4100, Indianapolis, IN 46202 USA
- Indiana University Network Science Institute, Bloomington, IN 47405 USA
| | - Hong Liang
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
| | - Li Shen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St, Suite 4100, Indianapolis, IN 46202 USA
- School of Informatics and Computing, Indiana University, 719 Indiana Avenue, Indianapolis, IN 46202 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- College of Automation, Harbin Engineering University, 145 Nantong Street, BLDG 61-5029, Harbin, 150001 China
- Harbin Huade University, No.288 Xue Yuan Rd. Limin Development Zone, Harbin, 150025 China
- College of Information Engineering, Northeast Dianli University, 169 Changchun Street, Jilin City, Jilin 132012 China
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, 355 W 16th St, Suite 4100, Indianapolis, IN 46202 USA
- School of Informatics and Computing, Indiana University, 719 Indiana Avenue, Indianapolis, IN 46202 USA
- Indiana University Network Science Institute, Bloomington, IN 47405 USA
| |
Collapse
|
14
|
Abstract
Alzheimer’s disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context.
Collapse
Affiliation(s)
- Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
15
|
Regulation of the Postsynaptic Compartment of Excitatory Synapses by the Actin Cytoskeleton in Health and Its Disruption in Disease. Neural Plast 2016; 2016:2371970. [PMID: 27127658 PMCID: PMC4835652 DOI: 10.1155/2016/2371970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 02/07/2023] Open
Abstract
Disruption of synaptic function at excitatory synapses is one of the earliest pathological changes seen in wide range of neurological diseases. The proper control of the segregation of neurotransmitter receptors at these synapses is directly correlated with the intact regulation of the postsynaptic cytoskeleton. In this review, we are discussing key factors that regulate the structure and dynamics of the actin cytoskeleton, the major cytoskeletal building block that supports the postsynaptic compartment. Special attention is given to the complex interplay of actin-associated proteins that are found in the synaptic specialization. We then discuss our current understanding of how disruption of these cytoskeletal elements may contribute to the pathological events observed in the nervous system under disease conditions with a particular focus on Alzheimer's disease pathology.
Collapse
|
16
|
Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet 2016; 12:e1005917. [PMID: 27023670 PMCID: PMC4811436 DOI: 10.1371/journal.pgen.1005917] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. Alzheimer’s disease (AD) is the most common cause of dementia resulting from progressive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its stability; in AD brains, however, tau is detached from microtubules and phosphorylated at multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in generation of pathological tau species that mediate neuron loss. However, the detailed mechanisms underlying this event remain incompletely understood. Using transgenic flies expressing human tau and Aβ as a model system, we found that tau phosphorylation at specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mismetabolism to generate toxic tau species. Moreover, this process is critical for Aβ to promote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical step in the initiation of tau mismetabolism, and this process may represent a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KA); (KMI)
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Motoki Hayashishita
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail: (KA); (KMI)
| |
Collapse
|
17
|
Minjarez B, Calderón-González KG, Rustarazo MLV, Herrera-Aguirre ME, Labra-Barrios ML, Rincon-Limas DE, Del Pino MMS, Mena R, Luna-Arias JP. Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics 2016; 139:103-21. [PMID: 27012543 DOI: 10.1016/j.jprot.2016.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Alzheimer's disease is one of the leading causes of dementia in the elderly. It is considered the result of complex events involving both genetic and environmental factors. To gain further insights into this complexity, we quantitatively analyzed the proteome of cortex region of brains from patients diagnosed with Alzheimer's disease, using a bottom-up proteomics approach. We identified 721 isobaric-tagged polypeptides. From this universe, 61 were found overexpressed and 69 subexpressed in three brains with Alzheimer's disease in comparison to a normal brain. We determined that the most affected processes involving the overexpressed polypeptides corresponded to ROS and stress responses. For the subexpressed polypeptides, the main processes affected were oxidative phosphorylation, organellar acidification and cytoskeleton. We used Drosophila to validate some of the hits, particularly those non-previously described as connected with the disease, such as Sideroflexin and Phosphoglucomutase-1. We manipulated their homolog genes in Drosophila models of Aβ- and Tau-induced pathology. We found proteins that can either modify Aβ toxicity, Tau toxicity or both, suggesting specific interactions with different pathways. This approach illustrates the potential of Drosophila to validate hits after MS studies and suggest that model organisms should be included in the pipeline to identify relevant targets for Alzheimer's disease. BIOLOGICAL SIGNIFICANCE We report a set of differentially expressed proteins in three Alzheimer's disease brains in comparison to a normal brain. Our analyses allowed us to identify that the main affected pathways were ROS and stress responses, oxidative phosphorylation, organellar acidification and cytoskeleton. We validated some identified proteins using genetic models of Amyloid-β and Tau-induced pathology in Drosophila melanogaster. With this approach, Sideroflexin and Phosphoglucomutase-1 were identified as novel proteins connected with Alzheimer's disease.
Collapse
Affiliation(s)
- Benito Minjarez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Karla Grisel Calderón-González
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Ma Luz Valero Rustarazo
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Manuel M Sánchez Del Pino
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - Raul Mena
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
18
|
Das AK, Pandit R, Maiti S. Effect of amyloids on the vesicular machinery: implications for somatic neurotransmission. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0187. [PMID: 26009766 DOI: 10.1098/rstb.2014.0187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Certain neurodegenerative diseases are thought to be initiated by the aggregation of amyloidogenic proteins. However, the mechanism underlying toxicity remains obscure. Most of the suggested mechanisms are generic in nature and do not directly explain the neuron-type specific lesions observed in many of these diseases. Some recent reports suggest that the toxic aggregates impair the synaptic vesicular machinery. This may lead to an understanding of the neuron-type specificity observed in these diseases. A disruption of the vesicular machinery can also be deleterious for extra-synaptic, especially somatic, neurotransmission (common in serotonergic and dopaminergic systems which are specifically affected in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively), though this relationship has remained unexplored. In this review, we discuss amyloid-induced damage to the neurotransmitter vesicular machinery, with an eye on the possible implications for somatic exocytosis. We argue that the larger size of the system, and the availability of multi-photon microscopy techniques for directly visualizing monoamines, make the somatic exocytosis machinery a more tractable model for understanding the effect of amyloids on all types of vesicular neurotransmission. Indeed, exploring this neglected connection may not just be important, it may be a more fruitful route for understanding AD and PD.
Collapse
Affiliation(s)
- Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| | - Rucha Pandit
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra 400005, India
| |
Collapse
|
19
|
Penazzi L, Tackenberg C, Ghori A, Golovyashkina N, Niewidok B, Selle K, Ballatore C, Smith AB, Bakota L, Brandt R. Aβ-mediated spine changes in the hippocampus are microtubule-dependent and can be reversed by a subnanomolar concentration of the microtubule-stabilizing agent epothilone D. Neuropharmacology 2016; 105:84-95. [PMID: 26772969 DOI: 10.1016/j.neuropharm.2016.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/10/2015] [Accepted: 01/03/2016] [Indexed: 10/25/2022]
Abstract
Dendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer's disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted. To follow the development and to potentially interfere with spine changes over time, we established a long term ex vivo model from organotypic cultures of the hippocampus from APP transgenic and control mice. The cultures exhibit spine loss in principal hippocampal neurons, which closely resembles the changes occurring in vivo, and spine morphology progressively changes from mushroom-shaped to stubby. We demonstrate that spine changes are completely reversed within few days after blocking amyloid-β (Aβ) production with the gamma-secretase inhibitor DAPT. We show that the microtubule disrupting drug nocodazole leads to spine loss similar to Aβ expressing cultures and suppresses DAPT-mediated spine recovery in slices from APP transgenic mice. Finally, we report that epothilone D (EpoD) at a subnanomolar concentration, which slightly stabilizes microtubules in model neurons, completely reverses Aβ-induced spine loss and increases thin spine density. Taken together the data indicate that Aβ causes spine changes by microtubule destabilization and that spine recovery requires microtubule polymerization. Moreover, our results suggest that a low, subtoxic concentration of EpoD is sufficient to reduce spine loss during the preclinical stage of AD.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Christian Tackenberg
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Adnan Ghori
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Nataliya Golovyashkina
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Benedikt Niewidok
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Karolin Selle
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Carlo Ballatore
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States; Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastrasse 11, 49076 Osnabrück, Germany.
| |
Collapse
|
20
|
Penazzi L, Bakota L, Brandt R. Microtubule Dynamics in Neuronal Development, Plasticity, and Neurodegeneration. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:89-169. [PMID: 26811287 DOI: 10.1016/bs.ircmb.2015.09.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neurons are the basic information-processing units of the nervous system. In fulfilling their task, they establish a structural polarity with an axon that can be over a meter long and dendrites with a complex arbor, which can harbor ten-thousands of spines. Microtubules and their associated proteins play important roles during the development of neuronal morphology, the plasticity of neurons, and neurodegenerative processes. They are dynamic structures, which can quickly adapt to changes in the environment and establish a structural scaffold with high local variations in composition and stability. This review presents a comprehensive overview about the role of microtubules and their dynamic behavior during the formation and maturation of processes and spines in the healthy brain, during aging and under neurodegenerative conditions. The review ends with a discussion of microtubule-targeted therapies as a perspective for the supportive treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorène Penazzi
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Lidia Bakota
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
21
|
Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep 2015; 5:9659. [PMID: 25974414 PMCID: PMC4431475 DOI: 10.1038/srep09659] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/13/2015] [Indexed: 12/17/2022] Open
Abstract
Tau is a central player in Alzheimer's disease (AD) and related
Tauopathies, where it is found as aggregates in degenerating neurons. Abnormal
post-translational modifications, such as truncation, are likely involved in the
pathological process. A major step forward in understanding the role of Tau
truncation would be to identify the precise cleavage sites of the several truncated
Tau fragments that are observed until now in AD brains, especially those truncated
at the N-terminus, which are less characterized than those truncated at the
C-terminus. Here, we optimized a proteomics approach and succeeded in identifying a
number of new N-terminally truncated Tau species from the human brain. We initiated
cell-based functional studies by analyzing the biochemical characteristics of two
N-terminally truncated Tau species starting at residues Met11 and Gln124
respectively. Our results show, interestingly, that the Gln124-Tau fragment displays
a stronger ability to bind and stabilize microtubules, suggesting that the Tau
N-terminal domain could play a direct role in the regulation of microtubule
stabilization. Future studies based on our new N-terminally truncated-Tau species
should improve our knowledge of the role of truncation in Tau biology as well as in
the AD pathological process.
Collapse
|