1
|
Lehmann P, Katoh-Kurasawa M, Kundert P, Shaulsky G. Going against the family: Perturbation of a greenbeard pathway leads to falsebeard cheating. iScience 2024; 27:111125. [PMID: 39502291 PMCID: PMC11536038 DOI: 10.1016/j.isci.2024.111125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Greenbeards facilitate cooperation by encoding a perceptible signal, the ability to detect it, and a tendency to help others that display it. Falsebeards are hypothetical cheaters that display the signal without being altruistic. Despite many examples of greenbeards, evidence for falsebeards is scarce. The Dictyostelium discoideum tgrB1-tgrC1 allorecognition pathway encodes a greenbeard. It allows development, which yields fruiting bodies with altruistic stalks that increase spore dispersal. Here we show that cells lacking rapgapB, a tgrB1-tgrC1 signaling element, cheat by avoiding the stalk fate and generating more spores in chimeras than in pure populations. rapgapB - cells cheat only on partners with compatible tgrB1-tgrC1 allotypes, suggesting that beard display and recognition are intact but decoupled from altruism. The rapgapB - falsebeard provides a model to study greenbeard maintenance and subversion.
Collapse
Affiliation(s)
- Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
2
|
Katoh-Kurasawa M, Lehmann P, Shaulsky G. The greenbeard gene tgrB1 regulates altruism and cheating in Dictyostelium discoideum. Nat Commun 2024; 15:3984. [PMID: 38734736 PMCID: PMC11088635 DOI: 10.1038/s41467-024-48380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.
Collapse
Affiliation(s)
- Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peter Lehmann
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate program in Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Ogasawara T, Watanabe J, Adachi R, Ono Y, Kamimura Y, Muramoto T. CRISPR/Cas9-based genome-wide screening of Dictyostelium. Sci Rep 2022; 12:11215. [PMID: 35780186 PMCID: PMC9250498 DOI: 10.1038/s41598-022-15500-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Genome-wide screening is powerful method used to identify genes and pathways associated with a phenotype of interest. The simple eukaryote Dictyostelium discoideum has a unique life cycle and is often used as a crucial research model for a wide range of biological processes and rare metabolites. To address the inadequacies of conventional genetic screening approaches, we developed a highly efficient CRISPR/Cas9-based genome-wide screening system for Dictyostelium. A genome-wide library of 27,405 gRNAs and a kinase library of 4,582 gRNAs were compiled and mutant pools were generated. The resulting mutants were screened for defects in cell growth and more than 10 candidate genes were identified. Six of these were validated and five recreated mutants presented with growth abnormalities. Finally, the genes implicated in developmental defects were screened to identify the unknown genes associated with a phenotype of interest. These findings demonstrate the potential of the CRISPR/Cas9 system as an efficient genome-wide screening method.
Collapse
Affiliation(s)
- Takanori Ogasawara
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Jun Watanabe
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Remi Adachi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yusuke Ono
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yoichiro Kamimura
- Laboratory for Cell Signaling Dynamics, RIKEN, Center for Biosystems Dynamics Research (BDR), Suita, Osaka, 565-0874, Japan
| | - Tetsuya Muramoto
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan.
| |
Collapse
|
4
|
Hayakawa M, Hiraiwa T, Wada Y, Kuwayama H, Shibata T. Polar pattern formation induced by contact following locomotion in a multicellular system. eLife 2020; 9:53609. [PMID: 32352381 PMCID: PMC7213982 DOI: 10.7554/elife.53609] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
Biophysical mechanisms underlying collective cell migration of eukaryotic cells have been studied extensively in recent years. One mechanism that induces cells to correlate their motions is contact inhibition of locomotion, by which cells migrating away from the contact site. Here, we report that tail-following behavior at the contact site, termed contact following locomotion (CFL), can induce a non-trivial collective behavior in migrating cells. We show the emergence of a traveling band showing polar order in a mutant Dictyostelium cell that lacks chemotactic activity. We find that CFL is the cell-cell interaction underlying this phenomenon, enabling a theoretical description of how this traveling band forms. We further show that the polar order phase consists of subpopulations that exhibit characteristic transversal motions with respect to the direction of band propagation. These findings describe a novel mechanism of collective cell migration involving cell-cell interactions capable of inducing traveling band with polar order.
Collapse
Affiliation(s)
- Masayuki Hayakawa
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore.,Universal Biology Institute, University of Tokyo, Tokyo, Japan
| | - Yuko Wada
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Hidekazu Kuwayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai, Ibaraki, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
5
|
Kundert P, Shaulsky G. Cellular allorecognition and its roles in Dictyostelium development and social evolution. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 63:383-393. [PMID: 31840777 PMCID: PMC6919275 DOI: 10.1387/ijdb.190239gs] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The social amoeba Dictyostelium discoideum is a tractable model organism to study cellular allorecognition, which is the ability of a cell to distinguish itself and its genetically similar relatives from more distantly related organisms. Cellular allorecognition is ubiquitous across the tree of life and affects many biological processes. Depending on the biological context, these versatile systems operate both within and between individual organisms, and both promote and constrain functional heterogeneity. Some of the most notable allorecognition systems mediate neural self-avoidance in flies and adaptive immunity in vertebrates. D. discoideum's allorecognition system shares several structures and functions with other allorecognition systems. Structurally, its key regulators reside at a single genomic locus that encodes two highly polymorphic proteins, a transmembrane ligand called TgrC1 and its receptor TgrB1. These proteins exhibit isoform-specific, heterophilic binding across cells. Functionally, this interaction determines the extent to which co-developing D. discoideum strains co-aggregate or segregate during the aggregation phase of multicellular development. The allorecognition system thus affects both development and social evolution, as available evidence suggests that the threat of developmental cheating represents a primary selective force acting on it. Other significant characteristics that may inform the study of allorecognition in general include that D. discoideum's allorecognition system is a continuous and inclusive trait, it is pleiotropic, and it is temporally regulated.
Collapse
Affiliation(s)
- Peter Kundert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | | |
Collapse
|
6
|
Unfolding the Endoplasmic Reticulum of a Social Amoeba: Dictyostelium discoideum as a New Model for the Study of Endoplasmic Reticulum Stress. Cells 2018; 7:cells7060056. [PMID: 29890774 PMCID: PMC6025073 DOI: 10.3390/cells7060056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum (ER) is a membranous network with an intricate dynamic architecture necessary for various essential cellular processes. Nearly one third of the proteins trafficking through the secretory pathway are folded and matured in the ER. Additionally, it acts as calcium storage, and it is a main source for lipid biosynthesis. The ER is highly connected with other organelles through regions of membrane apposition that allow organelle remodeling, as well as lipid and calcium traffic. Cells are under constant changes due to metabolic requirements and environmental conditions that challenge the ER network’s maintenance. The unfolded protein response (UPR) is a signaling pathway that restores homeostasis of this intracellular compartment upon ER stress conditions by reducing the load of proteins, and by increasing the processes of protein folding and degradation. Significant progress on the study of the mechanisms that restore ER homeostasis was achieved using model organisms such as yeast, Arabidopsis, and mammalian cells. In this review, we address the current knowledge on ER architecture and ER stress response in Dictyostelium discoideum. This social amoeba alternates between unicellular and multicellular phases and is recognized as a valuable biomedical model organism and an alternative to yeast, particularly for the presence of traits conserved in animal cells that were lost in fungi.
Collapse
|
7
|
Hillmann F, Forbes G, Novohradská S, Ferling I, Riege K, Groth M, Westermann M, Marz M, Spaller T, Winckler T, Schaap P, Glöckner G. Multiple Roots of Fruiting Body Formation in Amoebozoa. Genome Biol Evol 2018; 10:591-606. [PMID: 29378020 PMCID: PMC5804921 DOI: 10.1093/gbe/evy011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2018] [Indexed: 02/03/2023] Open
Abstract
Establishment of multicellularity represents a major transition in eukaryote evolution. A subgroup of Amoebozoa, the dictyosteliids, has evolved a relatively simple aggregative multicellular stage resulting in a fruiting body supported by a stalk. Protosteloid amoeba, which are scattered throughout the amoebozoan tree, differ by producing only one or few single stalked spores. Thus, one obvious difference in the developmental cycle of protosteliids and dictyosteliids seems to be the establishment of multicellularity. To separate spore development from multicellular interactions, we compared the genome and transcriptome of a Protostelium species (Protostelium aurantium var. fungivorum) with those of social and solitary members of the Amoebozoa. During fruiting body formation nearly 4,000 genes, corresponding to specific pathways required for differentiation processes, are upregulated. A comparison with genes involved in the development of dictyosteliids revealed conservation of >500 genes, but most of them are also present in Acanthamoeba castellanii for which fruiting bodies have not been documented. Moreover, expression regulation of those genes differs between P. aurantium and Dictyostelium discoideum. Within Amoebozoa differentiation to fruiting bodies is common, but our current genome analysis suggests that protosteliids and dictyosteliids used different routes to achieve this. Most remarkable is both the large repertoire and diversity between species in genes that mediate environmental sensing and signal processing. This likely reflects an immense adaptability of the single cell stage to varying environmental conditions. We surmise that this signaling repertoire provided sufficient building blocks to accommodate the relatively simple demands for cell-cell communication in the early multicellular forms.
Collapse
Affiliation(s)
- Falk Hillmann
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Gillian Forbes
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom
| | - Silvia Novohradská
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Iuliia Ferling
- Junior Research Group Evolution of Microbial Interaction, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Jena, Germany
| | - Konstantin Riege
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany
| | - Marco Groth
- CF DNA-Sequencing, Leibniz Institute on Aging Research, Jena, Germany
| | | | - Manja Marz
- Bioinformatics/High Throughput Analysis, Friedrich Schiller University Jena, Germany
| | - Thomas Spaller
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Thomas Winckler
- Pharmaceutical Biology, Institute of Pharmacy, Friedrich Schiller University Jena, Germany
| | - Pauline Schaap
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, United Kingdom
| | - Gernot Glöckner
- Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany
| |
Collapse
|
8
|
Hirose S, Chen G, Kuspa A, Shaulsky G. The polymorphic proteins TgrB1 and TgrC1 function as a ligand-receptor pair in Dictyostelium allorecognition. J Cell Sci 2017; 130:4002-4012. [PMID: 29038229 PMCID: PMC5769593 DOI: 10.1242/jcs.208975] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/12/2017] [Indexed: 12/15/2022] Open
Abstract
Allorecognition is a key factor in Dictyostelium development and sociality. It is mediated by two polymorphic transmembrane proteins, TgrB1 and TgrC1, which contain extracellular immunoglobulin domains. TgrB1 and TgrC1 are necessary and sufficient for allorecognition, and they carry out separate albeit overlapping functions in development, but their mechanism of action is unknown. Here, we show that TgrB1 acts as a receptor with TgrC1 as its ligand in cooperative aggregation and differentiation. The proteins bind each other in a sequence-specific manner; TgrB1 exhibits a cell-autonomous function and TgrC1 acts non-cell-autonomously. The TgrB1 cytoplasmic tail is essential for its function and it becomes phosphorylated upon association with TgrC1. Dominant mutations in TgrB1 activate the receptor function and confer partial ligand independence. These roles in development and sociality suggest that allorecognition is crucial in the integration of individual cells into a coherent organism.
Collapse
Affiliation(s)
- Shigenori Hirose
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gong Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Li CLF, Santhanam B, Webb AN, Zupan B, Shaulsky G. Gene discovery by chemical mutagenesis and whole-genome sequencing in Dictyostelium. Genome Res 2016; 26:1268-76. [PMID: 27307293 PMCID: PMC5052037 DOI: 10.1101/gr.205682.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/17/2016] [Indexed: 11/24/2022]
Abstract
Whole-genome sequencing is a useful approach for identification of chemical-induced lesions, but previous applications involved tedious genetic mapping to pinpoint the causative mutations. We propose that saturation mutagenesis under low mutagenic loads, followed by whole-genome sequencing, should allow direct implication of genes by identifying multiple independent alleles of each relevant gene. We tested the hypothesis by performing three genetic screens with chemical mutagenesis in the social soil amoeba Dictyostelium discoideum Through genome sequencing, we successfully identified mutant genes with multiple alleles in near-saturation screens, including resistance to intense illumination and strong suppressors of defects in an allorecognition pathway. We tested the causality of the mutations by comparison to published data and by direct complementation tests, finding both dominant and recessive causative mutations. Therefore, our strategy provides a cost- and time-efficient approach to gene discovery by integrating chemical mutagenesis and whole-genome sequencing. The method should be applicable to many microbial systems, and it is expected to revolutionize the field of functional genomics in Dictyostelium by greatly expanding the mutation spectrum relative to other common mutagenesis methods.
Collapse
Affiliation(s)
- Cheng-Lin Frank Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Balaji Santhanam
- Graduate Program in Structural Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Amanda Nicole Webb
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Blaž Zupan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|