1
|
Cohen D, Fernandez D, Lázaro-Diéguez F, Überheide B, Müsch A. Borg5 restricts contractility and motility in epithelial MDCK cells. J Cell Sci 2024; 137:jcs261705. [PMID: 39503295 PMCID: PMC11698036 DOI: 10.1242/jcs.261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/30/2024] [Indexed: 12/12/2024] Open
Abstract
The Borg (or Cdc42EP) family consists of septin-binding proteins that are known to promote septin-dependent stress fibers and acto-myosin contractility. We show here that epithelial Borg5 (also known as Cdc42EP1) instead limits contractility, cell-cell adhesion tension and motility, as is required for the acquisition of columnar, isotropic cell morphology in mature MDCK monolayers. Borg5 depletion inhibited the development of the lateral F-actin cortex and stimulated microtubule-dependent leading-edge lamellae as well as radial stress fibers and, independently of the basal F-actin phenotype, caused anisotropy of apical surfaces within compacted monolayers. We determined that Borg5 limits colocalization of septin proteins with microtubules, and that like septin 2, Borg5 interacts with the rod-domain of myosin IIA (herein referring to the MYH9 heavy chain). The interaction of myosin IIA with Borg5 was reduced in the presence of septins. Because septins also mediate myosin activation, we propose that Borg5 limits contractility in MDCK cells in part by counteracting septin-associated myosin activity.
Collapse
Affiliation(s)
- David Cohen
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dawn Fernandez
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Beatrix Überheide
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anne Müsch
- Albert-Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
2
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
3
|
Müller L, Keil R, Glaß M, Hatzfeld M. Plakophilin 4 controls the spatio-temporal activity of RhoA at adherens junctions to promote cortical actin ring formation and tissue tension. Cell Mol Life Sci 2024; 81:291. [PMID: 38970683 PMCID: PMC11335210 DOI: 10.1007/s00018-024-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - René Keil
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
4
|
Tsutsumi K, Nohara A, Tanaka T, Murano M, Miyagaki Y, Ohta Y. FilGAP regulates tumor growth in Glioma through the regulation of mTORC1 and mTORC2. Sci Rep 2023; 13:20956. [PMID: 38065968 PMCID: PMC10709582 DOI: 10.1038/s41598-023-47892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that forms the two different protein complexes, known as mTORC1 and mTORC2. mTOR signaling is activated in a variety of tumors, including glioma that is one of the malignant brain tumors. FilGAP (ARHGAP24) is a negative regulator of Rac, a member of Rho family small GTPases. In this study, we found that FilGAP interacts with mTORC1/2 and is involved in tumor formation in glioma. FilGAP interacted with mTORC1 via Raptor and with mTORC2 via Rictor and Sin1. Depletion of FilGAP in KINGS-1 glioma cells decreased phosphorylation of S6K and AKT. Furthermore, overexpression of FilGAP increased phosphorylation of S6K and AKT, suggesting that FilGAP activates mTORC1/2. U-87MG, glioblastoma cells, showed higher mTOR activity than KINGS-1, and phosphorylation of S6K and AKT was not affected by suppression of FilGAP expression. However, in the presence of PI3K inhibitors, phosphorylation of S6K and AKT was also decreased in U-87MG by depletion of FilGAP, suggesting that FilGAP may also regulate mTORC2 in U-87MG. Finally, we showed that depletion of FilGAP in KINGS-1 and U-87MG cells significantly reduced spheroid growth. These results suggest that FilGAP may contribute to tumor growth in glioma by regulating mTORC1/2 activities.
Collapse
Affiliation(s)
- Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| | - Ayumi Nohara
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Taiki Tanaka
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Moe Murano
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yurina Miyagaki
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-Ku, Kanagawa, 252-0373, Japan.
| |
Collapse
|
5
|
Serwe G, Kachaner D, Gagnon J, Plutoni C, Lajoie D, Duramé E, Sahmi M, Garrido D, Lefrançois M, Arseneault G, Saba-El-Leil MK, Meloche S, Emery G, Therrien M. CNK2 promotes cancer cell motility by mediating ARF6 activation downstream of AXL signalling. Nat Commun 2023; 14:3560. [PMID: 37322019 PMCID: PMC10272126 DOI: 10.1038/s41467-023-39281-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Cell motility is a critical feature of invasive tumour cells that is governed by complex signal transduction events. Particularly, the underlying mechanisms that bridge extracellular stimuli to the molecular machinery driving motility remain partially understood. Here, we show that the scaffold protein CNK2 promotes cancer cell migration by coupling the pro-metastatic receptor tyrosine kinase AXL to downstream activation of ARF6 GTPase. Mechanistically, AXL signalling induces PI3K-dependent recruitment of CNK2 to the plasma membrane. In turn, CNK2 stimulates ARF6 by associating with cytohesin ARF GEFs and with a novel adaptor protein called SAMD12. ARF6-GTP then controls motile forces by coordinating the respective activation and inhibition of RAC1 and RHOA GTPases. Significantly, genetic ablation of CNK2 or SAMD12 reduces metastasis in a mouse xenograft model. Together, this work identifies CNK2 and its partner SAMD12 as key components of a novel pro-motility pathway in cancer cells, which could be targeted in metastasis.
Collapse
Affiliation(s)
- Guillaume Serwe
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - David Kachaner
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Jessica Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Cédric Plutoni
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Driss Lajoie
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Eloïse Duramé
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Damien Garrido
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Marc K Saba-El-Leil
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Gregory Emery
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Molecular Biology Program, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
6
|
Hino N, Matsuda K, Jikko Y, Maryu G, Sakai K, Imamura R, Tsukiji S, Aoki K, Terai K, Hirashima T, Trepat X, Matsuda M. A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration. Dev Cell 2022; 57:2290-2304.e7. [PMID: 36174555 DOI: 10.1016/j.devcel.2022.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/03/2022]
Abstract
Upon the initiation of collective cell migration, the cells at the free edge are specified as leader cells; however, the mechanism underlying the leader cell specification remains elusive. Here, we show that lamellipodial extension after the release from mechanical confinement causes sustained extracellular signal-regulated kinase (ERK) activation and underlies the leader cell specification. Live-imaging of Madin-Darby canine kidney (MDCK) cells and mouse epidermis through the use of Förster resonance energy transfer (FRET)-based biosensors showed that leader cells exhibit sustained ERK activation in a hepatocyte growth factor (HGF)-dependent manner. Meanwhile, follower cells exhibit oscillatory ERK activation waves in an epidermal growth factor (EGF) signaling-dependent manner. Lamellipodial extension at the free edge increases the cellular sensitivity to HGF. The HGF-dependent ERK activation, in turn, promotes lamellipodial extension, thereby forming a positive feedback loop between cell extension and ERK activation and specifying the cells at the free edge as the leader cells. Our findings show that the integration of physical and biochemical cues underlies the leader cell specification during collective cell migration.
Collapse
Affiliation(s)
- Naoya Hino
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria.
| | - Kimiya Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuya Jikko
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Gembu Maryu
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Katsuya Sakai
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Ryu Imamura
- Division of Tumor Dynamics and Regulation, Cancer Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; WPI-Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Shinya Tsukiji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan; Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirashima
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Hakubi Center, Kyoto University, Kyoto, Japan; Japan Science and Technology Agency, Presto, Kawaguchi, Japan
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona 08028, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Michiyuki Matsuda
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Hu X, Wang Q, Zhao H, Wu W, Zhao Q, Jiang R, Liu J, Wang L, Yuan P. Role of miR-21-5p/FilGAP axis in estradiol alleviating the progression of monocrotaline-induced pulmonary hypertension. Animal Model Exp Med 2022; 5:217-226. [PMID: 35713208 PMCID: PMC9240735 DOI: 10.1002/ame2.12253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background Aberrant expression of microRNAs (miRNAs) has been associated with the pathogenesis of pulmonary hypertension (PH). It is, however, not clear whether miRNAs are involved in estrogen rescue of PH. Methods Fresh plasma samples were prepared from 12 idiopathic pulmonary arterial hypertension (IPAH) patients and 12 healthy controls undergoing right heart catheterization in Shanghai Pulmonary Hospital. From each sample, 5 μg of total RNA was tagged and hybridized on microRNA microarray chips. Monocrotaline‐induced PH (MCT‐PH) male rats were treated with 17β‐estradiol (E2) or vehicle. Subgroups were cotreated with estrogen receptor (ER) antagonist or with antagonist of miRNA. Results Many circulating miRNAs, including miR‐21‐5p and miR‐574‐5p, were markedly expressed in patients and of interest in predicting mean pulmonary arterial pressure elevation in patients. The expression of miR‐21‐5p in the lungs was significantly upregulated in MCT‐PH rats compared with the controls. However, miR‐574‐5p showed no difference in the lungs of MCT‐PH rats and controls. miR‐21‐5p was selected for further analysis in rats as E2 strongly regulated it. E2 decreased miR‐21‐5p expression in the lungs of MCT‐PH rats by ERβ. E2 reversed miR‐21‐5p target gene FilGAP downregulation in the lungs of MCT‐PH rats. The abnormal expression of RhoA, ROCK2, Rac1 and c‐Jun in the lungs of MCT‐PH rats was inhibited by E2 and miR‐21‐5p antagonist. Conclusions miR‐21‐5p level was remarkably associated with PH severity in patients. Moreover, the miR‐21‐5p/FilGAP signaling pathway modulated the protective effect of E2 on MCT‐PH through ERβ.
Collapse
Affiliation(s)
- Xiaoyi Hu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qian Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.,Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenhui Wu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Rong Jiang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jinming Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ping Yuan
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
8
|
Roberto GM, Emery G. Directing with restraint: Mechanisms of protrusion restriction in collective cell migrations. Semin Cell Dev Biol 2022; 129:75-81. [PMID: 35397972 DOI: 10.1016/j.semcdb.2022.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023]
Abstract
Cell migration is necessary for morphogenesis, tissue homeostasis, wound healing and immune response. It is also involved in diseases. In particular, cell migration is inherent in metastasis. Cells can migrate individually or in groups. To migrate efficiently, cells need to be able to organize into a leading front that protrudes by forming membrane extensions and a trailing edge that contracts. This organization is scaled up at the group level during collective cell movements. If a cell or a group of cells is unable to limit its leading edge and hence to restrict the formation of protrusions to the front, directional movements are impaired or abrogated. Here we summarize our current understanding of the mechanisms restricting protrusion formation in collective cell migration. We focus on three in vivo examples: the neural crest cell migration, the rotatory migration of follicle cells around the Drosophila egg chamber and the border cell migration during oogenesis.
Collapse
Affiliation(s)
- Gabriela Molinari Roberto
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, Québec H3C 3J7, Canada
| | - Gregory Emery
- Vesicular Trafficking and Cell Signalling Research Unit, Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, P.O. Box 6128, Downtown station, Montréal, Québec H3C 3J7, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
9
|
AGAP1 regulates subcellular localization of FilGAP and control cancer cell invasion. Biochem Biophys Res Commun 2020; 522:676-683. [DOI: 10.1016/j.bbrc.2019.11.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
|
10
|
Zuinen T, Tsutsumi K, Ohta Y. FilGAP regulates distinct stages of epithelial tubulogenesis. Biochem Biophys Res Commun 2019; 514:742-749. [PMID: 31078260 DOI: 10.1016/j.bbrc.2019.04.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 04/27/2019] [Indexed: 11/28/2022]
Abstract
Epithelial cells form a globular organ-like multi-cellular structure called cyst when cultured in extracellular matrix. The cyst generates extension followed by cell chains and tubules in response to hepatocyte growth factor (HGF). The Rho family small GTPases play essential roles for tubulogenesis. FilGAP, a Rac specific Rho GTPase-activating protein, is highly expressed in kidney. In this study, we examined the role of FilGAP in the tubulogenesis of Madin-Darby Canine Kidney (MDCK) epithelial cells. HGF induces basolateral extensions from cysts. Depletion of FilGAP by siRNA increased the number of extensions in response to HGF, whereas forced expression of FilGAP decreased the number of the extensions. FilGAP is phosphorylated and activated downstream of Rho-ROCK-signaling. Overexpression of phospho-mimic FilGAP (ST/D) mutant blocked formation of the membrane extensions induced by HGF in the presence of ROCK inhibitor, Y-27632. On the other hand, treatment of the tubules with Y27632 induced scattering of the cells, but FilGAP (ST/D) blocked cell scattering and promoted lumen formation. Taken together, our study suggests that FilGAP may suppress formation of extensions whereas stabilize tubule formation downstream of Rho-ROCK-signaling.
Collapse
Affiliation(s)
- Takuya Zuinen
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 252-0373, Japan
| | - Koji Tsutsumi
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 252-0373, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Kanagawa, 252-0373, Japan.
| |
Collapse
|
11
|
Braga V. Signaling by Small GTPases at Cell-Cell Junctions: Protein Interactions Building Control and Networks. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028746. [PMID: 28893858 DOI: 10.1101/cshperspect.a028746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of interesting reports highlight the intricate network of signaling proteins that coordinate formation and maintenance of cell-cell contacts. We have much yet to learn about how the in vitro binding data is translated into protein association inside the cells and whether such interaction modulates the signaling properties of the protein. What emerges from recent studies is the importance to carefully consider small GTPase activation in the context of where its activation occurs, which upstream regulators are involved in the activation/inactivation cycle and the GTPase interacting partners that determine the intracellular niche and extent of signaling. Data discussed here unravel unparalleled cooperation and coordination of functions among GTPases and their regulators in supporting strong adhesion between cells.
Collapse
Affiliation(s)
- Vania Braga
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Samsonraj RM, Paradise CR, Dudakovic A, Sen B, Nair AA, Dietz AB, Deyle DR, Cool SM, Rubin J, van Wijnen AJ. Validation of Osteogenic Properties of Cytochalasin D by High-Resolution RNA-Sequencing in Mesenchymal Stem Cells Derived from Bone Marrow and Adipose Tissues. Stem Cells Dev 2018; 27:1136-1145. [PMID: 29882479 DOI: 10.1089/scd.2018.0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Differentiation of mesenchymal stromal/stem cells (MSCs) involves a series of molecular signals and gene transcription events required for attaining cell lineage commitment. Modulation of the actin cytoskeleton using cytochalasin D (CytoD) drives osteogenesis at early timepoints in bone marrow-derived MSCs and also initiates a robust osteogenic differentiation program in adipose tissue-derived MSCs. To understand the molecular basis for these pronounced effects on osteogenic differentiation, we investigated global changes in gene expression in CytoD-treated murine and human MSCs by high-resolution RNA-sequencing (RNA-seq) analysis. A three-way bioinformatic comparison between human adipose tissue-derived MSCs (hAMSCs), human bone marrow-derived MSCs (hBMSCs), and mouse bone marrow-derived MSCs (mBMSCs) revealed significant upregulation of genes linked to extracellular matrix organization, cell adhesion and bone metabolism. As anticipated, the activation of these differentiation-related genes is accompanied by a downregulation of nuclear and cell cycle-related genes presumably reflecting cytostatic effects of CytoD. We also identified eight novel CytoD activated genes-VGLL4, ARHGAP24, KLHL24, RCBTB2, BDH2, SCARF2, ACAD10, HEPH-which are commonly upregulated across the two species and tissue sources of our MSC samples. We selected the Hippo pathway-related VGLL4 gene, which encodes the transcriptional co-factor Vestigial-like 4, for further study because this pathway is linked to osteogenesis. VGLL4 small interfering RNA depletion reduces mineralization of hAMSCs during CytoD-induced osteogenic differentiation. Together, our RNA-seq analyses suggest that while the stimulatory effects of CytoD on osteogenesis are pleiotropic and depend on the biological state of the cell type, a small group of genes including VGLL4 may contribute to MSC commitment toward the bone lineage.
Collapse
Affiliation(s)
| | - Christopher R Paradise
- 2 Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences , Mayo Clinic, Rochester, Minnesota.,3 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Amel Dudakovic
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Buer Sen
- 4 Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Asha A Nair
- 5 Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic , Rochester, Minnesota
| | - Allan B Dietz
- 6 Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - David R Deyle
- 7 Department of Medical Genetics, Mayo Clinic , Rochester, Minnesota
| | - Simon M Cool
- 8 Glycotherapeutics Group, Institute of Medical Biology , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Janet Rubin
- 3 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Andre J van Wijnen
- 1 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota.,3 Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| |
Collapse
|
13
|
Xu Q, Duan H, Gan L, Liu X, Chen F, Shen X, Tang YQ, Wang S. MicroRNA-1291 promotes endometrial fibrosis by regulating the ArhGAP29-RhoA/ROCK1 signaling pathway in a murine model. Mol Med Rep 2017; 16:4501-4510. [PMID: 28849001 PMCID: PMC5647010 DOI: 10.3892/mmr.2017.7210] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
Intrauterine adhesions (IUAs) are caused by endometrial damage and are associated with a poor pregnancy prognosis including infertility, oligomenorrhea and recurrent pregnancy loss. Understanding the pathogenesis of IUAs may help prevent and treat this condition more effectively. The aim of the current study was to investigate the function of microRNA-1291 (miR-1291) during the development of IUAs following endometrial damage and elucidate the potential molecular mechanisms involved. The expression of Rho GTPase activating protein 29 (ArhGAP29), a putative target mRNA of miR-1291, was determined by immunohistochemical staining of human endometrial tissue from patients with IUAs and compared with normal endometrial tissues. ArhGAP29 expression was significantly decreased in endometrial tissues with IUAs compared with normal endometrium. Additionally, a murine IUAs model was developed and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) demonstrated that miR-1291 levels were significantly increased in the uterine tissue and plasma of the IUAs group compared with the normal mice. Furthermore, an miR-1291 antagomir was injected into the uterine cavity of experimental IUAs mice to block miR-1291. Hematoxylin and eosin and Masson's stain revealed that blocking miR-1291 significantly ameliorated endometrial fibrosis. Furthermore, levels of epithelial mesenchymal transition (EMT)-associated proteins, and ArhGAP29-RhoA/Rho-associated coiled coil containing protein kinase 1 (ROCK1) were measured in uterine tissue by western blot, RT-qPCR analysis and immunofluorescence staining. Levels of the mesenchymal marker proteins, vimentin and N-cadherin, were increased in the IUAs group mice, accompanied by a relative decrease in the epithelial marker proteins, cytokeratin and E-cadherin compared with normal murine endometrium. miR-1291 inhibition decreased RhoA/ROCK1 expression in the EMT pathway, but increased ArhGAP29 expression. Taken together, the findings indicate that miR-1291 acts upstream of ArhGAP29 to negatively regulate the RhoA/ROCK1 EMT pathway, ultimately leading to endometrial fibrosis. These studies may provide new potential therapeutic options and pave the way to use circulating miR-1291 as a clinical biomarker of endometrial fibrosis.
Collapse
Affiliation(s)
- Qian Xu
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Hua Duan
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Lu Gan
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Xin Liu
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Fang Chen
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Xue Shen
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Yi-Qun Tang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| | - Sha Wang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Dong Cheng, Beijing 100006, P.R. China
| |
Collapse
|
14
|
Spatial integration of E-cadherin adhesion, signalling and the epithelial cytoskeleton. Curr Opin Cell Biol 2016; 42:138-145. [DOI: 10.1016/j.ceb.2016.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/18/2022]
|
15
|
Amin E, Jaiswal M, Derewenda U, Reis K, Nouri K, Koessmeier KT, Aspenström P, Somlyo AV, Dvorsky R, Ahmadian MR. Deciphering the Molecular and Functional Basis of RHOGAP Family Proteins: A SYSTEMATIC APPROACH TOWARD SELECTIVE INACTIVATION OF RHO FAMILY PROTEINS. J Biol Chem 2016; 291:20353-71. [PMID: 27481945 PMCID: PMC5034035 DOI: 10.1074/jbc.m116.736967] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/15/2016] [Indexed: 12/30/2022] Open
Abstract
RHO GTPase-activating proteins (RHOGAPs) are one of the major classes of regulators of the RHO-related protein family that are crucial in many cellular processes, motility, contractility, growth, differentiation, and development. Using database searches, we extracted 66 distinct human RHOGAPs, from which 57 have a common catalytic domain capable of terminating RHO protein signaling by stimulating the slow intrinsic GTP hydrolysis (GTPase) reaction. The specificity of the majority of the members of RHOGAP family is largely uncharacterized. Here, we comprehensively investigated the sequence-structure-function relationship between RHOGAPs and RHO proteins by combining our in vitro data with in silico data. The activity of 14 representatives of the RHOGAP family toward 12 RHO family proteins was determined in real time. We identified and structurally verified hot spots in the interface between RHOGAPs and RHO proteins as critical determinants for binding and catalysis. We have found that the RHOGAP domain itself is nonselective and in some cases rather inefficient under cell-free conditions. Thus, we propose that other domains of RHOGAPs confer substrate specificity and fine-tune their catalytic efficiency in cells.
Collapse
Affiliation(s)
- Ehsan Amin
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Mamta Jaiswal
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Urszula Derewenda
- the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, and
| | - Katarina Reis
- the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Kazem Nouri
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Katja T Koessmeier
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Pontus Aspenström
- the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Avril V Somlyo
- the Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, and
| | - Radovan Dvorsky
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany,
| | - Mohammad R Ahmadian
- From the Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany,
| |
Collapse
|
16
|
Zhou L, Hao J, Yuan Y, Peng R, Wang H, Ni D, Gu Y, Huang L, Mao Z, Lyu Z, Du Y, Liu Z, Li Y, Ju P, Long Y, Liu J, Zhou Q. EIYMNVPV Motif is Essential for A1CF Nucleus Localization and A1CF (-8aa) Promotes Proliferation of MDA-MB-231 Cells via Up-Regulation of IL-6. Int J Mol Sci 2016; 17:ijms17060811. [PMID: 27231908 PMCID: PMC4926345 DOI: 10.3390/ijms17060811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 02/07/2023] Open
Abstract
Apobec-1 complementation factor (A1CF) is a heterogeneous nuclear ribonuceloprotein (hnRNP) and mediates apolipoprotein-B mRNA editing. A1CF can promote the regeneration of the liver by post-transcriptionally stabilizing Interleukin-6 (IL-6) mRNA. It also contains two transcriptional variants-A1CF64 and A1CF65, distinguished by the appearance of a 24-nucleotide motif which contributes to the corresponding eight-amino acid motif of EIYMNVPV. For the first time, we demonstrated that the EIYMNVPV motif was essential for A1CF nucleus localization, A1CF deficient of the EIYMNVPV motif, A1CF (-8aa) showed cytoplasm distribution. More importantly, we found that A1CF (-8aa), but not its full-length counterpart, can promote proliferation of MDA-MB-231 cells accompanied with increased level of IL-6 mRNA. Furthermore, silencing of IL-6 attenuated A1CF (-8aa)-induced proliferation in MDA-MB-231 cells. In conclusion, notably, these findings suggest that A1CF (-8aa) promoted proliferation of MDA-MB-231 cells in vitro viewing IL-6 as a target. Thus, the EIYMNVPV motif could be developed as a potential target for basal-like breast cancer therapy.
Collapse
Affiliation(s)
- Li Zhou
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jin Hao
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yue Yuan
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Rui Peng
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Honglian Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Combine Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital of Sichuan Medical University, Luzhou 646000, China.
| | - Dongsheng Ni
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yuping Gu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Liyuan Huang
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhaomin Mao
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhongshi Lyu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yao Du
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Zhicheng Liu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yiman Li
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Pan Ju
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yaoshui Long
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jianing Liu
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qin Zhou
- The Division of Molecular Nephrology and the Creative Training Center for Undergraduates, The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Iida T, Saito K, Katagiri K, Kinashi T, Ohta Y. The RacGAP protein FilGAP is a negative regulator of chemokine-promoted lymphocyte migration. FEBS Lett 2016; 590:1395-408. [PMID: 27130700 DOI: 10.1002/1873-3468.12189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 11/09/2022]
Abstract
Rho family small GTPases regulate lymphocyte migration induced by chemokines. However, how lymphocyte migration is regulated by Rho GTPases remains to be elucidated. Here, we identified FilGAP, a Rac-specific GAP, as a negative regulator of lymphocyte polarization and migration. Depletion of FilGAP in mouse pro-B BAF cells increased cellular elongation and membrane protrusion after stimulation of the cells with SDF-1α, which caused increased migration speed. Although FilGAP is detectable both at the front and rear of polarized cells, FilGAP appears to be concentrated at the tip of retracting lamellae of moving lymphocytes. Moreover, depletion of FilGAP increased activation of Rac at the front of polarized cells. Thus, FilGAP may inhibit lamellae extension at the front of moving lymphocytes.
Collapse
Affiliation(s)
- Toru Iida
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Koji Saito
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Koko Katagiri
- Division of Immunology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Tatsuo Kinashi
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yasutaka Ohta
- Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| |
Collapse
|
18
|
Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10. PLoS One 2016; 11:e0146593. [PMID: 26751795 PMCID: PMC4709192 DOI: 10.1371/journal.pone.0146593] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/18/2015] [Indexed: 01/27/2023] Open
Abstract
FilGAP is a Rac-specific GTPase-activating protein (GAP) that suppresses lamellae formation. In this study, we have identified RBM10 (RNA Binding Motif domain protein 10) as a FilGAP-interacting protein. Although RBM10 is mostly localized in the nuclei in human melanoma A7 cells, forced expression of Src family tyrosine kinase Fyn induced translocation of RBM10 from nucleus into cell peripheries where RBM10 and FilGAP are co-localized. The translocation of RBM10 from nucleus appears to require catalytic activity of Fyn since kinase-negative Fyn mutant failed to induce translocation of RBM10 in A7 cells. When human breast carcinoma MDA-MB-231 cells are spreading on collagen-coated coverslips, endogenous FilGAP and RBM10 were localized at the cell periphery with tyrosine-phosphorylated proteins. RBM10 appears to be responsible for targeting FilGAP at the cell periphery because depletion of RBM10 by siRNA abrogated peripheral localization of FilGAP during cell spreading. Association of RBM10 with FilGAP may stimulate RacGAP activity of FilGAP. First, forced expression of RBM10 suppressed FilGAP-mediated cell spreading on collagen. Conversely, depletion of endogenous RBM10 by siRNA abolished FilGAP-mediated suppression of cell spreading on collagen. Second, FilGAP suppressed formation of membrane ruffles induced by Fyn and instead produced spiky cell protrusions at the cell periphery. This protrusive structure was also induced by depletion of Rac, suggesting that the formation of protrusions may be due to suppression of Rac by FilGAP. We found that depletion of RBM10 markedly reduced the formation of protrusions in cells transfected with Fyn and FilGAP. Finally, depletion of RBM10 blocked FilGAP-mediated suppression of ruffle formation induced by EGF. Taken together, these results suggest that Src family tyrosine kinase signaling may regulate FilGAP through association with RBM10.
Collapse
|
19
|
Dong H, Curran I, Williams A, Bondy G, Yauk CL, Wade MG. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:201-210. [PMID: 26724606 DOI: 10.1016/j.etap.2015.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/30/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.
Collapse
Affiliation(s)
- Hongyan Dong
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Ivan Curran
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Genevieve Bondy
- Bureau of Chemical Safety, Health Canada, Ottawa, ON, Canada K1A 0K9
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Ottawa, ON, Canada K1A 0K9.
| |
Collapse
|