1
|
Cassuto J, Folestad A, Göthlin J, Malchau H, Kärrholm J. The importance of BMPs and TGF-βs for endochondral bone repair - A longitudinal study in hip arthroplasty patients. Bone Rep 2023; 19:101723. [PMID: 38047271 PMCID: PMC10690547 DOI: 10.1016/j.bonr.2023.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Osseointegration of hip implants, although a decade-long process, shows striking similarities with the four major phases of endochondral bone repair. In the current study we investigated the spatiotemporal involvement of bone morphogenic proteins (BMPs) and transforming growth factor betas (TGF-βs) throughout the process of bone repair leading to successfully osseointegrated hip implants. Materials and methods Twenty-four patients that had undergone primary total hip arthroplasty (THA) due to one-sided osteoarthritis (OA) were investigated during a period of 18 years (Y) with repeated measurements of plasma biomarkers as well as clinical and radiological variables. All implants were clinically and radiographically well anchored throughout the follow-up. Eighty-one healthy donors divided in three gender- and age-matched groups and twenty OA patients awaiting THA, served as controls. Plasma was analyzed for BMP-1, -2, -3, -4, -6, -7 -9 and TGF-β1, -β2, -β3 by use of a high-sensitivity and wide dynamic range electrochemiluminescence technique allowing for detection of minor changes. Results Spatiotemporal changes during the follow-up are presented in the context of the four phases of endochondral bone repair shown in earlier studies and transposed to the current study based on similarities in biomarker responses. Phase 1: Primary proinflammatory phase lasting from surgery until day 7, Phase 2: Chondrogenic phase from day 7 until 18 months postsurgery, Phase 3: Secondary proinflammatory and cartilage remodeling phase lasting from 18 months until 7Y, Phase 4: coupled bone remodeling from 7Y until 18Y postsurgery. BMP-1 increased sharply shortly after surgery and remained significantly above healthy during the chondrocyte recruitment, proliferation, and hypertrophy phases with a subsequent return to control level at 5Y postsurgery. BMP-2 was above healthy controls before surgery and 1 day after surgery before decreasing to control level and remaining there throughout the follow-up. BMP-3 was at control level from presurgery until 6M after surgery when it increased to a peak at 2Y during the cartilage hypertrophy phase followed by a gradual decrease to control level at 10Y during the phase of bone formation. In the following, BMP-3 decreased below controls to a nadir 15Y postsurgery during coupled bone remodeling. BMP-4 was at control level from presurgery until 10Y postsurgery when it increased to a sharp peak at 15Y after surgery followed by a return to the level of healthy at 18Y. BMP-6 did not differ from healthy during the follow-up. BMP-7 was at control level from presurgery until 1Y postsurgery before gradually increasing to a peak at 10Y during the early phase of osteogenesis with a gradual return to control level at 18Y during the phase of coupled bone remodeling. BMP-9 was above OA before surgery followed by a decrease to basal level on day 1 after surgery and a renewed increase to a plateau above controls lasting from 6 W until returning to the level of healthy at 18Y postsurgery, i.e., throughout the phases of cartilage formation, cartilage hypertrophy and remodeling, bone formation and coupled bone remodeling. TGF-β1 was above controls presurgery before decreasing to baseline shortly after surgery followed by a renewed increase at 6 M to a peak at 2Y during cartilage hypertrophy/remodeling followed by a gradual return to baseline at 10Y during early osteoblastogenesis. TGF-β2 was at control level from presurgery until the phase of cartilage remodeling at 5Y when it increased sharply to a peak at 7Y with a gradual return to baseline at 18Y postsurgery. TGF-β3 remained at control level throughout the study. Conclusion This study shows that the involvement of BMPs and TGF-βs in endochondral bone repair is a process of stepwise recruitment of individual biomarkers characterized by distinct, yet overlaping, spatiotemporal patterns that extend from the early phase of pre-chondrocyte recruitment until the late phase of coupled bone remodeling.
Collapse
Affiliation(s)
- Jean Cassuto
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Agnetha Folestad
- Department of Orthopedics, CapioLundby Hospital, Göteborg, Sweden
| | - Jan Göthlin
- Department of Radiology, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| | - Henrik Malchau
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Orthopedic Surgery, Harvard Medical School, Boston, USA
| | - Johan Kärrholm
- Orthopedic Research Unit & Department of Orthopedic Surgery, Sahlgrenska University Hospital, Mölndal, Sweden
- Institution of Clinical Sciences, Göteborg University, Göteborg, Sweden
| |
Collapse
|
2
|
Shimizu K, Kikuta J, Ohta Y, Uchida Y, Miyamoto Y, Morimoto A, Yari S, Sato T, Kamakura T, Oshima K, Imai R, Liu YC, Okuzaki D, Hara T, Motooka D, Emoto N, Inohara H, Ishii M. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction. Nat Commun 2023; 14:4417. [PMID: 37537159 PMCID: PMC10400591 DOI: 10.1038/s41467-023-40094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 07/12/2023] [Indexed: 08/05/2023] Open
Abstract
Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin βA. We demonstrate that activin A, a homodimer of inhibin βA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin βA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.
Collapse
Affiliation(s)
- Kotaro Shimizu
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yutaka Uchida
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu Miyamoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akito Morimoto
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shinya Yari
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuo Oshima
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ryusuke Imai
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yu-Chen Liu
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuya Hara
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 565-0871, Japan
- Laboratory of Human Immunology (Single Cell Genomics), WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Higashinada, Kobe, 658-8558, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Laboratory of Bioimaging and Drug Discovery, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
3
|
Wang Z, Qi G, Li Z, Cui X, Guo S, Zhang Y, Cai P, Wang X. Effects of urolithin A on osteoclast differentiation induced by receptor activator of nuclear factor-κB ligand via bone morphogenic protein 2. Bioengineered 2022; 13:5064-5078. [PMID: 35164658 PMCID: PMC8974137 DOI: 10.1080/21655979.2022.2036893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Urolithin A (UA) is an intestinal microbial metabolite derived from ellagitannins and a promising agent for treating osteoarthritis. However, its effects on osteoporosis are unclear. This study explored the effects of urolithin A (UA) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclasts and its underlying molecular mechanisms. RANKL treatment significantly increased tartrate-resistant acid phosphatase (TRACP) or osteoclast marker levels (P < 0.05), while adding UA decreased the RANKL-induced levels (P < 0.05) in RAW264.7 cells. Total RNA isolated from RANKL- or RANKL + UA-treated cells was sequenced, and the obtained transcriptome dataset revealed 2,399 differentially expressed genes. They were enriched in multiple pathways involved in rheumatoid arthritis, ERK1 and ERK2 cascade, regulation of inflammatory response, ECM-receptor interactions, and TNF signaling. Scanning electron microscopy showed that RANKL promoted bone resorption pits in bone biopsy specimens, whereas UA inhibited their formation. When bone morphogenic protein 2 (BMP2) was shRNA-silenced, the bone resorption pits were restored. Moreover, while RANKL significantly enhanced the levels of p-ERK2/ERK2, p-p38/p38, p-Akt1/Akt1, p-ERK1/ERK1, and osteoclast-related proteins (P < 0.05), UA reduced them. BMP2 silencing also reversed the UA inhibitory effect. Thus, UA represses the RANKL-induced osteoclast differentiation of RAW264.7 cells by regulating Akt1, p38, and ERK1/2 signaling, and BMP2 likely reverses the UA inhibitory effect via these pathways. We propose BMP2 as a potential drug target for treating bone metabolic diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Guobin Qi
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuokai Li
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xu Cui
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Shengyang Guo
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yueqi Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Pan Cai
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xiuhui Wang
- Department of Orthopedics, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
4
|
Zhao W, Liu Y, Liu K, Tu F, Zhang C, Wang H. Synovial fibroblasts regulate the cytotoxicity and osteoclastogenic activity of synovial natural killer cells through the RANKL‐RANK axis in osteoarthritis. Scand J Immunol 2021. [DOI: 10.1111/sji.13069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenbin Zhao
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Yuanfeng Liu
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Kang Liu
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Feng Tu
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Chen Zhang
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| | - Hao Wang
- Department of Orthopedic Surgery Wuhan No. 1 Hospital Qiaokou District, Wuhan China
| |
Collapse
|
5
|
Omosule CL, Phillips CL. Deciphering Myostatin's Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front Genet 2021; 12:662908. [PMID: 33854530 PMCID: PMC8039523 DOI: 10.3389/fgene.2021.662908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Current research findings in humans and other mammalian and non-mammalian species support the potent regulatory role of myostatin in the morphology and function of muscle as well as cellular differentiation and metabolism, with real-life implications in agricultural meat production and human disease. Myostatin null mice (mstn−/−) exhibit skeletal muscle fiber hyperplasia and hypertrophy whereas myostatin deficiency in larger mammals like sheep and pigs engender muscle fiber hyperplasia. Myostatin’s impact extends beyond muscles, with alterations in myostatin present in the pathophysiology of myocardial infarctions, inflammation, insulin resistance, diabetes, aging, cancer cachexia, and musculoskeletal disease. In this review, we explore myostatin’s role in skeletal integrity and bone cell biology either due to direct biochemical signaling or indirect mechanisms of mechanotransduction. In vitro, myostatin inhibits osteoblast differentiation and stimulates osteoclast activity in a dose-dependent manner. Mice deficient in myostatin also have decreased osteoclast numbers, increased cortical thickness, cortical tissue mineral density in the tibia, and increased vertebral bone mineral density. Further, we explore the implications of these biochemical and biomechanical influences of myostatin signaling in the pathophysiology of human disorders that involve musculoskeletal degeneration. The pharmacological inhibition of myostatin directly or via decoy receptors has revealed improvements in muscle and bone properties in mouse models of osteogenesis imperfecta, osteoporosis, osteoarthritis, Duchenne muscular dystrophy, and diabetes. However, recent disappointing clinical trial outcomes of induced myostatin inhibition in diseases with significant neuromuscular wasting and atrophy reiterate complexity and further need for exploration of the translational application of myostatin inhibition in humans.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.,Department of Child Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Liu PI, Chang AC, Lai JL, Lin TH, Tsai CH, Chen PC, Jiang YJ, Lin LW, Huang WC, Yang SF, Tang CH. Melatonin interrupts osteoclast functioning and suppresses tumor-secreted RANKL expression: implications for bone metastases. Oncogene 2021; 40:1503-1515. [PMID: 33452455 DOI: 10.1038/s41388-020-01613-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Cancer-related bone erosion occurs frequently in bone metastasis and is associated with severe complications such as chronic bone pain, fractures, and lower survival rates. In recognition of the fact that the darkness hormone melatonin is capable of regulating bone homeostasis, we explored its therapeutic potential in bone metastasis. We found that melatonin directly reduces osteoclast differentiation, bone resorption activity and promotes apoptosis of mature osteoclasts. We also observed that melatonin inhibits RANKL production in lung and prostate cancer cells by downregulating the p38 MAPK pathway, which in turn prevents cancer-associated osteoclast differentiation. In lung and prostate bone metastasis models, twice-weekly melatonin treatment markedly reduced tumor volumes and numbers of osteolytic lesions. Melatonin also substantially lowered the numbers of TRAP-positive osteoclasts in tibia bone marrow and RANKL expression in tumor tissue. These findings show promise for melatonin in the treatment of bone metastases.
Collapse
Affiliation(s)
- Po-I Liu
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan.,Department of General Thoracic Surgery, Asia University Hospital, Taichung, Taiwan
| | - An-Chen Chang
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jiun-Lin Lai
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Po-Chun Chen
- Translational Medicine Center, Shin-Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| | - Ya-Jing Jiang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Liang-Wei Lin
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan. .,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Chih-Hsin Tang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan. .,School of Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan. .,Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
7
|
Polymyxin-Induced Cell Death of Human Macrophage-Like THP-1 and Neutrophil-Like HL-60 Cells Associated with the Activation of Apoptotic Pathways. Antimicrob Agents Chemother 2020; 64:AAC.00013-20. [PMID: 32660985 DOI: 10.1128/aac.00013-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
Innate immunity is crucial for the host to defend against infections, and understanding the effect of polymyxins on innate immunity is important for optimizing their clinical use. In this study, we investigated the potential toxicity of polymyxins on human macrophage-like THP-1 and neutrophil-like HL-60 cells. Differentiated THP-1 human macrophages (THP-1-dMs) and HL-60 human neutrophils (HL-60-dNs) were employed. Flow cytometry was used to measure the concentration-dependent effects (100 to 2,500 μM for THP-1-dMs and 5 to 2,500 μM for HL-60-dNs) and time-dependent effects (1,000 μM for THP-1-dMs and 300 μM for HL-60-dNs) of polymyxin B over 24 h. Effects of polymyxin B on mitochondrial activity, activation of caspase-3, caspase-8, and caspase-9, and Fas ligand (FasL) expression in both cell lines were examined using fluorescence imaging, colorimetric, and fluorometric assays. In both cell lines, polymyxin B induced concentration- and time-dependent loss of viability at 24 h with 50% effective concentration (EC50) values of 751.8 μM (95% confidence interval [CI], 692.1 to 816.6 μM; Hill slope, 3.09 to 5.64) for THP-1-dM cells and 175.4 μM (95% CI, 154.8 to 198.7 μM; Hill slope, 1.42 to 2.21) for HL-60-dN cells. A concentration-dependent loss of mitochondrial membrane potential and generation of mitochondrial superoxide was also observed. Polymyxin B-induced apoptosis was associated with concentration-dependent activation of all three tested caspases. The death receptor apoptotic pathway activation was demonstrated by a concentration-dependent increase of FasL expression. For the first time, our results reveal that polymyxin B induced concentration- and time-dependent cell death in human macrophage-like THP-1 and neutrophil-like HL-60 cells associated with mitochondrial and death receptor apoptotic pathways.
Collapse
|
8
|
Interaction of Brucella abortus with Osteoclasts: a Step toward Understanding Osteoarticular Brucellosis and Vaccine Safety. Infect Immun 2020; 88:IAI.00822-19. [PMID: 31932325 DOI: 10.1128/iai.00822-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoarticular disease is a frequent complication of human brucellosis. Vaccination remains a critical component of brucellosis control, but there are currently no vaccines for use in humans, and no in vitro models for assessing the safety of candidate vaccines in reference to the development of bone lesions currently exist. While the effect of Brucella infection on osteoblasts has been extensively evaluated, little is known about the consequences of osteoclast infection. Murine bone marrow-derived macrophages were derived into mature osteoclasts and infected with B. abortus 2308, the vaccine strain S19, and attenuated mutants S19vjbR and B. abortus ΔvirB2 While B. abortus 2308 and S19 replicated inside mature osteoclasts, the attenuated mutants were progressively killed, behavior that mimics infection kinetics in macrophages. Interestingly, B. abortus 2308 impaired the growth of osteoclasts without reducing resorptive activity, while osteoclasts infected with B. abortus S19 and S19vjbR were significantly larger and exhibited enhanced resorption. None of the Brucella strains induced apoptosis or stimulated nitric oxide or lactose dehydrogenase production in mature osteoclasts. Finally, infection of macrophages or osteoclast precursors with B. abortus 2308 resulted in generation of smaller osteoclasts with decreased resorptive activity. Overall, Brucella exhibits similar growth characteristics in mature osteoclasts compared to the primary target cell, the macrophage, but is able to impair the maturation and alter the resorptive capacity of these cells. These results suggest that osteoclasts play an important role in osteoarticular brucellosis and could serve as a useful in vitro model for both analyzing host-pathogen interactions and assessing vaccine safety.
Collapse
|
9
|
Kuranobu T, Mokuda S, Oi K, Tokunaga T, Yukawa K, Kohno H, Yoshida Y, Hirata S, Sugiyama E. Activin A Expressed in Rheumatoid Synovial Cells Downregulates TNFα-Induced CXCL10 Expression and Osteoclastogenesis. Pathobiology 2020; 87:198-207. [PMID: 32126552 DOI: 10.1159/000506260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Activin A is known to be highly expressed in rheumatoid synovium. In the present study, we investigated the effect of inflammatory cytokines on activin A production and its role in rheumatoid inflammation using freshly prepared rheumatoid synovial cells (fresh-RSC). METHODS Fresh-RSC from patients with rheumatoid arthritis were obtained and stimulated with multiple cytokines for activin A production. Gene expression levels of activin A and inflammatory cytokines were determined by quantitative PCR (qPCR) analysis. An enzyme-linked immunosorbent assay (ELISA) was used to measure activin A and CXCL10 in culture supernatants. The osteoclasts generated from human peripheral monocytes by RANKL stimulation were identified by tartrate-resistant acid phosphatase staining and bone resorption assay using Osteo plate. The expression levels of NFATc1 and cathepsin K, critical intracellular proteins for osteoclastogenesis, were determined by Western blotting. RESULTS Activin A production in fresh-RSC was markedly enhanced by the synergistic effect of TGF-β1 with inflammatory cytokines, including TNFα, IL-1β, and IL-6. Activin A inhibited TNFα-induced CXCL10, an important chemoattractant for pathogen-activated T cells and monocytes of osteoclast precursors, but it did not affect the expression of inflammatory cytokines and chemokines. In addition, activin A directly inhibited the expression of NFATc1 and cathepsin K, as well as osteoclast formation in human samples. CONCLUSION Our data indicated that TGF-β1 is involved in the expression of activin A at inflamed joints. Activin A mainly exerts an anti-inflammatory action, which prevents joint damage via the regulation of CXCL10 and osteoclastogenesis.
Collapse
Affiliation(s)
- Tatsuomi Kuranobu
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Sho Mokuda
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuhiro Oi
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Tadahiro Tokunaga
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kazutoshi Yukawa
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroki Kohno
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yusuke Yoshida
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Eiji Sugiyama
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan,
| |
Collapse
|
10
|
Schoenmaker T, Botman E, Sariyildiz M, Micha D, Netelenbos C, Bravenboer N, Kelder A, Eekhoff EMW, De Vries TJ. Activin-A Induces Fewer, but Larger Osteoclasts From Monocytes in Both Healthy Controls and Fibrodysplasia Ossificans Progressiva Patients. Front Endocrinol (Lausanne) 2020; 11:501. [PMID: 32760351 PMCID: PMC7371852 DOI: 10.3389/fendo.2020.00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease characterized by heterotopic ossification (HO) that occurs in muscle tissue, tendons, and ligaments. The disease is caused by mutations in the Activin receptor type I (ACVR1) gene resulting in enhanced responsiveness to Activin-A. Binding of this molecule to the mutated receptor induces HO. Bone metabolism normally requires the coupled action of osteoblasts and osteoclasts, which seems to be disturbed during HO. We hypothesize that Activin-A may also counteract the formation of osteoclasts in FOP patients. In this study we investigated the effect of Activin-A on osteoclast differentiation of CD14+ monocytes from FOP patients and healthy controls. The lymphocytic and monocytic cell populations were determined by FACS analysis. Expression of the mutated R206H receptor was assessed and confirmed by allele specific PCR. The effect of Activin-A on osteoclastogenesis was assessed by counting the number and size of multinucleated cells. Osteoclast activity was determined by culturing the cells on Osteo Assay plates. The influence of Activin-A on expression of various osteoclast related genes was studied with QPCR. Blood from FOP patients contained similar percentages of classical, intermediate, or non-classical monocytes as healthy controls. Addition of Activin-A to the osteoclastogenesis cultures resulted in fewer osteoclasts in both control and FOP cultures. The osteoclasts formed in the presence of Activin-A were, however, much larger and more active compared to the cultures without Activin-A. This effect was tempered when the Activin-A inhibitor follistatin was added to the Activin-A containing cultures. Expression of osteoclast specific genes Cathepsin K and TRAcP was upregulated, gene expression of osteoclastogenesis related genes M-CSF and DC-STAMP was downregulated by Activin-A. Since Activin-A is a promising target for inhibiting the formation of HO in FOP, it is important to know its effects on both osteoblasts and osteoclasts. Our study shows that Activin-A induces fewer, but larger and more active osteoclasts independent of the presence of the mutated ACVR1 receptor. When considering FOP as an Activin-A driven disease that acts locally, our findings suggest that Activin-A could cause a more pronounced local resorption by larger osteoclasts. Thus, when targeting Activin-A in patients with neutralizing antibodies, HO formation could potentially be inhibited, and osteoclastic activity could be slightly reduced, but then performed dispersedly by more and smaller osteoclasts.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
- *Correspondence: Ton Schoenmaker
| | - Esmée Botman
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Merve Sariyildiz
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Coen Netelenbos
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Angele Kelder
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marelise W. Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Teun J. De Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
11
|
Tauer JT, Rauch F. Novel ActRIIB ligand trap increases muscle mass and improves bone geometry in a mouse model of severe osteogenesis imperfecta. Bone 2019; 128:115036. [PMID: 31419601 DOI: 10.1016/j.bone.2019.115036] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) caused by mutations affecting the extracellular matrix protein collagen type I is characterized by fragile bones and low muscle mass and function. Activin A and myostatin, members of the TGF-β superfamily, play a key role in the control of muscle mass and in muscle-bone communication. Here we investigated activin A/myostatin signaling in a mouse model of severe dominant OI, Col1a1Jrt/+mouse, and the effect of activin A/myostatin inhibition by a soluble activin receptor IIB receptor, ACE-2494, on bones and muscles in 8-week old mice. Compared to wild type mice, Col1a1Jrt/+mice had elevated TGF-β signaling in bone and muscle tissue. ACE-2494 treatment of wild type mice resulted in significantly increased muscle mass, bone length, bone mass as well as improved bone mechanical properties. However, treatment of Col1a1Jrt/+mice with ACE-2494 was associated with significant gain in muscle mass, significantly improved bone length and bone geometry, but no significant treatment effect was found on bone mass or bone mechanical properties. Thus, our data indicate that activin A/myostatin neutralizing antibody ACE-2494 is effective in stimulating muscle mass, bone length and diaphyseal bone growth but does not correct bone mass phenotype in a mouse model ofdominant OI.
Collapse
Affiliation(s)
- Josephine T Tauer
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada
| | - Frank Rauch
- Department of Pediatrics, McGill University, Montreal, Quebec, Canada; Shriners Hospital for Children-Canada, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
13
|
Schoenmaker T, Wouters F, Micha D, Forouzanfar T, Netelenbos C, Eekhoff EMW, Bravenboer N, de Vries TJ. The effect of Activin-A on periodontal ligament fibroblasts-mediated osteoclast formation in healthy donors and in patients with fibrodysplasia ossificans progressiva. J Cell Physiol 2018; 234:10238-10247. [PMID: 30417373 PMCID: PMC6587553 DOI: 10.1002/jcp.27693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a genetic disease characterized by heterotopic ossification (HO). The disease is caused by a mutation in the activin receptor type 1 (ACVR1) gene that enhances this receptor's responsiveness to Activin‐A. Binding of Activin‐A to the mutated ACVR1 receptor induces osteogenic differentiation. Whether Activin‐A also affects osteoclast formation in FOP is not known. Therefore we investigated its effect on the osteoclastogenesis‐inducing potential of periodontal ligament fibroblasts (PLF) from teeth of healthy controls and patients with FOP. We used western blot analysis of phosphorylated SMAD3 (pSMAD3) and quantitative polymerase chain reaction to assess the effect of Activin‐A on the PLF. PLF‐induced osteoclast formation and gene expression were studied by coculturing control and FOP PLF with CD14‐positive osteoclast precursor cells from healthy donors. Osteoclast formation was also assessed in control CD14 cultures stimulated by macrophage colony‐stimulating factor (M‐CSF) and receptor activator of nuclear factor kappa‐B ligand (RANK‐L). Although Activin‐A increased activation of the pSMAD3 pathway in both control and FOP PLF, it increased ACVR1, FK binding protein 12 (FKBP12), an inhibitor of DNA binding 1 protein (ID‐1) expression only in FOP PLF. Activin‐A inhibited PLF mediated osteoclast formation albeit only significantly when induced by FOP PLF. In these cocultures, it reduced M‐CSF and dendritic cell‐specific transmembrane protein (DC‐STAMP) expression. Activin‐A also inhibited osteoclast formation in M‐CSF and RANK‐L mediated monocultures of CD14+ cells by inhibiting their proliferation. This study brings new insight on the role of Activin A in osteoclast formation, which may further add to understanding FOP pathophysiology; in addition to the known Activin‐A‐mediated HO, this study shows that Activin‐A may also inhibit osteoclast formation, thereby further promoting HO formation.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Fenne Wouters
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, VU University Medical Center, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands
| | - E Marelise W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
14
|
High-fat diet disrupts bone remodeling by inducing local and systemic alterations. J Nutr Biochem 2018; 59:93-103. [PMID: 29986312 DOI: 10.1016/j.jnutbio.2018.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022]
Abstract
A high-fat (HF) diet leads to detrimental effects on alveolar bone (AB); however, the mechanisms linking adiposity to bone loss are poorly understood. This study investigated if AB resorption induced by an HF diet is associated with the regulation of inflammatory gene expression and if adipocytes can directly interfere with osteoclastogenesis. We also evaluated the effects of diet restriction (DR) on bone phenotype. C57BL6/J mice were fed normal chow or an HF diet for 12 weeks. Samples of maxillae, femur, blood and white adipose tissue were analyzed. In vitro co-culture of bone marrow-derived osteoclasts and mature adipocytes was carried out. The results revealed an increased number of osteoclasts and fewer osteoblasts in animals fed the HF diet, which led to the disruption of trabecular bone and horizontal AB loss. Similar effects were observed in the femur. The metabolic parameters and the deleterious effects of the HF diet on AB and the femur were reversed after DR. The HF diet modulated the expression of 30 inflammatory genes in AB such as Fam3c, InhBa, Tnfs11, Ackr2, Pxmp2 and Chil3, which are related to the inflammatory response and bone remodeling. In vitro, mature adipocytes produced increased levels of adipokines, and co-culture with osteoclasts resulted in augmented osteoclastogenesis. The results indicate that the mechanisms by which an HF diet affects bone involve induction of osteoclastogenesis and inflammatory gene expression. Adipokines apparently are key molecules in this process. Strategies to control diet-induced bone loss might be beneficial in patients with preexisting bone inflammatory conditions.
Collapse
|
15
|
Kajita T, Ariyoshi W, Okinaga T, Mitsugi S, Tominaga K, Nishihara T. Mechanisms involved in enhancement of osteoclast formation by activin-A. J Cell Biochem 2018; 119:6974-6985. [PMID: 29737562 DOI: 10.1002/jcb.26906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
Several growth factors in bone tissues are reported to be associated with osteoclastogenesis. Activin-A, a member of the transforming growth factor-β (TGF-β) family is known to be present in bone tissues and an important regulator in osteoclastogenesis with SMAD-mediated signaling being crucial for inducing osteoclast differentiation. In the present study, we examined the effect and underlying mechanisms of activin-A on osteoclast formation in vitro culture systems. Activin-A enhanced osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW 264.7 cells induced by receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) and/or macrophage stimulating factor (M-CSF). We also found that activin-A stimulated bone resorption and actin ring formation induced by RANKL and/or M-CSF. Furthermore, activin-A enhanced RANKL-induced expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1), a key regulator of osteoclastogenesis, thereby increasing osteoclastogenesis-related marker gene expression, including tartrate-resistant acid phosphatase, osteoclast stimulatory transmembrane protein, and cathepsin K. Blockage of receptor binding by follistatin, an activing-binding protein suppressed the activin-A-mediated stimulation of NFATc1. In addition, activin-A increased RANKL-induced c-fos expression without significantly affecting the NF-κB and mitogen-activated protein kinase (MAPK) signaling pathway. Pre-treatment of the cells with a specific inhibitor of SMAD2/3 attenuated the activin-A-induced expression of NFATc1 and co-immunoprecipitation assay revealed that treatment with activin-A increased physical interaction of phosphorylated-c-fos and phosphorylated-SMAD2 protein induced by RANKL. These results suggest that activin-A enhances RANKL-induced osteoclast formation mediated by interaction of c-fos and smad2/3.
Collapse
Affiliation(s)
- Tomonari Kajita
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.,Division of Oral and Maxillofacial Surgery, Department of Science and Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Wataru Ariyoshi
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Toshinori Okinaga
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Sho Mitsugi
- Division of Oral and Maxillofacial Surgery, Department of Science and Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science and Physical Functions, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Tatsuji Nishihara
- Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
16
|
Kamalakar A, Washam CL, Akel NS, Allen BJ, Williams DK, Swain FL, Leitzel K, Lipton A, Gaddy D, Suva LJ. PTHrP(12-48) Modulates the Bone Marrow Microenvironment and Suppresses Human Osteoclast Differentiation and Lifespan. J Bone Miner Res 2017; 32:1421-1431. [PMID: 28370412 PMCID: PMC5518789 DOI: 10.1002/jbmr.3142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 01/08/2023]
Abstract
Bone is a common site for metastasis in breast cancer patients and is associated with a series of complications that significantly compromise patient survival, partially due to the advanced stage of disease at the time of detection. Currently, no clinically-approved biomarkers can identify or predict the development of bone metastasis. We recently identified a unique peptide fragment of parathyroid hormone-related protein (PTHrP), PTHrP(12-48), as a validated serum biomarker in breast cancer patients that correlates with and predicts the presence of bone metastases. In this study, the biological activity and mode of action of PTHrP(12-48) was investigated. Sequence-based and structure-based bioinformatics techniques predicted that the PTHrP(12-48) fragment formed an alpha helical core followed by an unstructured region after residue 40 or 42. Thereafter, detailed structure alignment and molecular docking simulations predicted a lack of interaction between PTHrP(12-48) and the cognate PTH1 receptor (PTHR1). The in silico prediction was confirmed by the lack of PTHrP(12-48)-stimulated cAMP accumulation in PTHR1-expressing human SaOS2 cells. Using a specific human PTHrP(12-48) antibody that we developed, PTHrP(12-48) was immunolocalized in primary and bone metastatic human breast cancer cells, as well as within human osteoclasts (OCLs) in bone metastasis biopsies, with little or no localization in other resident bone or bone marrow cells. In vitro, PTHrP(12-48) was internalized into cultured primary human OCLs and their precursors within 60 min. Interestingly, PTHrP(12-48) treatment dose-dependently suppressed osteoclastogenesis, via the induction of apoptosis in both OCL precursors as well as in mature OCLs, as measured by the activation of cleaved caspase 3. Collectively, these data suggest that PTHrP(12-48) is a bioactive breast cancer-derived peptide that locally regulates the differentiation of hematopoietic cells and the activity of osteoclasts within the tumor-bone marrow microenvironment, perhaps to facilitate tumor control of bone. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Archana Kamalakar
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Charity L Washam
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Nisreen S Akel
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Bethany J Allen
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Diarra K Williams
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Frances L Swain
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Kim Leitzel
- Department of Medicine, Penn State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Allan Lipton
- Department of Medicine, Penn State University, Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Dana Gaddy
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.,Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Larry J Suva
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA.,Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Kawao N, Morita H, Obata K, Tatsumi K, Kaji H. Role of follistatin in muscle and bone alterations induced by gravity change in mice. J Cell Physiol 2017; 233:1191-1201. [PMID: 28471505 DOI: 10.1002/jcp.25986] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
Interactions between muscle and bone have been recently noted. We reported that the vestibular system plays crucial roles in the changes in muscle and bone induced by hypergravity in mice. However, the details of the mechanisms by which gravity change affects muscle and bone through the vestibular system still remain unknown. Here, we investigated the roles of humoral factors linking muscle to bone and myostatin-related factors in the hypergravity-induced changes in muscle and bone in mice with vestibular lesions (VL). Hypergravity elevated serum and mRNA levels of follistatin, an endogenous inhibitor of myostatin, in the soleus muscle of mice. VL blunted the hypergravity-enhanced levels of follistatin in the soleus muscle of mice. Simulated microgravity decreased follistatin mRNA level in mouse myoblastic C2C12 cells. Follistatin elevated the mRNA levels of myogenic genes as well as the phosphorylation of Akt and p70S6 kinase in C2C12 cells. As for bone metabolism, follistatin antagonized the mRNA levels of osteogenic genes suppressed by activin A during the differentiation of mesenchymal cells into osteoblastic cells. Moreover, follistatin attenuated osteoclast formation enhanced by myostatin in the presence of receptor activator of nuclear factor-κB ligand in RAW 264.7 cells. Serum follistatin levels were positively related to bone mass in mouse tibia. In conclusion, the present study provides novel evidence that hypergravity affects follistatin levels in muscle through the vestibular system in mice. Follistatin may play some roles in the interactions between muscle and bone metabolism in response to gravity change.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan.,Mouse Epigenetics Project, ISS/Kibo Experiment, Japan Aerospace Exploration Agency, Tsukuba, Japan
| | - Koji Obata
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
18
|
Puolakkainen T, Ma H, Kainulainen H, Pasternack A, Rantalainen T, Ritvos O, Heikinheimo K, Hulmi JJ, Kiviranta R. Treatment with soluble activin type IIB-receptor improves bone mass and strength in a mouse model of Duchenne muscular dystrophy. BMC Musculoskelet Disord 2017; 18:20. [PMID: 28103859 PMCID: PMC5244551 DOI: 10.1186/s12891-016-1366-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/14/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inhibition of activin/myostatin pathway has emerged as a novel approach to increase muscle mass and bone strength. Duchenne muscular dystrophy (DMD) is a neuromuscular disorder that leads to progressive muscle degeneration and also high incidence of fractures. The aim of our study was to test whether inhibition of activin receptor IIB ligands with or without exercise could improve bone strength in the mdx mouse model for DMD. METHODS Thirty-two mdx mice were divided to running and non-running groups and to receive either PBS control or soluble activin type IIB-receptor (ActRIIB-Fc) once weekly for 7 weeks. RESULTS Treatment of mdx mice with ActRIIB-Fc resulted in significantly increased body and muscle weights in both sedentary and exercising mice. Femoral μCT analysis showed increased bone volume and trabecular number (BV/TV +80%, Tb.N +70%, P < 0.05) in both ActRIIB-Fc treated groups. Running also resulted in increased bone volume and trabecular number in PBS-treated mice. However, there was no significant difference in trabecular bone structure or volumetric bone mineral density between the ActRIIB-Fc and ActRIIB-Fc-R indicating that running did not further improve bone structure in ActRIIB-Fc-treated mice. ActRIIB-Fc increased bone mass also in vertebrae (BV/TV +20%, Tb.N +30%, P < 0.05) but the effects were more modest. The number of osteoclasts was decreased in histological analysis and the expression of several osteoblast marker genes was increased in ActRIIB-Fc treated mice suggesting decreased bone resorption and increased bone formation in these mice. Increased bone mass in femurs translated into enhanced bone strength in biomechanical testing as the maximum force and stiffness were significantly elevated in ActRIIB-Fc-treated mice. CONCLUSIONS Our results indicate that treatment of mdx mice with the soluble ActRIIB-Fc results in a robust increase in bone mass, without any additive effect by voluntary running. Thus ActRIIB-Fc could be an attractive option in the treatment of musculoskeletal disorders.
Collapse
Affiliation(s)
- Tero Puolakkainen
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| | - Hongqian Ma
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.,Institute of Dentistry, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Kainulainen
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland
| | - Arja Pasternack
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Timo Rantalainen
- Centre for Physical Activity and Nutrition Research, Deakin University, Melbourne, Australia
| | - Olli Ritvos
- Department of Physiology, University of Helsinki, Helsinki, Finland
| | - Kristiina Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Oral Diagnostic Sciences, Institute of Dentistry, University of Eastern Finland, Kuopio, Finland.,Kuopio University Hospital, Kuopio, Finland
| | - Juha J Hulmi
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland.,Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riku Kiviranta
- Department of Medical Biochemistry and Genetics, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland. .,Department of Endocrinology, Turku University Hospital, Turku, Finland.
| |
Collapse
|
19
|
Fennen M, Pap T, Dankbar B. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis Res Ther 2016; 18:279. [PMID: 27906049 PMCID: PMC5134126 DOI: 10.1186/s13075-016-1187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Homeostatic bone remodelling becomes disturbed in a variety of pathologic conditions that affect the skeleton, including inflammatory diseases. Rheumatoid arthritis is the prototype of an inflammatory arthritis characterised by chronic inflammation, progressive cartilage destruction and focal bone erosions and is a prime example for a disease with disturbed bone homeostasis. The inflammatory milieu favours the recruitment and activation of osteoclasts, which have been found to be the cells that are primarily responsible for bone erosions in many animal models of inflammatory arthritis. Among the inflammatory modulators, members of the transforming growth factor (TGF)-β super family are shown to be important regulators in osteoclastogenesis with Smad-mediated signalling being crucial for inducing osteoclast differentiation. These findings have opened a new field for exploring mechanisms of osteoclast differentiation under inflammatory conditions. Recent studies have shown that the TGF-β superfamily members TGF-β1, myostatin and activin A directly regulate osteoclast differentiation through mechanisms that depend on the RANKL–RANK interplay. These growth factors transduce their signals through type I and II receptor serine/threonine kinases, thereby activating the Smad pathway. In this review, we describe the impact of inflammation-induced Smad signalling in osteoclast development and subsequently bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Michelle Fennen
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany
| | - Berno Dankbar
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany.
| |
Collapse
|
20
|
Sugatani T, Agapova OA, Fang Y, Berman AG, Wallace JM, Malluche HH, Faugere MC, Smith W, Sung V, Hruska KA. Ligand trap of the activin receptor type IIA inhibits osteoclast stimulation of bone remodeling in diabetic mice with chronic kidney disease. Kidney Int 2016; 91:86-95. [PMID: 27666759 DOI: 10.1016/j.kint.2016.07.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022]
Abstract
Dysregulation of skeletal remodeling is a component of renal osteodystrophy. Previously, we showed that activin receptor signaling is differentially affected in various tissues in chronic kidney disease (CKD). We tested whether a ligand trap for the activin receptor type 2A (RAP-011) is an effective treatment of the osteodystrophy of the CKD-mineral bone disorder. With a 70% reduction in the glomerular filtration rate, CKD was induced at 14 weeks of age in the ldlr-/- high fat-fed mouse model of atherosclerotic vascular calcification and diabetes. Twenty mice with CKD, hyperphosphatemia, hyperparathyroidism, and elevated activin A were treated with RAP-011, wherease 19 mice were given vehicle twice weekly from week 22 until the mice were killed at 28 weeks of age. The animals were then evaluated by skeletal histomorphometry, micro-computed tomography, mechanical strength testing, and ex vivo bone cell culture. Results in the CKD groups were compared with those of the 16 sham-operated ldlr-/- high fat-fed mice. Sham-operated mice had low-turnover osteodystrophy and skeletal frailty. CKD stimulated bone remodeling with significant increases in osteoclast and osteoblast numbers and bone resorption. Compared with mice with CKD and sham-operated mice, RAP-011 treatment eliminated the CKD-induced increase in these histomorphometric parameters and increased trabecular bone fraction. RAP-011 significantly increased cortical bone area and thickness. Activin A-enhanced osteoclastogenesis was mediated through p-Smad2 association with c-fos and activation of nuclear factor of activated T cells c1 (NFATc1). Thus, an ActRIIA ligand trap reversed CKD-stimulated bone remodeling, likely through inhibition of activin-A induced osteoclastogenesis.
Collapse
Affiliation(s)
- Toshifumi Sugatani
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Olga A Agapova
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Yifu Fang
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Alycia G Berman
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Joseph M Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA
| | - Hartmut H Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Marie-Claude Faugere
- Division of Nephrology, Bone and Mineral Metabolism, Department of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - William Smith
- Early Clinical Development, Celgene Corp., Basking Ridge, New Jersey, USA
| | - Victoria Sung
- Translational Medicine, Celgene Corp., San Francisco, California, USA
| | - Keith A Hruska
- Department of Pediatrics and Medicine, Renal Division, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
21
|
Laurent MR, Dubois V, Claessens F, Verschueren SMP, Vanderschueren D, Gielen E, Jardí F. Muscle-bone interactions: From experimental models to the clinic? A critical update. Mol Cell Endocrinol 2016; 432:14-36. [PMID: 26506009 DOI: 10.1016/j.mce.2015.10.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023]
Abstract
Bone is a biomechanical tissue shaped by forces from muscles and gravitation. Simultaneous bone and muscle decay and dysfunction (osteosarcopenia or sarco-osteoporosis) is seen in ageing, numerous clinical situations including after stroke or paralysis, in neuromuscular dystrophies, glucocorticoid excess, or in association with vitamin D, growth hormone/insulin like growth factor or sex steroid deficiency, as well as in spaceflight. Physical exercise may be beneficial in these situations, but further work is still needed to translate acceptable and effective biomechanical interventions like vibration therapy from animal models to humans. Novel antiresorptive and anabolic therapies are emerging for osteoporosis as well as drugs for sarcopenia, cancer cachexia or muscle wasting disorders, including antibodies against myostatin or activin receptor type IIA and IIB (e.g. bimagrumab). Ideally, increasing muscle mass would increase muscle strength and restore bone loss from disuse. However, the classical view that muscle is unidirectionally dominant over bone via mechanical loading is overly simplistic. Indeed, recent studies indicate a role for neuronal regulation of not only muscle but also bone metabolism, bone signaling pathways like receptor activator of nuclear factor kappa-B ligand (RANKL) implicated in muscle biology, myokines affecting bone and possible bone-to-muscle communication. Moreover, pharmacological strategies inducing isolated myocyte hypertrophy may not translate into increased muscle power because tendons, connective tissue, neurons and energy metabolism need to adapt as well. We aim here to critically review key musculoskeletal molecular pathways involved in mechanoregulation and their effect on the bone-muscle unit as a whole, as well as preclinical and emerging clinical evidence regarding the effects of sarcopenia therapies on osteoporosis and vice versa.
Collapse
Affiliation(s)
- Michaël R Laurent
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium.
| | - Vanessa Dubois
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Sabine M P Verschueren
- Research Group for Musculoskeletal Rehabilitation, Department of Rehabilitation Science, KU Leuven, 3000 Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Evelien Gielen
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium; Centre for Metabolic Bone Diseases, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ferran Jardí
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
22
|
|