1
|
Hernandez-Ono A, Zhao YP, Murray JW, Östlund C, Lee MJ, Shi A, Dauer WT, Worman HJ, Ginsberg HN, Shin JY. Dynamic regulation of hepatic lipid metabolism by torsinA and its activators. JCI Insight 2024; 9:e175328. [PMID: 38194265 PMCID: PMC10967386 DOI: 10.1172/jci.insight.175328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024] Open
Abstract
Depletion of torsinA from hepatocytes leads to reduced liver triglyceride secretion and marked hepatic steatosis. TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activator, lamina-associated polypeptide 1 (LAP1) or luminal domain-like LAP1 (LULL1). We previously demonstrated that depletion of LAP1 from hepatocytes has more modest effects on liver triglyceride secretion and steatosis development than depletion of torsinA. We now show that depletion of LULL1 alone does not significantly decrease triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Depletion of both LAP1 and torsinA from hepatocytes generated phenotypes similar to those observed with only torsinA depletion, implying that the 2 proteins act in the same pathway in liver lipid metabolism. Our results demonstrate that torsinA and its activators dynamically regulate hepatic lipid metabolism.
Collapse
Affiliation(s)
| | | | - John W. Murray
- Department of Medicine
- Columbia Center for Human Development, and
| | - Cecilia Östlund
- Department of Medicine
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Michael J. Lee
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Angsi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute
- Department of Neurology, and
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Howard J. Worman
- Department of Medicine
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
2
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast D, Hanson PI. IST1 regulates select endosomal recycling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551359. [PMID: 37577466 PMCID: PMC10418098 DOI: 10.1101/2023.07.31.551359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transport) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intralumenal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
|
3
|
Hernandez-Ono A, Zhao YP, Murray JW, Östlund C, Lee MJ, Shi A, Dauer WT, Worman HJ, Ginsberg HN, Shin JY. Functional interaction of torsinA and its activators in liver lipid metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.21.545957. [PMID: 37547008 PMCID: PMC10401926 DOI: 10.1101/2023.06.21.545957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
TorsinA is an atypical ATPase that lacks intrinsic activity unless it is bound to its activators lamina-associated polypeptide 1 (LAP1) in the perinuclear space or luminal domain-like LAP1 (LULL1) throughout the endoplasmic reticulum. However, the interaction of torsinA with LAP1 and LULL1 has not yet been shown to modulate a defined physiological process in mammals in vivo . We previously demonstrated that depletion of torsinA from mouse hepatocytes leads to reduced liver triglyceride secretion and marked steatosis, whereas depletion of LAP1 had more modest similar effects. We now show that depletion of LULL1 alone does not significantly decrease liver triglyceride secretion or cause steatosis. However, simultaneous depletion of both LAP1 and LULL1 from hepatocytes leads to defective triglyceride secretion and marked steatosis similar to that observed with depletion of torsinA. Our results demonstrate that torsinA and its activators dynamically regulate a physiological process in mammals in vivo .
Collapse
|
4
|
Yellajoshyula D, Opeyemi S, Dauer WT, Pappas SS. Genetic evidence of aberrant striatal synaptic maturation and secretory pathway alteration in a dystonia mouse model. DYSTONIA 2022; 1:10892. [PMID: 36874764 PMCID: PMC9980434 DOI: 10.3389/dyst.2022.10892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Animal models of DYT-TOR1A dystonia consistently demonstrate abnormalities of striatal cholinergic function, but the molecular pathways underlying this pathophysiology are unclear. To probe these molecular pathways in a genetic model of DYT-TOR1A, we performed laser microdissection in juvenile mice to isolate striatal cholinergic interneurons and non-cholinergic striatal tissue largely comprising spiny projection neurons during maturation. Both cholinergic and GABAergic enriched samples demonstrated a defined set of gene expression changes consistent with a role of torsinA in the secretory pathway. GABAergic enriched striatum samples also showed alteration to genes regulating synaptic transmission and an upregulation of activity dependent immediate early genes. Reconstruction of Golgi-Cox stained striatal spiny projection neurons from adult mice demonstrated significantly increased spiny density, suggesting that torsinA null striatal neurons have increased excitability during striatal maturation and long lasting increases in afferent input. These findings are consistent with a developmental role for torsinA in the secretory pathway and link torsinA loss of function with functional and structural changes of striatal cholinergic and GABAergic neurons. These transcriptomic datasets are freely available as a resource for future studies of torsinA loss of function-mediated striatal dysfunction.
Collapse
Affiliation(s)
| | - Sunday Opeyemi
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - William T. Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
5
|
Downs AM, Fan X, Kadakia RF, Donsante Y, Jinnah HA, Hess EJ. Cell-intrinsic effects of TorsinA(ΔE) disrupt dopamine release in a mouse model of TOR1A dystonia. Neurobiol Dis 2021; 155:105369. [PMID: 33894367 DOI: 10.1016/j.nbd.2021.105369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
TOR1A-associated dystonia, otherwise known as DYT1 dystonia, is an inherited dystonia caused by a three base-pair deletion in the TOR1A gene (TOR1AΔE). Although the mechanisms underlying the dystonic movements are largely unknown, abnormalities in striatal dopamine and acetylcholine neurotransmission are consistently implicated whereby dopamine release is reduced while cholinergic tone is increased. Because striatal cholinergic neurotransmission mediates dopamine release, it is not known if the dopamine release deficit is mediated indirectly by abnormal acetylcholine neurotransmission or if Tor1a(ΔE) acts directly within dopaminergic neurons to attenuate release. To dissect the microcircuit that governs the deficit in dopamine release, we conditionally expressed Tor1a(ΔE) in either dopamine neurons or cholinergic interneurons in mice and assessed striatal dopamine release using ex vivo fast scan cyclic voltammetry or dopamine efflux using in vivo microdialysis. Conditional expression of Tor1a(ΔE) in cholinergic neurons did not affect striatal dopamine release. In contrast, conditional expression of Tor1a(ΔE) in dopamine neurons reduced dopamine release to 50% of normal, which is comparable to the deficit in Tor1a+/ΔE knockin mice that express the mutation ubiquitously. Despite the deficit in dopamine release, we found that the Tor1a(ΔE) mutation does not cause obvious nerve terminal dysfunction as other presynaptic mechanisms, including electrical excitability, vesicle recycling/refilling, Ca2+ signaling, D2 dopamine autoreceptor function and GABAB receptor function, are intact. Although the mechanistic link between Tor1a(ΔE) and dopamine release is unclear, these results clearly demonstrate that the defect in dopamine release is caused by the action of the Tor1a(ΔE) mutation within dopamine neurons.
Collapse
Affiliation(s)
- Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Radhika F Kadakia
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA
| | - H A Jinnah
- Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, 101 Woodruff Circle, WMB 6300, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, 101 Woodruff Circle, WMB 6304, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Bishop J, Swan H, Valente F, Nützmann HW. The Plant Nuclear Envelope and Its Role in Gene Transcription. FRONTIERS IN PLANT SCIENCE 2021; 12:674209. [PMID: 33995467 PMCID: PMC8119737 DOI: 10.3389/fpls.2021.674209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 05/12/2023]
Abstract
Chromosomes are dynamic entities in the eukaryotic nucleus. During cell development and in response to biotic and abiotic change, individual sections as well as entire chromosomes re-organise and reposition within the nuclear space. A focal point for these processes is the nuclear envelope (NE) providing both barrier and anchor for chromosomal movement. In plants, positioning of chromosome regions and individual genes at the nuclear envelope has been shown to be associated with distinct transcriptional patterns. Here, we will review recent findings on the interplay between transcriptional activity and gene positioning at the nuclear periphery (NP). We will discuss potential mechanisms of transcriptional regulation at the nuclear envelope and outline future perspectives in this research area.
Collapse
|
7
|
Luithle N, de Bos JU, Hovius R, Maslennikova D, Lewis RTM, Ungricht R, Fierz B, Kutay U. Torsin ATPases influence chromatin interaction of the Torsin regulator LAP1. eLife 2020; 9:e63614. [PMID: 33320087 PMCID: PMC7773337 DOI: 10.7554/elife.63614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
The inner nuclear membrane is functionalized by diverse transmembrane proteins that associate with nuclear lamins and/or chromatin. When cells enter mitosis, membrane-chromatin contacts must be broken to allow for proper chromosome segregation; yet how this occurs remains ill-understood. Unexpectedly, we observed that an imbalance in the levels of the lamina-associated polypeptide 1 (LAP1), an activator of ER-resident Torsin AAA+-ATPases, causes a failure in membrane removal from mitotic chromatin, accompanied by chromosome segregation errors and changes in post-mitotic nuclear morphology. These defects are dependent on a hitherto unknown chromatin-binding region of LAP1 that we have delineated. LAP1-induced NE abnormalities are efficiently suppressed by expression of wild-type but not ATPase-deficient Torsins. Furthermore, a dominant-negative Torsin induces chromosome segregation defects in a LAP1-dependent manner. These results indicate that association of LAP1 with chromatin in the nucleus can be modulated by Torsins in the perinuclear space, shedding new light on the LAP1-Torsin interplay.
Collapse
Affiliation(s)
- Naemi Luithle
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
| | - Jelmi uit de Bos
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | - Ruud Hovius
- Institute of Chemical Sciences and Engineering - ISIC, EPFLLausanneSwitzerland
| | - Daria Maslennikova
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | - Renard TM Lewis
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
- Molecular Life Sciences Ph.D. ProgramZurichSwitzerland
| | - Rosemarie Ungricht
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
| | - Beat Fierz
- Institute of Chemical Sciences and Engineering - ISIC, EPFLLausanneSwitzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH ZurichZurichSwitzerland
| |
Collapse
|
8
|
Liu Y, Xing H, Wilkes BJ, Yokoi F, Chen H, Vaillancourt DE, Li Y. The abnormal firing of Purkinje cells in the knockin mouse model of DYT1 dystonia. Brain Res Bull 2020; 165:14-22. [PMID: 32976982 PMCID: PMC7674218 DOI: 10.1016/j.brainresbull.2020.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/27/2022]
Abstract
DYT1 dystonia is an inherited movement disorder caused by a heterozygous trinucleotide (GAG) deletion in DYT1/TOR1A, coding for torsinA. Growing evidence suggests that the cerebellum plays a role in the pathogenesis of dystonia. Brain imaging of both DYT1 dystonia patients and animal models show abnormal activity in the cerebellum. The cerebellum-specific knockdown of torsinA in adult mice leads to dystonia-like behavior. Dyt1 ΔGAG heterozygous knock-in mouse model exhibits impaired corticostriatal long-term depression, abnormal muscle co-contraction, and motor deficits. We and others previously reported altered dendritic structures in Purkinje cells in Dyt1 knock-in mouse models. However, whether there are any electrophysiological alterations of the Purkinje cells in Dyt1 knock-in mice is not known. We used the patch-clamp recording in brain slices and in acutely dissociated Purkinje cells to identify specific alterations of Purkinje cells firing. We found abnormal firing of non-tonic type of Purkinje cells in the Dyt1 knock-in mice. Furthermore, the large-conductance calcium-activated potassium (BK) current and the BK channel protein levels were significantly increased in the Dyt1 knock-in mice. Our results support a role of the cerebellum in the pathogenesis of DYT1 dystonia. Manipulating the Purkinje cell firing and cerebellar output may show great promise for treating DYT1 dystonia.
Collapse
Affiliation(s)
- Yuning Liu
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Genetics Institute, University of Florida, University of Florida, Gainesville, FL, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Bradley J Wilkes
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, USA
| | - Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Huanxin Chen
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, Biomedical Engineering, and Neurology, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Hennen J, Kohler J, Karuka SR, Saunders CA, Luxton GWG, Mueller JD. Differentiating Luminal and Membrane-Associated Nuclear Envelope Proteins. Biophys J 2020; 118:2385-2399. [PMID: 32304637 DOI: 10.1016/j.bpj.2020.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/09/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022] Open
Abstract
The nuclear envelope (NE) consists of two concentric nuclear membranes separated by the lumen, an ∼40-nm-wide fluid layer. NE proteins are implicated in important cellular processes ranging from gene expression to nuclear positioning. Although recent progress has been achieved in quantifying the assembly states of NE proteins in their native environment with fluorescence fluctuation spectroscopy, these studies raised questions regarding the association of NE proteins with nuclear membranes during the assembly process. Monitoring the interaction of proteins with membranes is important because the binding event is often associated with conformational changes that are critical to cellular signaling pathways. Unfortunately, the close physical proximity of both membranes poses a severe experimental challenge in distinguishing luminal and membrane-associated NE proteins. This study seeks to address this problem by introducing new, to our knowledge, fluorescence-based assays that overcome the restrictions imposed by the NE environment. We found that luminal proteins violate the Stokes-Einstein relation, which eliminates a straightforward use of protein mobility as a marker of membrane association within the NE. However, a surprising anomaly in the temperature-dependent mobility of luminal proteins was observed, which was developed into an assay for distinguishing between soluble and membrane-bound NE proteins. We further introduced a second independent tool for distinguishing both protein populations by harnessing the previously reported undulations of the nuclear membranes. These membrane undulations introduce local volume changes that produce an additional fluorescence fluctuation signal for luminal, but not for membrane-bound, proteins. After testing both methods using simple model systems, we apply the two assays to investigate a previously proposed model of membrane association for the luminal domain of SUN2, a constituent protein of the linker of nucleoskeleton and cytoskeleton complex. Finally, we investigate the effect of C- and N-terminal tagging of the luminal ATPase torsinA on its ability to associate with nuclear membranes.
Collapse
Affiliation(s)
- Jared Hennen
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | - John Kohler
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota
| | | | - Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Joachim D Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota; Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
10
|
Mutant Allele-Specific CRISPR Disruption in DYT1 Dystonia Fibroblasts Restores Cell Function. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:1-12. [PMID: 32502938 PMCID: PMC7270506 DOI: 10.1016/j.omtn.2020.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Most individuals affected with DYT1 dystonia have a heterozygous 3-bp deletion in the TOR1A gene (c.907_909delGAG). The mutation appears to act through a dominant-negative mechanism compromising normal torsinA function, and it is proposed that reducing mutant torsinA may normalize torsinA activity. In this study, we used an engineered Cas9 variant from Streptococcus pyogenes (SpCas9-VRQR) to target the mutation in the TOR1A gene in order to disrupt mutant torsinA in DYT1 patient fibroblasts. Selective targeting of the DYT1 allele was highly efficient with most common non-homologous end joining (NHEJ) edits, leading to a predicted premature stop codon with loss of the torsinA C terminus (delta 302–332 aa). Structural analysis predicted a functionally inactive status of this truncated torsinA due to the loss of residues associated with ATPase activity and binding to LULL1. Immunoblotting showed a reduction of the torsinA protein level in Cas9-edited DYT1 fibroblasts, and a functional assay using HSV infection indicated a phenotypic recovery toward that observed in control fibroblasts. These findings suggest that the selective disruption of the mutant TOR1A allele using CRISPR-Cas9 inactivates mutant torsinA, allowing the remaining wild-type torsinA to exert normal function.
Collapse
|
11
|
Rempel IL, Popken P, Ghavami A, Mishra A, Hapsari RA, Wolters AHG, Veldsink AC, Klaassens M, Meinema AC, Poolman B, Giepmans BNG, Onck PR, Steen A, Veenhoff LM. Flexible and Extended Linker Domains Support Efficient Targeting of Heh2 to the Inner Nuclear Membrane. Structure 2020; 28:185-195.e5. [PMID: 31806352 DOI: 10.1016/j.str.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/09/2019] [Accepted: 11/08/2019] [Indexed: 10/25/2022]
Abstract
The nuclear pore complex (NPC) is embedded in the nuclear envelope and forms the main gateway to the nuclear interior including the inner nuclear membrane (INM). Two INM proteins in yeast are selectively imported. Their sorting signals consist of a nuclear localization signal, separated from the transmembrane domain by a long intrinsically disordered (ID) linker. We used computational models to predict the dynamic conformations of ID linkers and analyzed the INM targeting efficiency of proteins with linker regions with altered Stokes radii and decreased flexibilities. We find that flexibility, Stokes radius, and the frequency at which the linkers are at an extended end-to-end distance larger than 25 nm are good predictors for the targeting of the proteins. The data are consistent with a transport mechanism in which INM targeting of Heh2 is dependent on an ID linker that facilitates the crossing of the approximately 25-nm thick NPC scaffold.
Collapse
Affiliation(s)
- Irina L Rempel
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Petra Popken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ali Ghavami
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ankur Mishra
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Rizqiya A Hapsari
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Anouk H G Wolters
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Annemiek C Veldsink
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Marindy Klaassens
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Anne C Meinema
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Bert Poolman
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands; Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands
| | - Patrick R Onck
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands.
| | - Anton Steen
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands.
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, Netherlands.
| |
Collapse
|
12
|
The AAA + ATPase TorsinA polymerizes into hollow helical tubes with 8.5 subunits per turn. Nat Commun 2019; 10:3262. [PMID: 31332180 PMCID: PMC6646356 DOI: 10.1038/s41467-019-11194-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/24/2019] [Indexed: 01/25/2023] Open
Abstract
TorsinA is an ER-resident AAA + ATPase, whose deletion of glutamate E303 results in the genetic neuromuscular disease primary dystonia. TorsinA is an unusual AAA + ATPase that needs an external activator. Also, it likely does not thread a peptide substrate through a narrow central channel, in contrast to its closest structural homologs. Here, we examined the oligomerization of TorsinA to get closer to a molecular understanding of its still enigmatic function. We observe TorsinA to form helical filaments, which we analyzed by cryo-electron microscopy using helical reconstruction. The 4.4 Å structure reveals long hollow tubes with a helical periodicity of 8.5 subunits per turn, and an inner channel of ~ 4 nm diameter. We further show that the protein is able to induce tubulation of membranes in vitro, an observation that may reflect an entirely new characteristic of AAA + ATPases. We discuss the implications of these observations for TorsinA function.
Collapse
|
13
|
Gonzalez-Alegre P. Advances in molecular and cell biology of dystonia: Focus on torsinA. Neurobiol Dis 2019; 127:233-241. [DOI: 10.1016/j.nbd.2019.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 03/09/2019] [Indexed: 12/15/2022] Open
|
14
|
Chalfant M, Barber KW, Borah S, Thaller D, Lusk CP. Expression of TorsinA in a heterologous yeast system reveals interactions with lumenal domains of LINC and nuclear pore complex components. Mol Biol Cell 2019; 30:530-541. [PMID: 30625036 PMCID: PMC6589686 DOI: 10.1091/mbc.e18-09-0585] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
DYT1 dystonia is caused by an in-frame deletion of a glutamic acid codon in the gene encoding the AAA+ ATPase TorsinA (TorA). TorA localizes within the lumen of the nuclear envelope/endoplasmic reticulum and binds to a membrane-spanning cofactor, lamina associated polypeptide 1 (LAP1) or lumenal domain like LAP1 (LULL1), to form an ATPase; the substrate(s) of TorA remains ill-defined. Here we use budding yeast, which lack Torsins, to interrogate TorA function. We show that TorA accumulates at nuclear envelope-embedded spindle pole bodies (SPBs) in a way that requires its oligomerization and the SUN (Sad1 and UNc-84)-domain protein, Mps3. We further show that TorA physically interacts with human SUN1/2 within this system, supporting the physiological relevance of these interactions. Consistent with the idea that TorA acts on a SPB substrate, its binding to SPBs is modulated by the ATPase-stimulating activity of LAP1. TorA and TorA-ΔE reduce the fitness of cells expressing mps3 alleles, whereas TorA alone inhibits growth of cells lacking Pom152, a component of the nuclear pore complex. This genetic specificity is mirrored biochemically as TorA, but not TorA-ΔE, binds Pom152. Thus, TorA–nucleoporin interactions might be abrogated by TorA-ΔE, suggesting new experimental avenues to interrogate the molecular basis behind nuclear envelope herniations seen in mammalian cells lacking TorA function.
Collapse
Affiliation(s)
| | - Karl W. Barber
- Department of Cellular and Molecular Physiology, Yale School of Medicine, Yale University, New Haven, CT 06520
- Systems Biology Institute, Yale University, West Haven, CT 06477
| | - Sapan Borah
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - David Thaller
- Department of Cell Biology, Yale University, New Haven, CT 06520
| | - C. Patrick Lusk
- Department of Cell Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
15
|
Mutant torsinA in the heterozygous DYT1 state compromises HSV propagation in infected neurons and fibroblasts. Sci Rep 2018; 8:2324. [PMID: 29396398 PMCID: PMC5797141 DOI: 10.1038/s41598-018-19865-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/09/2018] [Indexed: 12/18/2022] Open
Abstract
Most cases of early onset torsion dystonia (DYT1) are caused by a 3-base pair deletion in one allele of the TOR1A gene causing loss of a glutamate in torsinA, a luminal protein in the nuclear envelope. This dominantly inherited neurologic disease has reduced penetrance and no other medical manifestations. It has been challenging to understand the neuronal abnormalities as cells and mouse models which are heterozygous (Het) for the mutant allele are quite similar to wild-type (WT) controls. Here we found that patient fibroblasts and mouse neurons Het for this mutation showed significant differences from WT cells in several parameters revealed by infection with herpes simplex virus type 1 (HSV) which replicates in the nucleus and egresses out through the nuclear envelope. Using a red fluorescent protein capsid to monitor HSV infection, patient fibroblasts showed decreased viral plaque formation as compared to controls. Mouse Het neurons had a decrease in cytoplasmic, but not nuclear HSV fluorescence, and reduced numbers of capsids entering axons as compared to infected WT neurons. These findings point to altered dynamics of the nuclear envelope in cells with the patient genotype, which can provide assays to screen for therapeutic agents that can normalize these cells.
Collapse
|
16
|
Weisheit CE, Pappas SS, Dauer WT. Inherited dystonias: clinical features and molecular pathways. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:241-254. [PMID: 29325615 DOI: 10.1016/b978-0-444-63233-3.00016-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent decades have witnessed dramatic increases in understanding of the genetics of dystonia - a movement disorder characterized by involuntary twisting and abnormal posture. Hampered by a lack of overt neuropathology, researchers are investigating isolated monogenic causes to pinpoint common molecular mechanisms in this heterogeneous disease. Evidence from imaging, cellular, and murine work implicates deficiencies in dopamine neurotransmission, transcriptional dysregulation, and selective vulnerability of distinct neuronal populations to disease mutations. Studies of genetic forms of dystonia are also illuminating the developmental dependence of disease symptoms that is typical of many forms of the disease. As understanding of monogenic forms of dystonia grows, a clearer picture will develop of the abnormal motor circuitry behind this relatively common phenomenology. This chapter focuses on the current data covering the etiology and epidemiology, clinical presentation, and pathogenesis of four monogenic forms of isolated dystonia: DYT-TOR1A, DYT-THAP1, DYT-GCH1, and DYT-GNAL.
Collapse
Affiliation(s)
- Corinne E Weisheit
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Samuel S Pappas
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William T Dauer
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
17
|
Chase AR, Laudermilch E, Schlieker C. Torsin ATPases: Harnessing Dynamic Instability for Function. Front Mol Biosci 2017; 4:29. [PMID: 28553638 PMCID: PMC5425593 DOI: 10.3389/fmolb.2017.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Torsins are essential, disease-relevant AAA+ (ATPases associated with various cellular activities) proteins residing in the endoplasmic reticulum and perinuclear space, where they are implicated in a variety of cellular functions. Recently, new structural and functional details about Torsins have emerged that will have a profound influence on unraveling the precise mechanistic details of their yet-unknown mode of action in the cell. While Torsins are phylogenetically related to Clp/HSP100 proteins, they exhibit comparatively weak ATPase activities, which are tightly controlled by virtue of an active site complementation through accessory cofactors. This control mechanism is offset by a TorsinA mutation implicated in the severe movement disorder DYT1 dystonia, suggesting a critical role for the functional Torsin-cofactor interplay in vivo. Notably, TorsinA lacks aromatic pore loops that are both conserved and critical for the processive unfolding activity of Clp/HSP100 proteins. Based on these distinctive yet defining features, we discuss how the apparent dynamic nature of the Torsin-cofactor system can inform emerging models and hypotheses for Torsin complex formation and function. Specifically, we propose that the dynamic assembly and disassembly of the Torsin/cofactor system is a critical property that is required for Torsins' functional roles in nuclear trafficking and nuclear pore complex assembly or homeostasis that merit further exploration. Insights obtained from these future studies will be a valuable addition to our understanding of disease etiology of DYT1 dystonia.
Collapse
Affiliation(s)
- Anna R Chase
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - Ethan Laudermilch
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale UniversityNew Haven, CT, USA.,Department of Cell Biology, Yale School of MedicineNew Haven, CT, USA
| |
Collapse
|
18
|
Saunders CA, Harris NJ, Willey PT, Woolums BM, Wang Y, McQuown AJ, Schoenhofen A, Worman HJ, Dauer WT, Gundersen GG, Luxton GWG. TorsinA controls TAN line assembly and the retrograde flow of dorsal perinuclear actin cables during rearward nuclear movement. J Cell Biol 2017; 216:657-674. [PMID: 28242745 PMCID: PMC5350507 DOI: 10.1083/jcb.201507113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/04/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022] Open
Abstract
The nucleus is positioned toward the rear of most migratory cells. In fibroblasts and myoblasts polarizing for migration, retrograde actin flow moves the nucleus rearward, resulting in the orientation of the centrosome in the direction of migration. In this study, we report that the nuclear envelope-localized AAA+ (ATPase associated with various cellular activities) torsinA (TA) and its activator, the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1), are required for rearward nuclear movement during centrosome orientation in migrating fibroblasts. Both TA and LAP1 contributed to the assembly of transmembrane actin-associated nuclear (TAN) lines, which couple the nucleus to dorsal perinuclear actin cables undergoing retrograde flow. In addition, TA localized to TAN lines and was necessary for the proper mobility of EGFP-mini-nesprin-2G, a functional TAN line reporter construct, within the nuclear envelope. Furthermore, TA and LAP1 were indispensable for the retrograde flow of dorsal perinuclear actin cables, supporting the recently proposed function for the nucleus in spatially organizing actin flow and cytoplasmic polarity. Collectively, these results identify TA as a key regulator of actin-dependent rearward nuclear movement during centrosome orientation.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Nathan J Harris
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Patrick T Willey
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Brian M Woolums
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Yuexia Wang
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Alex J McQuown
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Amy Schoenhofen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Howard J Worman
- Department of Medicine, Columbia University, New York, NY 10032.,Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - William T Dauer
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109.,Department of Neurology, University of Michigan, Ann Arbor, MI 48109
| | - Gregg G Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
19
|
Fremont R, Tewari A, Angueyra C, Khodakhah K. A role for cerebellum in the hereditary dystonia DYT1. eLife 2017; 6. [PMID: 28198698 PMCID: PMC5340526 DOI: 10.7554/elife.22775] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
DYT1 is a debilitating movement disorder caused by loss-of-function mutations in torsinA. How these mutations cause dystonia remains unknown. Mouse models which have embryonically targeted torsinA have failed to recapitulate the dystonia seen in patients, possibly due to differential developmental compensation between rodents and humans. To address this issue, torsinA was acutely knocked down in select brain regions of adult mice using shRNAs. TorsinA knockdown in the cerebellum, but not in the basal ganglia, was sufficient to induce dystonia. In agreement with a potential developmental compensation for loss of torsinA in rodents, torsinA knockdown in the immature cerebellum failed to produce dystonia. Abnormal motor symptoms in knockdown animals were associated with irregular cerebellar output caused by changes in the intrinsic activity of both Purkinje cells and neurons of the deep cerebellar nuclei. These data identify the cerebellum as the main site of dysfunction in DYT1, and offer new therapeutic targets. DOI:http://dx.doi.org/10.7554/eLife.22775.001 Dystonia is the third most common type of movement disorder after Parkinson’s disease and tremor. Patients with dystonia experience prolonged involuntary contractions of their muscles, often causing uncontrollable postures or repetitive movements. Almost thirty years ago, genetic studies revealed that a mutation in the gene that encodes a protein called torsinA causes the most common type of dystonia, called DYT1. Exactly how mutations that affect the torsinA protein give rise to DYT1 remains unclear, and there are still no effective treatments for the disorder. Part of the problem is that we do not fully understand how torsinA works, or which of its many proposed functions is relevant to dystonia. Moreover, attempts to study DYT1 using genetically modified mice have proved largely unsuccessful. This is because mice that simply express the same genetic mutations that cause dystonia in humans do not show the overt symptoms of dystonia. Fremont, Tewari et al. have now generated a mouse ‘model’ that does show symptoms of dystonia, and used these model mice to investigate the role of torsinA in the disorder. Acutely reducing the amount of torsinA protein in a region of the brain called the cerebellum induced the symptoms of dystonia in the mice. Conversely, reducing the amount of torsinA in a different brain area known as the basal ganglia had no such effect, even though both the cerebellum and the basal ganglia contribute to movement. Furthermore, neither manipulation had any effect in juvenile mice, which suggests that, in contrast to humans, young mice can compensate for the loss of torsinA. Fremont, Tewari et al. also found that the loss of torsinA causes the cerebellum to generate incorrect output signals, which in turn trigger the abnormal movements seen in dystonia. In the future, further studies of the model mice could identify the exact changes that occur in neurons following the loss of torsinA from the cerebellum. Understanding these changes could potentially pave the way for developing effective treatments for DYT1 and other dystonias. DOI:http://dx.doi.org/10.7554/eLife.22775.002
Collapse
Affiliation(s)
- Rachel Fremont
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Ambika Tewari
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Chantal Angueyra
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Kamran Khodakhah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| |
Collapse
|
20
|
Sergin I, Jong YJI, Harmon SK, Kumar V, O'Malley KL. Sequences within the C Terminus of the Metabotropic Glutamate Receptor 5 (mGluR5) Are Responsible for Inner Nuclear Membrane Localization. J Biol Chem 2017; 292:3637-3655. [PMID: 28096465 DOI: 10.1074/jbc.m116.757724] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/12/2017] [Indexed: 12/19/2022] Open
Abstract
Traditionally, G-protein-coupled receptors (GPCR) are thought to be located on the cell surface where they transmit extracellular signals to the cytoplasm. However, recent studies indicate that some GPCRs are also localized to various subcellular compartments such as the nucleus where they appear required for various biological functions. For example, the metabotropic glutamate receptor 5 (mGluR5) is concentrated at the inner nuclear membrane (INM) where it mediates Ca2+ changes in the nucleoplasm by coupling with Gq/11 Here, we identified a region within the C-terminal domain (amino acids 852-876) that is necessary and sufficient for INM localization of the receptor. Because these sequences do not correspond to known nuclear localization signal motifs, they represent a new motif for INM trafficking. mGluR5 is also trafficked to the plasma membrane where it undergoes re-cycling/degradation in a separate receptor pool, one that does not interact with the nuclear mGluR5 pool. Finally, our data suggest that once at the INM, mGluR5 is stably retained via interactions with chromatin. Thus, mGluR5 is perfectly positioned to regulate nucleoplasmic Ca2+in situ.
Collapse
Affiliation(s)
- Ismail Sergin
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yuh-Jiin I Jong
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Steven K Harmon
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Vikas Kumar
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Karen L O'Malley
- From the Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
21
|
Abstract
An optimal tool to unravel the role of a specific player within a cellular network or process requires its spatiotemporally resolved perturbation. Chemically induced dimerization (CID) by the rapamycin system has proven useful to induce protein dimerization or translocation with high spatiotemporal precision. Recently, we and others have added reversibility of the dimerization event as a novel feature to CID approaches. Among those, our reversible chemical dimerizer (rCD1) shows the fastest release kinetics observed, comparable to optogenetic methods. Induction and termination of enzyme activities, including phosphatidylinositol 3-kinase (PI3K) and 5-phosphatase (5Ptase), therefore allowed us to monitor the relaxation of the downstream effectors within living cells by imaging and traditional biochemical methods. Because switching off the rCD1-induced enzyme activity is sufficiently fast, it is possible to estimate kinetic parameters for enzyme activity and metabolism. Fast reversible CIDs are therefore unique tools for performing semiquantitative biochemistry in intact cells. In this chapter, we discuss advantages and constraints for the design of reversible CID applications. We provide detailed protocols for rCD1 synthesis, CID component expression in and delivery to mammalian cells and the determination of enzyme kinetics inside intact cells by a specially designed image acquisition and data analysis method.
Collapse
Affiliation(s)
- M Schifferer
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - S Feng
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany; NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - F Stein
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - C Schultz
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
22
|
Cascalho A, Jacquemyn J, Goodchild RE. Membrane defects and genetic redundancy: Are we at a turning point for DYT1 dystonia? Mov Disord 2016; 32:371-381. [PMID: 27911022 DOI: 10.1002/mds.26880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 12/11/2022] Open
Abstract
Heterozygosity for a 3-base pair deletion (ΔGAG) in TOR1A/torsinA is one of the most common causes of hereditary dystonia. In this review, we highlight current understanding of how this mutation causes disease from research spanning structural biochemistry, cell science, neurobiology, and several model organisms. We now know that homozygosity for ΔGAG has the same effects as Tor1aKO , implicating a partial loss of function mechanism in the ΔGAG/+ disease state. In addition, torsinA loss specifically affects neurons in mice, even though the gene is broadly expressed, apparently because of differential expression of homologous torsinB. Furthermore, certain neuronal subtypes are more severely affected by torsinA loss. Interestingly, these include striatal cholinergic interneurons that display abnormal responses to dopamine in several Tor1a animal models. There is also progress on understanding torsinA molecular cell biology. The structural basis of how ΔGAG inhibits torsinA ATPase activity is defined, although mutant torsinAΔGAG protein also displays some characteristics suggesting it contributes to dystonia by a gain-of-function mechanism. Furthermore, a consistent relationship is emerging between torsin dysfunction and membrane biology, including an evolutionarily conserved regulation of lipid metabolism. Considered together, these findings provide major advances toward understanding the molecular, cellular, and neurobiological pathologies of DYT1/TOR1A dystonia that can hopefully be exploited for new approaches to treat this disease. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Ana Cascalho
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Julie Jacquemyn
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| | - Rose E Goodchild
- Vlaams Instituut voor Biotechnologie Centre for the Biology of Disease, Leuven, Belgium.,KU Leuven, Department of Human Genetics, Leuven, Belgium
| |
Collapse
|
23
|
DeSimone JC, Febo M, Shukla P, Ofori E, Colon-Perez LM, Li Y, Vaillancourt DE. In vivo imaging reveals impaired connectivity across cortical and subcortical networks in a mouse model of DYT1 dystonia. Neurobiol Dis 2016; 95:35-45. [PMID: 27404940 PMCID: PMC5010949 DOI: 10.1016/j.nbd.2016.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/27/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022] Open
Abstract
Developing in vivo functional and structural neuroimaging assays in Dyt1 ΔGAG heterozygous knock-in (Dyt1 KI) mice provide insight into the pathophysiology underlying DYT1 dystonia. In the current study, we examined in vivo functional connectivity of large-scale cortical and subcortical networks in Dyt1 KI mice and wild-type (WT) controls using resting-state functional magnetic resonance imaging (MRI) and an independent component analysis. In addition, using diffusion MRI we examined how structural integrity across the basal ganglia and cerebellum directly relates to impairments in functional connectivity. Compared to WT mice, Dyt1 KI mice revealed increased functional connectivity across the striatum, thalamus, and somatosensory cortex; and reduced functional connectivity in the motor and cerebellar cortices. Further, Dyt1 KI mice demonstrated elevated free-water (FW) in the striatum and cerebellum compared to WT mice, and increased FW was correlated with impairments in functional connectivity across basal ganglia, cerebellum, and sensorimotor cortex. The current study provides the first in vivo MRI-based evidence in support of the hypothesis that the deletion of a 3-base pair (ΔGAG) sequence in the Dyt1 gene encoding torsinA has network level effects on in vivo functional connectivity and microstructural integrity across the sensorimotor cortex, basal ganglia, and cerebellum.
Collapse
Affiliation(s)
- Jesse C DeSimone
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Priyank Shukla
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Edward Ofori
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Luis M Colon-Perez
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuqing Li
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - David E Vaillancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Laudermilch E, Tsai PL, Graham M, Turner E, Zhao C, Schlieker C. Dissecting Torsin/cofactor function at the nuclear envelope: a genetic study. Mol Biol Cell 2016; 27:3964-3971. [PMID: 27798237 PMCID: PMC5156537 DOI: 10.1091/mbc.e16-07-0511] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 01/12/2023] Open
Abstract
Torsins are essential, disease-relevant ATPases, but their function is unknown. Monitoring of nuclear envelope morphology after deletion of multiple Torsins or their cofactors reveals a robust inner nuclear membrane–blebbing phenotype in HeLa cells. Nucleoporins and ubiquitin are defining molecular components of these omega-shaped blebs. The human genome encodes four Torsin ATPases, the functions of which are poorly understood. In this study, we use CRISPR/Cas9 engineering to delete all four Torsin ATPases individually and in combination. Using nuclear envelope (NE) blebbing as a phenotypic measure, we establish a direct correlation between the number of inactivated Torsin alleles and the occurrence of omega-shaped herniations within the lumen of the NE. A similar, although not identical, redundancy is observed for LAP1 and LULL1, which serve as regulatory cofactors for a subset of Torsin ATPases. Unexpectedly, deletion of Tor2A in a TorA/B/3A-deficient background results in a stark increase of bleb formation, even though Tor2A does not respond to LAP1/LULL1 stimulation. The robustness of the observed phenotype in Torsin-deficient cells enables a structural analysis via electron microscopy tomography and a compositional analysis via immunogold labeling. Ubiquitin and nucleoporins were identified as distinctively localizing components of the omega-shaped bleb structure. These findings suggest a functional link between the Torsin/cofactor system and NE/nuclear pore complex biogenesis or homeostasis and establish a Torsin-deficient cell line as a valuable experimental platform with which to decipher Torsin function.
Collapse
Affiliation(s)
- Ethan Laudermilch
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Pei-Ling Tsai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Morven Graham
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | - Elizabeth Turner
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Chenguang Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520 .,Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| |
Collapse
|
25
|
Hubert V, Peschel A, Langer B, Gröger M, Rees A, Kain R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open 2016; 5:1516-1529. [PMID: 27628032 PMCID: PMC5087675 DOI: 10.1242/bio.018648] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is an evolutionarily conserved process used for removing surplus and damaged proteins and organelles from the cytoplasm. The unwanted material is incorporated into autophagosomes that eventually fuse with lysosomes, leading to the degradation of their cargo. The fusion event is mediated by the interaction between the Qa-SNARE syntaxin-17 (STX17) on autophagosomes and the R-SNARE VAMP8 on lysosomes. Cells deficient in lysosome membrane-associated protein-2 (LAMP-2) have increased numbers of autophagosomes but the underlying mechanism is poorly understood. By transfecting LAMP-2-deficient and LAMP-1/2-double-deficient mouse embryonic fibroblasts (MEFs) with a tandem fluorescent-tagged LC3 we observed a failure of fusion between the autophagosomes and the lysosomes that could be rescued by complementation with LAMP-2A. Although we observed no change in expression and localization of VAMP8, its interacting partner STX17 was absent from autophagosomes of LAMP-2-deficient cells. Thus, LAMP-2 is essential for STX17 expression by the autophagosomes and this absence is sufficient to explain their failure to fuse with lysosomes. The results have clear implications for situations associated with a reduction of LAMP-2 expression. Summary: LAMP-2 is required for autophagosome-lysosome fusion. Its absence does not affect the lysosomal SNARE VAMP8 while its interacting partner STX17 is absent from the autophagosomes providing a molecular explanation for this fusion failure.
Collapse
Affiliation(s)
- Virginie Hubert
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Andrea Peschel
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Brigitte Langer
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Marion Gröger
- Core Facilities, Medical University of Vienna, Vienna 1090, Austria
| | - Andrew Rees
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
26
|
Grillet M, Dominguez Gonzalez B, Sicart A, Pöttler M, Cascalho A, Billion K, Hernandez Diaz S, Swerts J, Naismith TV, Gounko NV, Verstreken P, Hanson PI, Goodchild RE. Torsins Are Essential Regulators of Cellular Lipid Metabolism. Dev Cell 2016; 38:235-47. [PMID: 27453503 DOI: 10.1016/j.devcel.2016.06.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/18/2016] [Accepted: 06/12/2016] [Indexed: 01/10/2023]
Abstract
Torsins are developmentally essential AAA+ proteins, and mutation of human torsinA causes the neurological disease DYT1 dystonia. They localize in the ER membranes, but their cellular function remains unclear. We now show that dTorsin is required in Drosophila adipose tissue, where it suppresses triglyceride levels, promotes cell growth, and elevates membrane lipid content. We also see that human torsinA at the inner nuclear membrane is associated with membrane expansion and elevated cellular lipid content. Furthermore, the key lipid metabolizing enzyme, lipin, is mislocalized in dTorsin-KO cells, and dTorsin increases levels of the lipin substrate, phosphatidate, and reduces the product, diacylglycerol. Finally, genetic suppression of dLipin rescues dTorsin-KO defects, including adipose cell size, animal growth, and survival. These findings identify that torsins are essential regulators of cellular lipid metabolism and implicate disturbed lipid biology in childhood-onset DYT1 dystonia.
Collapse
Affiliation(s)
- Micheline Grillet
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Beatriz Dominguez Gonzalez
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Adria Sicart
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Maria Pöttler
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Ana Cascalho
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Karolien Billion
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Sergio Hernandez Diaz
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Jef Swerts
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Natalia V Gounko
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Electron Microscopy Platform, VIB Bio-Imaging Core, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Rose E Goodchild
- VIB Centre for the Biology of Disease, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium; Department of Human Genetics, KU Leuven, Campus Gasthuisberg, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Zhao C, Brown RSH, Tang CHA, Hu CCA, Schlieker C. Site-specific Proteolysis Mobilizes TorsinA from the Membrane of the Endoplasmic Reticulum (ER) in Response to ER Stress and B Cell Stimulation. J Biol Chem 2016; 291:9469-81. [PMID: 26953341 DOI: 10.1074/jbc.m115.709337] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/01/2023] Open
Abstract
Torsin ATPases are the only representatives of the AAA+ ATPase family that reside in the lumen of the endoplasmic reticulum (ER) and nuclear envelope. Two of these, TorsinA and TorsinB, are anchored to the ER membrane by virtue of an N-terminal hydrophobic domain. Here we demonstrate that the imposition of ER stress leads to a proteolytic cleavage event that selectively removes the hydrophobic domain from the AAA+ domain of TorsinA, which retains catalytic activity. Both the pharmacological inhibition profile and the identified cleavage site between two juxtaposed cysteine residues are distinct from those of presently known proteases, suggesting that a hitherto uncharacterized, membrane-associated protease accounts for TorsinA processing. This processing occurs not only in stress-exposed cell lines but also in primary cells from distinct organisms including stimulated B cells, indicating that Torsin conversion in response to physiologically relevant stimuli is an evolutionarily conserved process. By establishing 5-nitroisatin as a cell-permeable inhibitor for Torsin processing, we provide the methodological framework for interfering with Torsin processing in a wide range of primary cells without the need for genetic manipulation.
Collapse
Affiliation(s)
- Chenguang Zhao
- From the Departments of Molecular Biophysics and Biochemistry and
| | | | - Chih-Hang Anthony Tang
- the Department of Translational Tumor Immunology, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Chih-Chi Andrew Hu
- the Department of Translational Tumor Immunology, The Wistar Institute, Philadelphia, Pennsylvania 19104
| | - Christian Schlieker
- From the Departments of Molecular Biophysics and Biochemistry and Cell Biology, Yale University, New Haven, Connecticut 06520 and
| |
Collapse
|
28
|
Saunders CA, Luxton GWG. LINCing defective nuclear-cytoskeletal coupling and DYT1 dystonia. Cell Mol Bioeng 2016; 9:207-216. [PMID: 27499815 DOI: 10.1007/s12195-016-0432-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mechanical forces generated by nuclear-cytoskeletal coupling through the LINC (linker of nucleoskeleton and cytoskeleton) complex, an evolutionarily conserved molecular bridge in the nuclear envelope (NE), are critical for the execution of wholesale nuclear positioning events in migrating and dividing cells, chromosome dynamics during meiosis, and mechanotransduction. LINC complexes consist of outer (KASH (Klarsicht, ANC-1, and Syne homology)) and inner (SUN (Sad1, UNC-84)) nuclear membrane proteins. KASH proteins interact with the cytoskeleton in the cytoplasm and SUN proteins in the perinuclear space of the NE. In the nucleoplasm, SUN proteins interact with A-type nuclear lamins and chromatin-binding proteins. Recent structural insights into the KASH-SUN interaction have generated several questions regarding how LINC complex assembly and function might be regulated within the perinuclear space. Here we discuss potential LINC regulatory mechanisms and focus on the potential role of AAA+ (ATPases associated with various cellular activities) protein, torsinA, as a LINC complex regulator within the NE. We also examine how defects in LINC complex regulation by torsinA may contribute to the pathogenesis of the human neurological movement disorder, DYT1 dystonia.
Collapse
Affiliation(s)
- Cosmo A Saunders
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - G W Gant Luxton
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
29
|
Hellberg T, Paßvogel L, Schulz KS, Klupp BG, Mettenleiter TC. Nuclear Egress of Herpesviruses: The Prototypic Vesicular Nucleocytoplasmic Transport. Adv Virus Res 2016; 94:81-140. [PMID: 26997591 DOI: 10.1016/bs.aivir.2015.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herpesvirus particles mature in two different cellular compartments. While capsid assembly and packaging of the genomic linear double-stranded DNA occur in the nucleus, virion formation takes place in the cytoplasm by the addition of numerous tegument proteins as well as acquisition of the viral envelope by budding into cellular vesicles derived from the trans-Golgi network containing virally encoded glycoproteins. To gain access to the final maturation compartment, herpesvirus nucleocapsids have to cross a formidable barrier, the nuclear envelope (NE). Since the ca. 120 nm diameter capsids are unable to traverse via nuclear pores, herpesviruses employ a vesicular transport through both leaflets of the NE. This process involves proteins which support local dissolution of the nuclear lamina to allow access of capsids to the inner nuclear membrane (INM), drive vesicle formation from the INM and mediate inclusion of the capsid as well as scission of the capsid-containing vesicle (also designated as "primary virion"). Fusion of the vesicle membrane (i.e., the "primary envelope") with the outer nuclear membrane subsequently results in release of the nucleocapsid into the cytoplasm for continuing virion morphogenesis. While this process has long been thought to be unique for herpesviruses, a similar pathway for nuclear egress of macromolecular complexes has recently been observed in Drosophila. Thus, herpesviruses may have coopted a hitherto unrecognized cellular mechanism of vesicle-mediated nucleocytoplasmic transport. This could have far reaching consequences for our understanding of cellular functions as again unraveled by the study of viruses.
Collapse
Affiliation(s)
- Teresa Hellberg
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lars Paßvogel
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Katharina S Schulz
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Barbara G Klupp
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
30
|
Torsin ATPases: structural insights and functional perspectives. Curr Opin Cell Biol 2016; 40:1-7. [PMID: 26803745 DOI: 10.1016/j.ceb.2016.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/22/2015] [Accepted: 01/02/2016] [Indexed: 12/29/2022]
Abstract
Torsin ATPases are the only members of the AAA+ ATPase family that localize to the endoplasmic reticulum and contiguous perinuclear space. Accordingly, they are well positioned to perform essential work in these compartments, but their precise functions remain elusive. Recent studies have deciphered an unusual ATPase activation mechanism relying on Torsin-associated transmembrane cofactors, LAP1 or LULL1. These findings profoundly change our molecular view of the Torsin machinery and rationalize several human mutations in TorsinA or LAP1 leading to congenital disorders, symptoms of which have recently been recapitulated in mouse models. Here, we review these recent advances in the Torsin field and discuss the most pressing questions in relation to nuclear envelope dynamics.
Collapse
|
31
|
Demircioglu FE, Sosa BA, Ingram J, Ploegh HL, Schwartz TU. Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. eLife 2016; 5:e17983. [PMID: 27490483 PMCID: PMC4999309 DOI: 10.7554/elife.17983] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/03/2016] [Indexed: 01/07/2023] Open
Abstract
The most common cause of early onset primary dystonia, a neuromuscular disease, is a glutamate deletion (ΔE) at position 302/303 of TorsinA, a AAA+ ATPase that resides in the endoplasmic reticulum. While the function of TorsinA remains elusive, the ΔE mutation is known to diminish binding of two TorsinA ATPase activators: lamina-associated protein 1 (LAP1) and its paralog, luminal domain like LAP1 (LULL1). Using a nanobody as a crystallization chaperone, we obtained a 1.4 Å crystal structure of human TorsinA in complex with LULL1. This nanobody likewise stabilized the weakened TorsinAΔE-LULL1 interaction, which enabled us to solve its structure at 1.4 Å also. A comparison of these structures shows, in atomic detail, the subtle differences in activator interactions that separate the healthy from the diseased state. This information may provide a structural platform for drug development, as a small molecule that rescues TorsinAΔE could serve as a cure for primary dystonia.
Collapse
Affiliation(s)
- F Esra Demircioglu
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Brian A Sosa
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jessica Ingram
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States,
| |
Collapse
|
32
|
Abstract
Torsin ATPases (Torsins) belong to the widespread AAA+ (ATPases associated with a variety of cellular activities) family of ATPases, which share structural similarity but have diverse cellular functions. Torsins are outliers in this family because they lack many characteristics of typical AAA+ proteins, and they are the only members of the AAA+ family located in the endoplasmic reticulum and contiguous perinuclear space. While it is clear that Torsins have essential roles in many, if not all metazoans, their precise cellular functions remain elusive. Studying Torsins has significant medical relevance since mutations in Torsins or Torsin-associated proteins result in a variety of congenital human disorders, the most frequent of which is early-onset torsion (DYT1) dystonia, a severe movement disorder. A better understanding of the Torsin system is needed to define the molecular etiology of these diseases, potentially enabling corrective therapy. Here, we provide a comprehensive overview of the Torsin system in metazoans, discuss functional clues obtained from various model systems and organisms and provide a phylogenetic and structural analysis of Torsins and their regulatory cofactors in relation to disease-causative mutations. Moreover, we review recent data that have led to a dramatically improved understanding of these machines at a molecular level, providing a foundation for investigating the molecular defects underlying the associated movement disorders. Lastly, we discuss our ideas on how recent progress may be utilized to inform future studies aimed at determining the cellular role(s) of these atypical molecular machines and their implications for dystonia treatment options.
Collapse
Affiliation(s)
- April E Rose
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Rebecca S H Brown
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and
| | - Christian Schlieker
- a Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , CT , USA and.,b Department of Cell Biology , Yale School of Medicine , New Haven , CT , USA
| |
Collapse
|