1
|
Long J, Dou M, Tang X, Gu X. Characterizing Genetic-Predisposed Proteins Involving Insomnia by Integrating Genome-Wide Association Study Summary Statistics. Mol Neurobiol 2025; 62:6576-6586. [PMID: 39827250 PMCID: PMC11953091 DOI: 10.1007/s12035-025-04695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Large case-control genome-wide association studies (GWASs) have detected loci associated with insomnia, but how these risk loci confer disease risk remains largely unknown. By integrating brain protein quantitative trait loci (pQTL) (NpQTL1 = 376, NpQTL2 = 152) and expression QTL (eQTL) (N = 452) datasets, with the latest insomnia GWAS summary statistics (Ncase = 109,548, NControls = 277440), we conducted proteome/transcriptome-wide association study (PWAS/TWAS) and Mendelian randomization (MR) analysis, aiming to identify causal proteins involving in the pathogenesis of insomnia. We also explored the bi-directional causality between insomnia and several common diseases. As a result, the altered protein level of 28 genes in the brain was associated with the risk of insomnia in the discovery stage of PWAS, of which 18 genes' associations were replicated in the confirmatory stage of PWAS. Among them, four proteins (2-aminoethanethiol dioxygenase (ADO), calcium-modulating cyclophilin ligand (CAMLG), islet cell autoantigen 1 like (ICA1L) and latexin (LXN)) were found to be the most likely causal genes for insomnia with validations from TWAS, MR, and colocalization results. Specifically, the higher protein level of ADO, CALMG, and ICA1L was causally associated with a lower risk of insomnia. In comparison, the higher protein level of LXN was causally associated with an increased risk for insomnia. Moreover, genetically predicted insomnia was causally associated with an increased risk of developing cardiovascular diseases and depression. In conclusion, our study identified ADO, CAMLG, ICA1L, and LXN as potentially causal proteins in the pathogenesis of insomnia. This could provide insights into further mechanistic studies and therapeutic development for insomnia.
Collapse
Affiliation(s)
- Jiang Long
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Dou
- Institute of Computer Application, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Xiangdong Tang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
- Sleep Medicine Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Xiaojing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Wang J, Yin Y, Yang L, Qin J, Wang Z, Qiu C, Gao Y, Lu G, Gao F, Chen ZJ, Zhang X, Liu H, Liu Z. TMC7 deficiency causes acrosome biogenesis defects and male infertility in mice. eLife 2024; 13:RP95888. [PMID: 39269275 PMCID: PMC11398861 DOI: 10.7554/elife.95888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
Transmembrane channel-like (TMC) proteins are a highly conserved ion channel family consisting of eight members (TMC1-TMC8) in mammals. TMC1/2 are components of the mechanotransduction channel in hair cells, and mutations of TMC1/2 cause deafness in humans and mice. However, the physiological roles of other TMC proteins remain largely unknown. Here, we show that Tmc7 is specifically expressed in the testis and that it is required for acrosome biogenesis during spermatogenesis. Tmc7-/- mice exhibited abnormal sperm head, disorganized mitochondrial sheaths, and reduced number of elongating spermatids, similar to human oligo-astheno-teratozoospermia. We further demonstrate that TMC7 is colocalized with GM130 at the cis-Golgi region in round spermatids. TMC7 deficiency leads to aberrant Golgi morphology and impaired fusion of Golgi-derived vesicles to the developing acrosome. Moreover, upon loss of TMC7 intracellular ion homeostasis is impaired and ROS levels are increased, which in turn causes Golgi and endoplasmic reticulum stress. Taken together, these results suggest that TMC7 is required to maintain pH and ion homeostasis, which is needed for acrosome biogenesis. Our findings unveil a novel role for TMC7 in acrosome biogenesis during spermiogenesis.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Yingying Yin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Lei Yang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Junchao Qin
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Zixiang Wang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| | - Chunhong Qiu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong KongHong KongChina
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Xiyu Zhang
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong UniversityJinanChina
| | - Zhaojian Liu
- Key Laboratory of Experimental Teratology, Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Shandong UniversityJinanChina
- Advanced Medical Research Institute, Shandong UniversityJinanChina
| |
Collapse
|
3
|
Höffken V, Di Persio S, Laurentino S, Wyrwoll MJ, Terwort N, Hermann A, Röpke A, Oud MS, Wistuba J, Kliesch S, Pavenstädt HJ, Tüttelmann F, Neuhaus N, Kremerskothen J. WWC2 expression in the testis: Implications for spermatogenesis and male fertility. FASEB J 2023; 37:e22912. [PMID: 37086090 DOI: 10.1096/fj.202200960r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
The family of WWC proteins is known to regulate cell proliferation and organ growth control via the Hippo signaling pathway. As WWC proteins share a similar domain structure and a common set of interacting proteins, they are supposed to fulfill compensatory functions in cells and tissues. While all three WWC family members WWC1, WWC2, and WWC3 are found co-expressed in most human organs including lung, brain, kidney, and liver, in the testis only WWC2 displays a relatively high expression. In this study, we investigated the testicular WWC2 expression in spermatogenesis and male fertility. We show that the Wwc2 mRNA expression level in mouse testes is increased during development in parallel with germ cell proliferation and differentiation. The cellular expression of each individual WWC family member was evaluated in published single-cell mRNA datasets of murine and human testes demonstrating a high WWC2 expression predominantly in early spermatocytes. In line with this, immunohistochemistry revealed cytosolic WWC2 protein expression in primary spermatocytes from human testes displaying full spermatogenesis. In accordance with these findings, markedly lower WWC2 expression levels were detected in testicular tissues from mice and men lacking germ cells. Finally, analysis of whole-exome sequencing data of male patients affected by infertility and unexplained severe spermatogenic failure revealed several heterozygous, rare WWC2 gene variants with a proposed damaging function and putative impact on WWC2 protein structure. Taken together, our findings provide novel insights into the testicular expression of WWC2 and show its cell-specific expression in spermatocytes. As rare WWC2 variants were identified in the background of disturbed spermatogenesis, WWC2 may be a novel candidate gene for male infertility.
Collapse
Affiliation(s)
- Verena Höffken
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Sara Di Persio
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Sandra Laurentino
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Margot J Wyrwoll
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nicole Terwort
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Anke Hermann
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Manon S Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joachim Wistuba
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Hermann J Pavenstädt
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Nina Neuhaus
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Joachim Kremerskothen
- Institute of Molecular Nephrology, Internal Medicine D, University Hospital Münster, Münster, Germany
| |
Collapse
|
4
|
Li G, Tang J, Huang J, Jiang Y, Fan Y, Wang X, Ren J. Genome-Wide Estimates of Runs of Homozygosity, Heterozygosity, and Genetic Load in Two Chinese Indigenous Goat Breeds. Front Genet 2022; 13:774196. [PMID: 35559012 PMCID: PMC9086400 DOI: 10.3389/fgene.2022.774196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Runs of homozygosity (ROH) and heterozygosity (ROHet) are windows into population demographic history and adaptive evolution. Numerous studies have shown that deleterious mutations are enriched in the ROH of humans, pigs, cattle, and chickens. However, the relationship of deleterious variants to ROH and the pattern of ROHet in goats have been largely understudied. Here, 240 Guangfeng and Ganxi goats from Jiangxi Province, China, were genotyped using the Illumina GoatSNP50 BeadChip and genome-wide ROH, ROHet, and genetic load analyses were performed in the context of 32 global goat breeds. The classes with the highest percentage of ROH and ROHet were 0.5–2 Mb and 0.5–1 Mb, respectively. The results of inbreeding coefficients (based on SNP and ROH) and ROHet measurements showed that Guangfeng goats had higher genetic variability than most Chinese goats, while Ganxi goats had a high degree of inbreeding, even exceeding that of commercial goat breeds. Next, the predicted damaging homozygotes were more enriched in long ROHs, especially in Guangfeng goats. Therefore, we suggest that information on damaging alleles should also be incorporated into the design of breeding and conservation programs. A list of genes related to fecundity, growth, and environmental adaptation were identified in the ROH hotspots of two Jiangxi goats. A sense-related ROH hotspot (chromosome 12: 50.55–50.81 Mb) was shared across global goat breeds and may have undergone selection prior to goat domestication. Furthermore, an identical ROHet hotspot (chromosome 1: 132.21–132.54 Mb) containing two genes associated with embryonic development (STAG1 and PCCB) was detected in domestic goat breeds worldwide. Tajima’s D and BetaScan2 statistics indicated that this region may be caused by long-term balancing selection. These findings not only provide guidance for the design of conservation strategies for Jiangxi goat breeds but also enrich our understanding of the adaptive evolution of goats.
Collapse
Affiliation(s)
- Guixin Li
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhong Tang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Jinyan Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yin Fan
- Department of Animal Science, Jiangxi Biotech Vocational College, Nanchang, China
| | - Xiaopeng Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jun Ren
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
5
|
Wu BS, Chen SF, Huang SY, Ou YN, Deng YT, Chen SD, Dong Q, Yu JT. Identifying causal genes for stroke via integrating the proteome and transcriptome from brain and blood. J Transl Med 2022; 20:181. [PMID: 35449099 PMCID: PMC9022281 DOI: 10.1186/s12967-022-03377-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/03/2022] [Indexed: 11/22/2022] Open
Abstract
Background Genome-wide association studies (GWAS) have revealed numerous loci associated with stroke. However, the underlying mechanisms at these loci in the pathogenesis of stroke and effective stroke drug targets are elusive. Therefore, we aimed to identify causal genes in the pathogenesis of stroke and its subtypes. Methods Utilizing multidimensional high-throughput data generated, we integrated proteome-wide association study (PWAS), transcriptome-wide association study (TWAS), Mendelian randomization (MR), and Bayesian colocalization analysis to prioritize genes that contribute to stroke and its subtypes risk via affecting their expression and protein abundance in brain and blood. Results Our integrative analysis revealed that ICA1L was associated with small-vessel stroke (SVS), according to robust evidence at both protein and transcriptional levels based on brain-derived data. We also identified NBEAL1 that was causally related to SVS via its cis-regulated brain expression level. In blood, we identified 5 genes (MMP12, SCARF1, ABO, F11, and CKAP2) that had causal relationships with stroke and stroke subtypes. Conclusions Together, via using an integrative analysis to deal with multidimensional data, we prioritized causal genes in the pathogenesis of SVS, which offered hints for future biological and therapeutic studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03377-9.
Collapse
Affiliation(s)
- Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Fen Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shu-Yi Huang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yue-Ting Deng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
6
|
Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C. Genetics of teratozoospermia: Back to the head. Best Pract Res Clin Endocrinol Metab 2020; 34:101473. [PMID: 33183966 DOI: 10.1016/j.beem.2020.101473] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spermatozoa are polarized cells with a head and a flagellum joined by the connecting piece. Head integrity is critical for normal sperm function, and head defects consistently lead to male infertility. Abnormalities of the sperm head are among the most severe and characteristic sperm defects. Patients presenting with a monomorphic head sperm defects such as globozoospermia or marcrozoospermia were analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm head defects such as acephalic spermatozoa have also enabled the identification of new infertility genes such as SUN5. Here, we review the genetic causes leading to morphological defects of sperm head. Advances in the genetics of male infertility are necessary to improve the management of infertility and will pave the road towards future strategies of treatments, especially for patients with the most severe phenotype as sperm head defects.
Collapse
Affiliation(s)
- Julie Beurois
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Caroline Cazin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Guillaume Martinez
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Tristan Celse
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.
| |
Collapse
|
7
|
Li YZ, Wu RF, Zhu XS, Liu WS, Ye YY, Lu ZX, Li N. Identification of a novel deletion mutation in DPY19L2 from an infertile patient with globozoospermia: a case report. Mol Cytogenet 2020; 13:24. [PMID: 32582379 PMCID: PMC7310204 DOI: 10.1186/s13039-020-00495-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022] Open
Abstract
Background Male infertility is an increasing medical concern worldwide. In most cases, genetic factors are considered as the main cause of the disease. Globozoospermia (MIM102530) (also known as round-headed sperm) is a rare and severe malformed spermatospermia caused by acrosome deficiency or severe malformation. A subset of genetic mutations, such as DNAH6, SPATA16, DPY19L2, PICK1, and CCIN related to globozoospermia, have been reported in the past few years. The DPY19L2 mutation is commonly found in patients with globozoospermia. Herein, a 180-kbp homozygote deletion at 12q14.2 (g.63950001–64130000) was identified by copy number variation sequencing (CNVseq) in a patient with a globozoospermia, including the complete deletion of DPY19L2. Case presentation A 27-year-old patient at the First Affiliated Hospital of Xiamen University was diagnosed with infertility because, despite normal sexual activity for 4 years, his wife did not conceive. The patient was in good health with no obvious discomfort, no history of adverse chemical exposure, and no vices, such as smoking and drinking. The physical examination revealed normal genital development. However, semen tests showed a normal sperm count of 0% and the morphology was the round head. Sperm cytology showed that acrosomal enzyme was lower than normal. Reproductive hormones were in the normal range. B ultrasound did not show any abnormal seminal vesicle, prostate, bilateral testis, epididymis, and spermatic veins. The karyotype was normal, 46, XY, and no microdeletion of Y chromosome was detected. However, a homozygous deletion mutation was found in DPY19L2, which was further diagnosed as globozoospermia. Conclusions The present study reported a male infertility patient who was diagnosed with globozoospermia. The analysis of gene mutations revealed that DPY19L2 had a homozygous mutation, which was the primary cause of globozoospermia.
Collapse
Affiliation(s)
- You-Zhu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, No. 6 Guchengxi Road, Si Ming, Xiamen, 361003 China
| | - Rong-Feng Wu
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, No. 6 Guchengxi Road, Si Ming, Xiamen, 361003 China
| | - Xing-Shen Zhu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005 Fujian China
| | - Wen-Sheng Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005 Fujian China
| | - Yuan-Yuan Ye
- Reproductive Medicine Center, The First Affiliated Hospital of Xiamen University, No. 6 Guchengxi Road, Si Ming, Xiamen, 361003 China
| | - Zhong-Xian Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361005 Fujian China
| | - Na Li
- Intensive Care Unit, Fujian Medical University Xiamen Humanity Hospital, No.3777 Xianyue Road, Huli, Xiamen, 361009 China
| |
Collapse
|
8
|
Novel SRF-ICA1L Fusions in Cellular Myoid Neoplasms With Potential For Malignant Behavior. Am J Surg Pathol 2020; 44:55-60. [PMID: 31478943 DOI: 10.1097/pas.0000000000001336] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pericytic tumors comprise a histologic continuum of neoplasms with perivascular myoid differentiation, which includes glomus tumors, myopericytoma, myofibroma, and angioleiomyoma. Despite their morphologic overlap, recent data suggest a dichotomy in their genetic signatures, including recurrent NOTCH gene fusions in glomus tumors and PDGFRB mutations in myofibromas and myopericytomas. Moreover, SRF-RELA fusions have been described in a subset of cellular variants of myofibroma and myopericytoma showing myogenic differentiation. Triggered by an index case of an unclassified cellular myoid tumor showing a novel SRF-ICA1L fusion we have investigated our files for cases showing similar histology and screened them using a combined approach of targeted RNA sequencing and fluorescence in situ hybridization. A fusion between SRF exon 4 and ICA1L exon 10 or 11 was identified in a total of 4 spindle cell tumors with similar clinicopathologic features. Clinically, the tumors were deep-seated and originated in the trunk or proximal lower extremity of adult patients (age range: 23 to 55 y). Histologically, the tumors were composed of cellular fascicles of monomorphic eosinophilic spindle cells showing increased mitotic activity, harboring densely hyalinized stroma, often with focal areas of necrosis. All 4 tumors had similar immunoprofiles with positivity for smooth muscle actin, calponin, and smooth muscle myosin heavy chain. Tumors were negative for desmin and caldesmon, markers often seen in SRF-RELA-positive tumors with similar morphology. Follow-up information was available in 3 patients. Two patients had no evidence of disease, 2 and 5 years after surgical resection. One patient, a 35-year-old male patient with a 19 cm deep-seated tumor with brisk mitotic activity (>20 mitoses in 10 HPF), developed lung metastases 7 years after initial diagnosis. In summary, we report a series of 4 cellular myoid tumors with novel SRF-ICA1L gene fusions, characterized by bland spindle cell fascicular growth, expression of specific smooth muscle markers, elevated mitotic activity, marked stromal hyalinization, focal coagulative necrosis, and potential for malignant behavior. Given the morphologic overlap with related cellular myopericytic tumors with SRF-RELA fusions, it is likely that SRF-ICA1L fusions define a similar subset of neoplasms composed of immature smooth muscle cells.
Collapse
|
9
|
Chánez-Paredes S, Montoya-García A, Schnoor M. Cellular and pathophysiological consequences of Arp2/3 complex inhibition: role of inhibitory proteins and pharmacological compounds. Cell Mol Life Sci 2019; 76:3349-3361. [PMID: 31073744 PMCID: PMC11105272 DOI: 10.1007/s00018-019-03128-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 02/06/2023]
Abstract
The actin-related protein complex 2/3 (Arp2/3) generates branched actin networks important for many cellular processes such as motility, vesicular trafficking, cytokinesis, and intercellular junction formation and stabilization. Activation of Arp2/3 requires interaction with actin nucleation-promoting factors (NPFs). Regulation of Arp2/3 activity is achieved by endogenous inhibitory proteins through direct binding to Arp2/3 and competition with NPFs or by binding to Arp2/3-induced actin filaments and disassembly of branched actin networks. Arp2/3 inhibition has recently garnered more attention as it has been associated with attenuation of cancer progression, neurotoxic effects during drug abuse, and pathogen invasion of host cells. In this review, we summarize current knowledge on expression, inhibitory mechanisms and function of endogenous proteins able to inhibit Arp2/3 such as coronins, GMFs, PICK1, gadkin, and arpin. Moreover, we discuss cellular consequences of pharmacological Arp2/3 inhibition.
Collapse
Affiliation(s)
- Sandra Chánez-Paredes
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Armando Montoya-García
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Michael Schnoor
- Department for Molecular Biomedicine, CINVESTAV-IPN, Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| |
Collapse
|
10
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
11
|
Islet-cell autoantigen 69 mediates the antihyperalgesic effects of electroacupuncture on inflammatory pain by regulating spinal glutamate receptor subunit 2 phosphorylation through protein interacting with C-kinase 1 in mice. Pain 2019; 160:712-723. [PMID: 30699097 PMCID: PMC6407810 DOI: 10.1097/j.pain.0000000000001450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is Available in the Text. A clear role of ICA69 in mediating the antihyperalgesic effects of electroacupuncture was confirmed, and the ICA69-PICK1-GluR2 molecular mechanism to explain these effects is proposed. Electroacupuncture (EA) is widely used in clinical settings to reduce inflammatory pain. Islet-cell autoantigen 69 (ICA69) has been reported to regulate long-lasting hyperalgesia in mice. ICA69 knockout led to reduced protein interacting with C-kinase 1 (PICK1) expression and increased glutamate receptor subunit 2 (GluR2) phosphorylation at Ser880 in spinal dorsal horn. In this study, we evaluated the role of ICA69 in the antihyperalgesic effects of EA and the underlying mechanism through regulation of GluR2 and PICK1 in spinal dorsal horn. Hyperalgesia was induced in mice with subcutaneous plantar injection of complete Freund adjuvant (CFA) to cause inflammatory pain. Electroacupuncture was then applied for 30 minutes every other day after CFA injection. When compared with CFA group, paw withdrawal frequency of CFA+EA group was significantly decreased. Remarkable increases in Ica1 mRNA expression and ICA69 protein levels on the ipsilateral side were detected in the CFA+EA group. ICA69 expression reached the peak value around day 3. More importantly, ICA69 deletion impaired the antihyperalgesic effects of EA on GluR2-p, but PICK1 deletion could not. Injecting ICA69 peptide into the intrathecal space of ICA69-knockout mice mimicked the effects of EA analgesic and inhibited GluR2-p. Electroacupuncture had no effects on the total protein of PICK1 and GluR2. And, EA could increase the formation of ICA69-PICK1 complexes and decrease the amount of PICK1-GluR2 complexes. Our findings indicate that ICA69 mediates the antihyperalgesic effects of EA on CFA-induced inflammatory pain by regulating spinal GluR2 through PICK1 in mice.
Collapse
|
12
|
BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 2018; 10:1587-1604. [PMID: 30456600 DOI: 10.1007/s12551-018-0467-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/17/2018] [Indexed: 12/23/2022] Open
Abstract
Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.
Collapse
|
13
|
PICK1 Deficiency Induces Autophagy Dysfunction via Lysosomal Impairment and Amplifies Sepsis-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:6757368. [PMID: 30402043 PMCID: PMC6192133 DOI: 10.1155/2018/6757368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Multiple organ failure ultimately leads to high morbidity and mortality. Unfortunately, therapies against these responses have been unsuccessful due to the insufficient underlying pathophysiological evidence. Protein interacting with C-kinase 1 (PICK1) has received considerable attention because of its important physiological functions in many tissues. However, its role in sepsis-induced acute lung injury (ALI) is unclear. In this study, we used cecal ligation and puncture (CLP) to establish a septic model and found that decreased microtubule-associated protein-1light chain 3 (LC3)-II/LC3-I in PICK1−/− septic mice was caused by autophagy dysfunction. Consistently, the transmission electron microscopy (TEM) of bone marrow-derived macrophages (BMDMs) from PICK1−/− mice showed the accumulation of autophagosomes as well. However, more serious damage was caused by PICK1 deficiency indicating that the disrupted autophagic flux was harmful to sepsis-induced ALI. We also observed that it was the impaired lysosomal function that mediated autophagic flux blockade, and the autophagy progress was relevant to PI3K-Akt-mTOR pathway. These findings will aid in the potential development of PICK1 with novel evidence of autophagy in sepsis treatment and prevention.
Collapse
|
14
|
Guidi LG, Holloway ZG, Arnoult C, Ray PF, Monaco AP, Molnár Z, Velayos-Baeza A. AU040320 deficiency leads to disruption of acrosome biogenesis and infertility in homozygous mutant mice. Sci Rep 2018; 8:10379. [PMID: 29991750 PMCID: PMC6039479 DOI: 10.1038/s41598-018-28666-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/27/2018] [Indexed: 12/31/2022] Open
Abstract
Study of knockout (KO) mice has helped understand the link between many genes/proteins and human diseases. Identification of infertile KO mice provides valuable tools to characterize the molecular mechanisms underlying gamete formation. The KIAA0319L gene has been described to have a putative association with dyslexia; surprisingly, we observed that homozygous KO males for AU040320, KIAA0319L ortholog, are infertile and present a globozoospermia-like phenotype. Mutant spermatozoa are mostly immotile and display a malformed roundish head with no acrosome. In round spermatids, proacrosomal vesicles accumulate close to the acroplaxome but fail to coalesce into a single acrosomal vesicle. In wild-type mice AU040320 localises to the trans-Golgi-Network of germ cells but cannot be detected in mature acrosomes. Our results suggest AU040320 may be necessary for the normal formation of proacrosomal vesicles or the recruitment of cargo proteins required for downstream events leading to acrosomal fusion. Mutations in KIAA0319L could lead to human infertility; we screened for KIAA0319L mutations in a selected cohort of globozoospermia patients in which no genetic abnormalities have been previously identified, but detected no pathogenic changes in this particular cohort.
Collapse
Affiliation(s)
- Luiz G Guidi
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Zoe G Holloway
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Christophe Arnoult
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F-38000, France
| | - Pierre F Ray
- Genetic Epigenetic and Therapies of Infertility, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, F-38000, France
- UM GI-DPI, CHU Grenoble Alpes, Grenoble, F-38000, France
| | - Anthony P Monaco
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
- Office of the President, Ballou Hall, Tufts University, Medford, MA, 02155, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Antonio Velayos-Baeza
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
15
|
PICK1 inhibits the E3 ubiquitin ligase activity of Parkin and reduces its neuronal protective effect. Proc Natl Acad Sci U S A 2018; 115:E7193-E7201. [PMID: 29987020 PMCID: PMC6064985 DOI: 10.1073/pnas.1716506115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parkin functions as a multipurpose E3 ubiquitin ligase, and Parkin loss of function is associated with both sporadic and familial Parkinson's disease (PD). We report that the Bin/Amphiphysin/Rvs (BAR) domain of protein interacting with PRKCA1 (PICK1) bound to the really interesting new gene 1 (RING1) domain of Parkin and potently inhibited the E3 ligase activity of Parkin by disrupting its interaction with UbcH7. Parkin translocated to damaged mitochondria and led to their degradation in neurons, whereas PICK1 robustly inhibited this process. PICK1 also impaired the protective function of Parkin against stresses in SH-SY5Y cells and neurons. The protein levels of several Parkin substrates were reduced in young PICK1-knockout mice, and these mice were resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated toxicity. Taken together, the results indicate that PICK1 is a potent inhibitor of Parkin, and the reduction of PICK1 enhances the protective effect of Parkin.
Collapse
|
16
|
Eskandari N, Tavalaee M, Zohrabi D, Nasr-Esfahani MH. Association between total globozoospermia and sperm chromatin defects. Andrologia 2017; 50. [PMID: 28660655 DOI: 10.1111/and.12843] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2017] [Indexed: 01/19/2023] Open
Abstract
Globozoospermia is a severe sperm morphological anomaly leading to primary infertility and low fertilisation following intracytoplasmic sperm injection (ICSI). This phenotype is observed in less than 0.1% of infertile men and is determined by small, round-headed spermatozoa with absence of an acrosomal cap, acrosome protease and also cytoskeletal proteins. Failure of oocyte activation is considered as the main cause of fertilisation failure in these individuals post-ICSI. Therefore, artificial oocyte activation (AOA) along with ICSI is commonly implemented. However, based on previous report, fertilisation rate remains low despite implementation of ICSI-AOA. Therefore, other mechanisms like sperm chromatin packaging and DNA fragmentation may account for low fertilisation and development post-ICSI-AOA. Therefore, this study aims to assess and compare the degree of sperm protamine deficiency and DNA fragmentation in large population of infertile men with total globozoospermia (30 globozoospermic men presenting with 100% round-headed spermatozoa) with 22 fertile individuals using chromomycin A3 and TUNEL assay respectively. Results clearly show that mean of sperm concentration and percentage of sperm motility were significantly lower, while percentage of sperm abnormal morphology, protamine-deficient and DNA-fragmented spermatozoa were significantly higher in infertile men with globozoospermia compared to fertile men. Therefore, increased sperm DNA damage in globozoospermia is likely related to defective DNA compaction and antioxidant therapy before ICSI-AOA could be recommended as an appropriate option before ICSI-AOA.
Collapse
Affiliation(s)
- N Eskandari
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - M Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - D Zohrabi
- Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - M H Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Isfahan Fertility and Infertility Center, Isfahan, Iran
| |
Collapse
|
17
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
18
|
Complementary Critical Functions of Zfy1 and Zfy2 in Mouse Spermatogenesis and Reproduction. PLoS Genet 2017; 13:e1006578. [PMID: 28114340 PMCID: PMC5287576 DOI: 10.1371/journal.pgen.1006578] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 02/06/2017] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Abstract
The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene in the Y chromosome have not been completely elucidated, partly owing to difficulties in gene targeting analysis of the Y chromosome. Zfy was first proposed to be a sex determination factor, but its function in spermatogenesis has been recently elucidated. Nevertheless, Zfy gene targeting analysis has not been performed thus far. Here, we adopted the highly efficient CRISPR/Cas9 system to generate individual Zfy1 or Zfy2 knockout (KO) mice and Zfy1 and Zfy2 double knockout (Zfy1/2-DKO) mice. While individual Zfy1 or Zfy2-KO mice did not show any significant phenotypic alterations in fertility, Zfy1/2-DKO mice were infertile and displayed abnormal sperm morphology, fertilization failure, and early embryonic development failure. Mass spectrometric screening, followed by confirmation with western blot analysis, showed that PLCZ1, PLCD4, PRSS21, and HTT protein expression were significantly deceased in spermatozoa of Zfy1/2-DKO mice compared with those of wild-type mice. These results are consistent with the phenotypic changes seen in the double-mutant mice. Collectively, our strategy and findings revealed that Zfy1 and Zfy2 have redundant functions in spermatogenesis, facilitating a better understanding of fertilization failure and early embryonic development failure.
Collapse
|
19
|
The control of male fertility by spermatid-specific factors: searching for contraceptive targets from spermatozoon's head to tail. Cell Death Dis 2016; 7:e2472. [PMID: 27831554 PMCID: PMC5260884 DOI: 10.1038/cddis.2016.344] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Male infertility due to abnormal spermatozoa has been reported in both animals and humans, but its pathogenic causes, including genetic abnormalities, remain largely unknown. On the other hand, contraceptive options for men are limited, and a specific, reversible and safe method of male contraception has been a long-standing quest in medicine. Some progress has recently been made in exploring the effects of spermatid-specifical genetic factors in controlling male fertility. A comprehensive search of PubMed for articles and reviews published in English before July 2016 was carried out using the search terms 'spermiogenesis failure', 'globozoospermia', 'spermatid-specific', 'acrosome', 'infertile', 'manchette', 'sperm connecting piece', 'sperm annulus', 'sperm ADAMs', 'flagellar abnormalities', 'sperm motility loss', 'sperm ion exchanger' and 'contraceptive targets'. Importantly, we have opted to focus on articles regarding spermatid-specific factors. Genetic studies to define the structure and physiology of sperm have shown that spermatozoa appear to be one of the most promising contraceptive targets. Here we summarize how these spermatid-specific factors regulate spermiogenesis and categorize them according to their localization and function from spermatid head to tail (e.g., acrosome, manchette, head-tail conjunction, annulus, principal piece of tail). In addition, we emphatically introduce small-molecule contraceptives, such as BRDT and PPP3CC/PPP3R2, which are currently being developed to target spermatogenic-specific proteins. We suggest that blocking the differentiation of haploid germ cells, which rarely affects early spermatogenic cell types and the testicular microenvironment, is a better choice than spermatogenic-specific proteins. The studies described here provide valuable information regarding the genetic and molecular defects causing male mouse infertility to improve our understanding of the importance of spermatid-specific factors in controlling fertility. Although a male contraceptive 'pill' is still many years away, research into the production of new small-molecule contraceptives targeting spermatid-specific proteins is the right avenue.
Collapse
|
20
|
Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 2016; 98:115-21. [DOI: 10.1016/j.neuint.2016.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 11/19/2022]
|
21
|
Foster JA, Gerton GL. The Acrosomal Matrix. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2016; 220:15-33. [PMID: 27194348 DOI: 10.1007/978-3-319-30567-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The acrosome, a single exocytotic vesicle on the head of sperm, has an essential role in fertilization, but the exact mechanisms by which it facilitates sperm-egg interactions remain unresolved. The acrosome contains dozens of secretory proteins that are packaged into the forming structure during spermatogenesis; many of these proteins are localized into specific topographical areas of the acrosome, while others are more diffusely distributed. Acrosomal proteins can also be biochemically classified as components of the acrosomal matrix, a large, relatively insoluble complex, or as soluble proteins. This review focuses on recent findings using genetically modified mice (gene knockouts and transgenic "green acrosome" mice) to study the effects of eliminating acrosomal matrix-associated proteins on sperm structure and function. Some gene knockouts produce infertile phenotypes with obviously missing, specific activities that affect acrosome biogenesis during spermatogenesis or interfere with acrosome function in mature sperm. Mutations that delete some components produce fertile phenotypes with subtler effects that provide useful insights into acrosomal matrix function in fertilization. In general, these studies enable the reassessment of paradigms to explain acrosome formation and function and provide novel, objective insights into the roles of acrosomal matrix proteins in fertilization. The use of genetically engineered mouse models has yielded new mechanistic information that complements recent, important in vivo imaging studies.
Collapse
Affiliation(s)
- James A Foster
- Department of Biology, Randolph-Macon College, Ashland, VA, 23005, USA.
| | - George L Gerton
- Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6160, USA
| |
Collapse
|
22
|
He J, Xia M, Tsang WH, Chow KL, Xia J. ICA1L forms BAR-domain complexes with PICK1 and is crucial for acrosome formation in spermiogenesis. Development 2015. [DOI: 10.1242/dev.132092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|