1
|
Opalko H, Geng S, Hall AR, Vavylonis D, Moseley JB. Design principles of Cdr2 node patterns in fission yeast cells. Mol Biol Cell 2023; 34:br18. [PMID: 37610834 PMCID: PMC10559309 DOI: 10.1091/mbc.e23-04-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Pattern-forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle progression and positioning of the cytokinetic ring. Here, we combined experimental and modeling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by investigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, including in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the absence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.
Collapse
Affiliation(s)
- Hannah Opalko
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Shuhan Geng
- Department of Physics, Lehigh University, Bethlehem, PA 18016
| | - Aaron R. Hall
- Department of Physics, Lehigh University, Bethlehem, PA 18016
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18016
- Center for Computational Biology, Flatiron Institute, New York, NY 10010
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
2
|
Opalko H, Geng S, Hall AR, Vavylonis D, Moseley JB. Design principles of Cdr2 node patterns in fission yeast cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537536. [PMID: 37131752 PMCID: PMC10153186 DOI: 10.1101/2023.04.19.537536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Pattern forming networks have diverse roles in cell biology. Rod-shaped fission yeast cells use pattern formation to control the localization of mitotic signaling proteins and the cytokinetic ring. During interphase, the kinase Cdr2 forms membrane-bound multiprotein complexes termed nodes, which are positioned in the cell middle due in part to the node inhibitor Pom1 enriched at cell tips. Node positioning is important for timely cell cycle progression and positioning of the cytokinetic ring. Here, we combined experimental and modeling approaches to investigate pattern formation by the Pom1-Cdr2 system. We found that Cdr2 nodes accumulate near the nucleus, and Cdr2 undergoes nucleocytoplasmic shuttling when cortical anchoring is reduced. We generated particle-based simulations based on tip inhibition, nuclear positioning, and cortical anchoring. We tested model predictions by investigating Pom1-Cdr2 localization patterns after perturbing each positioning mechanism, including in both anucleate and multinucleated cells. Experiments show that tip inhibition and cortical anchoring alone are sufficient for the assembly and positioning of nodes in the absence of the nucleus, but that the nucleus and Pom1 facilitate the formation of unexpected node patterns in multinucleated cells. These findings have implications for spatial control of cytokinesis by nodes and for spatial patterning in other biological systems.
Collapse
Affiliation(s)
- Hannah Opalko
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Shuhan Geng
- Department of Physics, Lehigh University, Bethlehem, PA
| | - Aaron R. Hall
- Department of Physics, Lehigh University, Bethlehem, PA
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA
- Center for Computational Biology, Flatiron Institute, New York, NY
| | - James B. Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
3
|
Zhou X, Ye J, Zheng L, Jiang P, Lu L. A new identified suppressor of Cdc7p/SepH kinase, PomA, regulates fungal asexual reproduction via affecting phosphorylation of MAPK-HogA. PLoS Genet 2019; 15:e1008206. [PMID: 31194741 PMCID: PMC6592577 DOI: 10.1371/journal.pgen.1008206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/25/2019] [Accepted: 05/21/2019] [Indexed: 11/19/2022] Open
Abstract
The septation initiation network (SIN), composed of a conserved SepH (Cdc7p) kinase cascade, plays an essential role in fungal cytokinesis/septation and conidiation for asexual reproduction, while the mitogen-activated protein kinase (MAPK) pathway depends on successive signaling cascade phosphorylation to sense and respond to stress and environmental factors. In this study, a SepH suppressor-PomA in the filamentous fungus A. nidulans is identified as a negative regulator of septation and conidiation such that the pomA mutant is able to cure defects of sepH1 in septation and conidiation and overexpression of pomA remarkably suppresses septation. Under the normal cultural condition, SepH positively regulates the phosphorylation of MAPK-HogA, while PomA reversely affects this process. In the absence of PbsB (MAPKK, a putative upstream member of HogA), PomA and SepH are unable to affect the phosphorylation level of HogA. Under the osmostress condition, the induced phosphorylated HogA is capable of bypassing the requirement of SepH, a key player for early events during cytokinesis but not for MobA/SidB, the last one in the core SIN protein kinase cascade, indicating the osmotic stimuli-induced septation is capable of bypassing requirement of SepH but unable to bypass the whole SIN requirement. Findings demonstrate that crosstalk exists between the SIN and MAPK pathways. PomA and SepH indirectly regulate HogA phosphorylation through affecting HogA-P upstream kinases.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Likun Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ping Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail:
| |
Collapse
|
4
|
Allard CAH, Opalko HE, Moseley JB. Stable Pom1 clusters form a glucose-modulated concentration gradient that regulates mitotic entry. eLife 2019; 8:e46003. [PMID: 31050341 PMCID: PMC6524964 DOI: 10.7554/elife.46003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Control of cell size requires molecular size sensors that are coupled to the cell cycle. Rod-shaped fission yeast cells divide at a threshold size partly due to Cdr2 kinase, which forms nodes at the medial cell cortex where it inhibits the Cdk1-inhibitor Wee1. Pom1 kinase phosphorylates and inhibits Cdr2, and forms cortical concentration gradients from cell poles. Pom1 inhibits Cdr2 signaling to Wee1 specifically in small cells, but the time and place of their regulatory interactions were unclear. We show that Pom1 forms stable oligomeric clusters that dynamically sample the cell cortex. Binding frequency is patterned into a concentration gradient by the polarity landmarks Tea1 and Tea4. Pom1 clusters colocalize with Cdr2 nodes, forming a glucose-modulated inhibitory threshold against node activation. Our work reveals how Pom1-Cdr2-Wee1 operates in multiprotein clusters at the cortex to promote mitotic entry at a cell size that can be modified by nutrient availability.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Biochemistry and Cell BiologyThe Geisel School of Medicine at DartmouthHanoverUnited States
| | - Hannah E Opalko
- Department of Biochemistry and Cell BiologyThe Geisel School of Medicine at DartmouthHanoverUnited States
| | - James B Moseley
- Department of Biochemistry and Cell BiologyThe Geisel School of Medicine at DartmouthHanoverUnited States
| |
Collapse
|
5
|
Facchetti G, Knapp B, Flor-Parra I, Chang F, Howard M. Reprogramming Cdr2-Dependent Geometry-Based Cell Size Control in Fission Yeast. Curr Biol 2019; 29:350-358.e4. [PMID: 30639107 PMCID: PMC6345630 DOI: 10.1016/j.cub.2018.12.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022]
Abstract
How cell size is determined and maintained remains unclear, even in simple model organisms. In proliferating cells, cell size is regulated by coordinating growth and division through sizer, adder, or timer mechanisms or through some combination [1, 2]. Currently, the best-characterized example of sizer behavior is in fission yeast, Schizosaccharomyces pombe, which enters mitosis at a minimal cell size threshold. The peripheral membrane kinase Cdr2 localizes in clusters (nodes) on the medial plasma membrane and promotes mitotic entry [3]. Here, we show that the Cdr2 nodal density, which scales with cell size, is used by the cell to sense and control its size. By analyzing cells of different widths, we first show that cdr2+ cells divide at a fixed cell surface area. However, division in the cdr2Δ mutant is more closely specified by cell volume, suggesting that Cdr2 is essential for area sensing and supporting the existence of a Cdr2-independent secondary sizer mechanism more closely based on volume. To investigate how Cdr2 nodes may sense area, we derive a minimal mathematical model that incorporates the cytoplasmic kinase Ssp1 as a Cdr2 activator. The model predicts that a cdr2 mutant in an Ssp1 phosphorylation site (cdr2-T166A) [4] should form nodes whose density registers cell length. We confirm this prediction experimentally and find that thin cells now follow this new scaling by dividing at constant length instead of area. This work supports the role of Cdr2 as a sizer factor and highlights the importance of studying geometrical aspects of size control.
Collapse
Affiliation(s)
| | - Benjamin Knapp
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Ignacio Flor-Parra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/Junta de Andalucia, Seville, Spain
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
| | - Martin Howard
- Computational and Systems Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
6
|
Molecular mechanisms of contractile-ring constriction and membrane trafficking in cytokinesis. Biophys Rev 2018; 10:1649-1666. [PMID: 30448943 DOI: 10.1007/s12551-018-0479-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss the molecular mechanisms of cytokinesis from plants to humans, with a focus on contribution of membrane trafficking to cytokinesis. Selection of the division site in fungi, metazoans, and plants is reviewed, as well as the assembly and constriction of a contractile ring in fungi and metazoans. We also provide an introduction to exocytosis and endocytosis, and discuss how they contribute to successful cytokinesis in eukaryotic cells. The conservation in the coordination of membrane deposition and cytoskeleton during cytokinesis in fungi, metazoans, and plants is highlighted.
Collapse
|
7
|
Allard CAH, Opalko HE, Liu KW, Medoh U, Moseley JB. Cell size-dependent regulation of Wee1 localization by Cdr2 cortical nodes. J Cell Biol 2018; 217:1589-1599. [PMID: 29514920 PMCID: PMC5940308 DOI: 10.1083/jcb.201709171] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/07/2017] [Accepted: 02/21/2018] [Indexed: 11/22/2022] Open
Abstract
Cell size control requires mechanisms that link cell growth with Cdk1 activity. In fission yeast, the protein kinase Cdr2 forms cortical nodes that include the Cdk1 inhibitor Wee1 along with the Wee1-inhibitory kinase Cdr1. We investigated how nodes inhibit Wee1 during cell growth. Biochemical fractionation revealed that Cdr2 nodes were megadalton structures enriched for activated Cdr2, which increases in level during interphase growth. In live-cell total internal reflection fluorescence microscopy videos, Cdr2 and Cdr1 remained constant at nodes over time, but Wee1 localized to nodes in short bursts. Recruitment of Wee1 to nodes required Cdr2 kinase activity and the noncatalytic N terminus of Wee1. Bursts of Wee1 localization to nodes increased 20-fold as cells doubled in size throughout G2. Size-dependent signaling was caused in part by the Cdr2 inhibitor Pom1, which suppressed Wee1 node bursts in small cells. Thus, increasing Cdr2 activity during cell growth promotes Wee1 localization to nodes, where inhibitory phosphorylation of Wee1 by Cdr1 and Cdr2 kinases promotes mitotic entry.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Dartmouth, Hanover, NH
| | - Hannah E Opalko
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Dartmouth, Hanover, NH
| | - Ko-Wei Liu
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Dartmouth, Hanover, NH
| | - Uche Medoh
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Dartmouth, Hanover, NH
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Dartmouth, Hanover, NH
| |
Collapse
|
8
|
Qiu C, Yi YY, Lucena R, Wu MJ, Sun JH, Wang X, Jin QW, Wang Y. F-box proteins Pof3 and Pof1 regulate Wee1 degradation and mitotic entry in fission yeast. J Cell Sci 2018; 131:jcs.202895. [PMID: 29361524 DOI: 10.1242/jcs.202895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/12/2017] [Indexed: 11/20/2022] Open
Abstract
The key cyclin-dependent kinase Cdk1 (Cdc2) promotes irreversible mitotic entry, mainly by activating the phosphatase Cdc25 while suppressing the tyrosine kinase Wee1. Wee1 needs to be downregulated at the onset of mitosis to ensure rapid activation of Cdk1. In human somatic cells, one mechanism of suppressing Wee1 activity is mediated by ubiquitylation-dependent proteolysis through the Skp1/Cul1/F-box protein (SCF) ubiquitin E3 ligase complex. This mechanism is believed to be conserved from yeasts to humans. So far, the best-characterized human F-box proteins involved in recognition of Wee1 are β-TrCP (BTRCP) and Tome-1 (CDCA3). Although fission yeast Wee1 was the first identified member of its conserved kinase family, the F-box proteins involved in recognition and ubiquitylation of Wee1 have not been identified in this organism. In this study, our screen using Wee1-Renilla luciferase as the reporter revealed that two F-box proteins, Pof1 and Pof3, are required for downregulating Wee1 and are possibly responsible for recruiting Wee1 to SCF. Our genetic analyses supported a functional relevance between Pof1 and Pof3 and the rate of mitotic entry, and Pof3 might play a major role in this process.
Collapse
Affiliation(s)
- Cui Qiu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yuan-Yuan Yi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rafael Lucena
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Meng-Juan Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Jia-Hao Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Xi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Quan-Wen Jin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Yamei Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
9
|
Deng L, Lee ME, Schutt KL, Moseley JB. Phosphatases Generate Signal Specificity Downstream of Ssp1 Kinase in Fission Yeast. Mol Cell Biol 2017; 37:e00494-16. [PMID: 28223368 PMCID: PMC5477550 DOI: 10.1128/mcb.00494-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/10/2016] [Accepted: 02/13/2017] [Indexed: 11/20/2022] Open
Abstract
AMPK-related protein kinases (ARKs) coordinate cell growth, proliferation, and migration with environmental status. It is unclear how specific ARKs are activated at specific times. In the fission yeast Schizosaccharomyces pombe, the CaMKK-like protein kinase Ssp1 promotes cell cycle progression by activating the ARK Cdr2 according to cell growth signals. Here, we demonstrate that Ssp1 activates a second ARK, Ssp2/AMPKα, for cell proliferation in low environmental glucose. Ssp1 activates these two related targets by the same biochemical mechanism: direct phosphorylation of a conserved residue in the activation loop (Cdr2-T166 and Ssp2-T189). Despite a shared upstream kinase and similar phosphorylation sites, Cdr2 and Ssp2 have distinct regulatory input cues and distinct functional outputs. We investigated this specificity and found that distinct protein phosphatases counteract Ssp1 activity toward its different substrates. We identified the PP6 family phosphatase Ppe1 as the primary phosphatase for Ssp2-T189 dephosphorylation. The phosphatase inhibitor Sds23 acts upstream of PP6 to regulate Ssp2-T189 phosphorylation in a manner that depends on energy but not on the intact AMPK heterotrimer. In contrast, Cdr2-T166 phosphorylation is regulated by protein phosphatase 2A but not by the Sds23-PP6 pathway. Thus, our study provides a phosphatase-driven mechanism to induce specific physiological responses downstream of a master protein kinase.
Collapse
Affiliation(s)
- Lin Deng
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Mid Eum Lee
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine L Schutt
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
10
|
Rincon SA, Estravis M, Dingli F, Loew D, Tran PT, Paoletti A. SIN-Dependent Dissociation of the SAD Kinase Cdr2 from the Cell Cortex Resets the Division Plane. Curr Biol 2017; 27:534-542. [PMID: 28162898 DOI: 10.1016/j.cub.2016.12.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/28/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
Proper division plane positioning is crucial for faithful chromosome segregation but also influences cell size, position, or fate [1]. In fission yeast, medial division is controlled through negative signaling by the cell tips during interphase and positive signaling by the centrally placed nucleus at mitotic entry [2-4]: the cell geometry network (CGN), controlled by the inhibitory cortical gradient of the DYRK kinase Pom1 emanating from the cell tips, first promotes the medial localization of cytokinetic ring precursors organized by the SAD kinase Cdr2 to pre-define the division plane [5-8]; then, massive nuclear export of the anillin-like protein Mid1 at mitosis entry confirms or readjusts the division plane according to nuclear position and triggers the assembly of a medial contractile ring [5, 9-11]. Strikingly, the Hippo-like septation initiation network (SIN) induces Cdr2 dissociation from cytokinetic precursors at this stage [12-14]. We show here that SIN-dependent phosphorylation of Cdr2 promotes its interaction with the 14-3-3 protein Rad24 that sequesters it in the cytoplasm during cell division. If this interaction is compromised, cytokinetic precursors are asymmetrically distributed in the cortex of newborn cells, leading to asymmetrical division if nuclear signaling is abolished. We conclude that, through this new function, the SIN resets the division plane in newborn cells to ensure medial division.
Collapse
Affiliation(s)
- Sergio A Rincon
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France.
| | - Miguel Estravis
- Institute of Genetics and Development of Rennes, CNRS, UMR 6290, 35043 Rennes Cedex, France
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75005 Paris, France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, 75005 Paris, France
| | - Phong T Tran
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France; Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Paoletti
- Institut Curie, PSL Research University, CNRS, UMR 144, 75005 Paris, France.
| |
Collapse
|
11
|
Finnigan GC, Sterling SM, Duvalyan A, Liao EN, Sargsyan A, Garcia G, Nogales E, Thorner J. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae. Mol Biol Cell 2016; 27:2213-33. [PMID: 27193302 PMCID: PMC4945140 DOI: 10.1091/mbc.e16-03-0177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023] Open
Abstract
A long-standing conundrum is resolved about the underlying sequence determinants and molecular mechanism responsible for the recruitment of the protein kinase Hsl1 (an indispensable component of the so-called “morphogenesis checkpoint”) exclusively to the septin collar at the bud neck. Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611–950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611–950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379–1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Galo Garcia
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Eva Nogales
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 Life Sciences Division, Lawrence Berkeley National Laboratory, and Howard Hughes Medical Institute, Berkeley, CA 94720
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
12
|
Horváth A, Rácz-Mónus A, Buchwald P, Sveiczer Á. Cell length growth patterns in fission yeast reveal a novel size control mechanism operating in late G2 phase. Biol Cell 2016; 108:259-77. [DOI: 10.1111/boc.201500066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 04/05/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Anna Horváth
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Anna Rácz-Mónus
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest Hungary
| | - Peter Buchwald
- Department of Molecular and Cellular Pharmacology; Miller School of Medicine; University of Miami; Miami FL USA
| | - Ákos Sveiczer
- Department of Applied Biotechnology and Food Science; Budapest University of Technology and Economics; Budapest Hungary
| |
Collapse
|
13
|
Rincon SA, Paoletti A. Molecular control of fission yeast cytokinesis. Semin Cell Dev Biol 2016; 53:28-38. [PMID: 26806637 DOI: 10.1016/j.semcdb.2016.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/06/2016] [Indexed: 12/29/2022]
Abstract
Cytokinesis gives rise to two independent daughter cells at the end of the cell division cycle. The fission yeast Schizosaccharomyces pombe has emerged as one of the most powerful systems to understand how cytokinesis is controlled molecularly. Like in most eukaryotes, fission yeast cytokinesis depends on an acto-myosin based contractile ring that assembles at the division site under the control of spatial cues that integrate information on cell geometry and the position of the mitotic apparatus. Cytokinetic events are also tightly coordinated with nuclear division by the cell cycle machinery. These spatial and temporal regulations ensure an equal cleavage of the cytoplasm and an accurate segregation of the genetic material in daughter cells. Although this model system has specificities, the basic mechanisms of contractile ring assembly and function deciphered in fission yeast are highly valuable to understand how cytokinesis is controlled in other organisms that rely on a contractile ring for cell division.
Collapse
Affiliation(s)
- Sergio A Rincon
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France
| | - Anne Paoletti
- Institut Curie, Centre de Recherche, PSL Research University, F-75248 Paris, France; CNRS UMR144, F-75248 Paris, France.
| |
Collapse
|