1
|
Roig SR, Solé L, Cassinelli S, Colomer-Molera M, Sastre D, Serrano-Novillo C, Serrano-Albarrás A, Lillo MP, Tamkun MM, Felipe A. Calmodulin-dependent KCNE4 dimerization controls membrane targeting. Sci Rep 2021; 11:14046. [PMID: 34234241 PMCID: PMC8263776 DOI: 10.1038/s41598-021-93562-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
The voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.3 is essential in different cellular functions, such as proliferation, activation and apoptosis. Because aberrant expression of Kv1.3 is linked to autoimmune diseases, fine-tuning its function is crucial for leukocyte physiology. Regulatory KCNE subunits are expressed in the immune system, and KCNE4 specifically tightly regulates Kv1.3. KCNE4 modulates Kv1.3 currents slowing activation, accelerating inactivation and retaining the channel at the endoplasmic reticulum (ER), thereby altering its membrane localization. In addition, KCNE4 genomic variants are associated with immune pathologies. Therefore, an in-depth knowledge of KCNE4 function is extremely relevant for understanding immune system physiology. We demonstrate that KCNE4 dimerizes, which is unique among KCNE regulatory peptide family members. Furthermore, the juxtamembrane tetraleucine carboxyl-terminal domain of KCNE4 is a structural platform in which Kv1.3, Ca2+/calmodulin (CaM) and dimerizing KCNE4 compete for multiple interaction partners. CaM-dependent KCNE4 dimerization controls KCNE4 membrane targeting and modulates its interaction with Kv1.3. KCNE4, which is highly retained at the ER, contains an important ER retention motif near the tetraleucine motif. Upon escaping the ER in a CaM-dependent pattern, KCNE4 follows a COP-II-dependent forward trafficking mechanism. Therefore, CaM, an essential signaling molecule that controls the dimerization and membrane targeting of KCNE4, modulates the KCNE4-dependent regulation of Kv1.3, which in turn fine-tunes leukocyte physiology.
Collapse
Affiliation(s)
- Sara R Roig
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Imaging Core Facility, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Laura Solé
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Silvia Cassinelli
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Daniel Sastre
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Clara Serrano-Novillo
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Antonio Serrano-Albarrás
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - M Pilar Lillo
- Instituto de Química Física Rocasolano, CSIC, 28006, Madrid, Spain
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Dpt. de Bioquímica I Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
2
|
Urrutia J, Aguado A, Gomis-Perez C, Muguruza-Montero A, Ballesteros OR, Zhang J, Nuñez E, Malo C, Chung HJ, Leonardo A, Bergara A, Villarroel A. An epilepsy-causing mutation leads to co-translational misfolding of the Kv7.2 channel. BMC Biol 2021; 19:109. [PMID: 34020651 PMCID: PMC8138981 DOI: 10.1186/s12915-021-01040-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/29/2021] [Indexed: 12/21/2022] Open
Abstract
Background The amino acid sequence of proteins generally carries all the necessary information for acquisition of native conformations, but the vectorial nature of translation can additionally determine the folding outcome. Such consideration is particularly relevant in human diseases associated to inherited mutations leading to structural instability, aggregation, and degradation. Mutations in the KCNQ2 gene associated with human epilepsy have been suggested to cause misfolding of the encoded Kv7.2 channel. Although the effect on folding of mutations in some domains has been studied, little is known of the way pathogenic variants located in the calcium responsive domain (CRD) affect folding. Here, we explore how a Kv7.2 mutation (W344R) located in helix A of the CRD and associated with hereditary epilepsy interferes with channel function. Results We report that the epilepsy W344R mutation within the IQ motif of CRD decreases channel function, but contrary to other mutations at this site, it does not impair the interaction with Calmodulin (CaM) in vitro, as monitored by multiple in vitro binding assays. We find negligible impact of the mutation on the structure of the complex by molecular dynamic computations. In silico studies revealed two orientations of the side chain, which are differentially populated by WT and W344R variants. Binding to CaM is impaired when the mutated protein is produced in cellulo but not in vitro, suggesting that this mutation impedes proper folding during translation within the cell by forcing the nascent chain to follow a folding route that leads to a non-native configuration, and thereby generating non-functional ion channels that fail to traffic to proper neuronal compartments. Conclusions Our data suggest that the key pathogenic mechanism of Kv7.2 W344R mutation involves the failure to adopt a configuration that can be recognized by CaM in vivo but not in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01040-1.
Collapse
Affiliation(s)
- Janire Urrutia
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Physiology, Faculty of Medicine and Nursery, UPV/EHU, 48940, Leioa, Spain
| | | | - Carolina Gomis-Perez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain.,Present address: Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | - Jiaren Zhang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eider Nuñez
- Instituto Biofisika, CSIC-UPV/EHU, 48940, Leioa, Spain
| | | | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aritz Leonardo
- Departamento de Física Aplicada II, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain.,Donostia International Physics Center, 20018, Donostia, Spain
| | - Aitor Bergara
- Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018, Donostia, Spain.,Donostia International Physics Center, 20018, Donostia, Spain.,Departmento de Materia Condensada, Universidad del País Vasco, UPV/EHU, 48940, Leioa, Spain
| | | |
Collapse
|
3
|
Núñez E, Muguruza-Montero A, Villarroel A. Atomistic Insights of Calmodulin Gating of Complete Ion Channels. Int J Mol Sci 2020; 21:ijms21041285. [PMID: 32075037 PMCID: PMC7072864 DOI: 10.3390/ijms21041285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Intracellular calcium is essential for many physiological processes, from neuronal signaling and exocytosis to muscle contraction and bone formation. Ca2+ signaling from the extracellular medium depends both on membrane potential, especially controlled by ion channels selective to K+, and direct permeation of this cation through specialized channels. Calmodulin (CaM), through direct binding to these proteins, participates in setting the membrane potential and the overall permeability to Ca2+. Over the past years many structures of complete channels in complex with CaM at near atomic resolution have been resolved. In combination with mutagenesis-function, structural information of individual domains and functional studies, different mechanisms employed by CaM to control channel gating are starting to be understood at atomic detail. Here, new insights regarding four types of tetrameric channels with six transmembrane (6TM) architecture, Eag1, SK2/SK4, TRPV5/TRPV6 and KCNQ1–5, and its regulation by CaM are described structurally. Different CaM regions, N-lobe, C-lobe and EF3/EF4-linker play prominent signaling roles in different complexes, emerging the realization of crucial non-canonical interactions between CaM and its target that are only evidenced in the full-channel structure. Different mechanisms to control gating are used, including direct and indirect mechanical actuation over the pore, allosteric control, indirect effect through lipid binding, as well as direct plugging of the pore. Although each CaM lobe engages through apparently similar alpha-helices, they do so using different docking strategies. We discuss how this allows selective action of drugs with great therapeutic potential.
Collapse
|
4
|
Solé L, Roig SR, Sastre D, Vallejo-Gracia A, Serrano-Albarrás A, Ferrer-Montiel A, Fernández-Ballester G, Tamkun MM, Felipe A. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3. FASEB J 2019; 33:8263-8279. [PMID: 30969795 DOI: 10.1096/fj.201801164rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The voltage-dependent potassium (Kv) channel Kv1.3 regulates leukocyte proliferation, activation, and apoptosis, and altered expression of this channel is linked to autoimmune diseases. Thus, the fine-tuning of Kv1.3 function is crucial for the immune system response. The Kv1.3 accessory protein, potassium voltage-gated channel subfamily E (KCNE) subunit 4, acts as a dominant negative regulatory subunit to both enhance inactivation and induce intracellular retention of Kv1.3. Mutations in KCNE4 also cause immune system dysfunction. Although the formation of Kv1.3-KCNE4 complexes has profound consequences for leukocyte physiology, the molecular determinants involved in the Kv1.3-KCNE4 association are unknown. We now show that KCNE4 associates with Kv1.3 via a tetraleucine motif situated within the carboxy-terminal domain of this accessory protein. This motif would function as an interaction platform, in which Kv1.3 and Ca2+/calmodulin compete for the KCNE4 interaction. Finally, we propose a structural model of the Kv1.3-KCNE4 complex. Our experimental data and the in silico structure suggest that the KCNE4 interaction hides a forward-trafficking motif within Kv1.3 in addition to adding a strong endoplasmic reticulum retention signature to the Kv1.3-KCNE4 complex. Thus, the oligomeric composition of the Kv1.3 channelosome fine-tunes the precise balance between anterograde and intracellular retention elements that control the cell surface expression of Kv1.3 and immune system physiology.-Solé, L., Roig, S. R., Sastre, D., Vallejo-Gracia, A., Serrano-Albarrás, A., Ferrer-Montiel, A., Fernández-Ballester, G., Tamkun, M. M., Felipe, A. The calmodulin-binding tetraleucine motif of KCNE4 is responsible for association with Kv1.3.
Collapse
Affiliation(s)
- Laura Solé
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Sara R Roig
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Daniel Sastre
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Albert Vallejo-Gracia
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Serrano-Albarrás
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Alicante, Spain
| | | | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Antonio Felipe
- Departament de Bioquímica i Biomedicina Molecular, Molecular Physiology Laboratory, Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Urrutia J, Aguado A, Muguruza-Montero A, Núñez E, Malo C, Casis O, Villarroel A. The Crossroad of Ion Channels and Calmodulin in Disease. Int J Mol Sci 2019; 20:ijms20020400. [PMID: 30669290 PMCID: PMC6359610 DOI: 10.3390/ijms20020400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/21/2023] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor in eukaryotic cells, orchestrating the activity of hundreds of proteins. Disease causing mutations at any of the three genes that encode identical CaM proteins lead to major cardiac dysfunction, revealing the importance in the regulation of excitability. In turn, some mutations at the CaM binding site of ion channels cause similar diseases. Here we provide a summary of the two sides of the partnership between CaM and ion channels, describing the diversity of consequences of mutations at the complementary CaM binding domains.
Collapse
Affiliation(s)
- Janire Urrutia
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Alejandra Aguado
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | | | - Eider Núñez
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Covadonga Malo
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| | - Oscar Casis
- Departamento de Fisiología, Facultad de Farmacia, Universidad del País Vasco (UPV/EHU), 01006 Vitoria-Gasteiz, Spain.
| | - Alvaro Villarroel
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain.
| |
Collapse
|
6
|
Gomis-Pérez C, Urrutia J, Marcé-Grau A, Malo C, López-Laso E, Felipe-Rucián A, Raspall-Chaure M, Macaya A, Villarroel A. Homomeric Kv7.2 current suppression is a common feature in KCNQ2 epileptic encephalopathy. Epilepsia 2018; 60:139-148. [PMID: 30478917 DOI: 10.1111/epi.14609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To gain insight into the mechanisms underlying KCNQ2 encephalopathy by examining the electrophysiologic properties of mutant Kv7.2 channels in different multimeric configurations. METHODS We analyzed the genotype-phenotype relationship in 4 patients with KCNQ2 encephalopathy and performed electrophysiologic analysis of M-currents mediated by homomeric Kv7.2 or heteromeric Kv7.2/Kv7.3 channels. RESULTS Negligible or no current was recorded in cells expressing homomeric E130K, W270R, or G281R de novo mutants, and it was reduced by more than 90% for the L243F maternally inherited mutant. The E130K and G281R mutants presented a marked dominant-negative behavior, whereas the current density was partially reduced (L243F) or not affected (W270R) when coexpressed with wild-type Kv7.2 subunits. In contrast, the extent of Kv7.3 "rescue," which yields negligible currents on its own, followed the sequence E130K > L243F > W270R, whereas no rescue was observed with the G281R mutant. No significant effects on current density were observed when subunits were expressed in a 0.5:0.5:1.0 (Kv7.2:mutant:Kv7.3) DNA ratio to mimic the genetic balance. There was an increase in sensitivity to phosphatidylinositol 4,5-bisphosphate (PIP2 ) depletion for W270R/Kv7.3, but no substantial differences were observed when the mutated subunits were coexpressed with Kv7.2 or both Kv7.2 and Kv7.3. SIGNIFICANCE There was a marked disparity of the impact of these mutations on Kv7.2 function, which varied on association with Kv7.2 or Kv7.3 subunits. Current density of homomeric channels was the most reliable property relating Kv7.2 function to encephalopathy, but other factors are required to explain the milder phenotype for some individuals carrying the maternally inherited L243F mutation. We hypothesize that the role of homomeric Kv7.2 channels for fine-tuning neuronal connections during development is critical for the severity of the KCNQ2 encephalopathy.
Collapse
Affiliation(s)
- Carolina Gomis-Pérez
- Biofisika Institute, The Spanish National Research Council/University of the Basque Country, Leioa, Spain
| | - Janire Urrutia
- Biofisika Institute, The Spanish National Research Council/University of the Basque Country, Leioa, Spain
| | - Anna Marcé-Grau
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Covadonga Malo
- Biofisika Institute, The Spanish National Research Council/University of the Basque Country, Leioa, Spain
| | - Eduardo López-Laso
- Reina Sofia University Hospital, Maimónides Institute for Biomedical Research, IMIBIC, CIBERER-ISCIII, Córdoba, Spain
| | - Ana Felipe-Rucián
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Miquel Raspall-Chaure
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Alvaro Villarroel
- Biofisika Institute, The Spanish National Research Council/University of the Basque Country, Leioa, Spain
| |
Collapse
|
7
|
Calmodulin: A Multitasking Protein in Kv7.2 Potassium Channel Functions. Biomolecules 2018; 8:biom8030057. [PMID: 30022004 PMCID: PMC6164012 DOI: 10.3390/biom8030057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
The ubiquitous calcium transducer calmodulin (CaM) plays a pivotal role in many cellular processes, regulating a myriad of structurally different target proteins. Indeed, it is unquestionable that CaM is the most relevant transductor of calcium signals in eukaryotic cells. During the last two decades, different studies have demonstrated that CaM mediates the modulation of several ion channels. Among others, it has been indicated that Kv7.2 channels, one of the members of the voltage gated potassium channel family that plays a critical role in brain excitability, requires CaM binding to regulate the different mechanisms that govern its functions. The purpose of this review is to provide an overview of the most recent advances in structure–function studies on the role of CaM regulation of Kv7.2 and the other members of the Kv7 family.
Collapse
|
8
|
Strulovich R, Tobelaim WS, Attali B, Hirsch JA. Structural Insights into the M-Channel Proximal C-Terminus/Calmodulin Complex. Biochemistry 2016; 55:5353-65. [PMID: 27564677 DOI: 10.1021/acs.biochem.6b00477] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Kv7 (KCNQ) channel family, comprising voltage-gated potassium channels, plays major roles in fine-tuning cellular excitability by reducing firing frequency and controlling repolarization. Kv7 channels have a unique intracellular C-terminal (CT) domain bound constitutively by calmodulin (CaM). This domain plays key functions in channel tetramerization, trafficking, and gating. CaM binds to the proximal CT, comprising helices A and B. Kv7.2 and Kv7.3 are expressed in neural tissues. Together, they form the heterotetrameric M channel. We characterized Kv7.2, Kv7.3, and chimeric Kv7.3 helix A-Kv7.2 helix B (Q3A-Q2B) proximal CT/CaM complexes by solution methods at various Ca(2+)concentrations and determined them all to have a 1:1 stoichiometry. We then determined the crystal structure of the Q3A-Q2B/CaM complex at high Ca(2+) concentration to 2.0 Å resolution. CaM hugs the antiparallel coiled coil of helices A and B, braced together by an additional helix. The structure displays a hybrid apo-Ca(2+) CaM conformation even though four Ca(2+) ions are bound. Our results pinpoint unique interactions enabling the possible intersubunit pairing of Kv7.3 helix A and Kv7.2 helix B while underlining the potential importance of Kv7.3 helix A's role in stabilizing channel oligomerization. Also, the structure can be used to rationalize various channelopathic mutants. Functional testing of the chimeric channel found it to have a voltage-dependence similar to the M channel, thereby demonstrating helix A's importance in imparting gating properties.
Collapse
Affiliation(s)
- Roi Strulovich
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - William Sam Tobelaim
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - Bernard Attali
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| | - Joel A Hirsch
- Department of Biochemistry and Molecular Biology, Institute of Structural Biology, George S. Wise Faculty of Life Sciences, ‡Department of Physiology and Pharmacology, Sackler Faculty of Medicine, and §Sagol School of Neuroscience, Tel Aviv University , Ramat Aviv 69978, Israel
| |
Collapse
|
9
|
Anta B, Martín-Rodríguez C, Gomis-Perez C, Calvo L, López-Benito S, Calderón-García AA, Vicente-García C, Villarroel Á, Arévalo JC. Ubiquitin-specific Protease 36 (USP36) Controls Neuronal Precursor Cell-expressed Developmentally Down-regulated 4-2 (Nedd4-2) Actions over the Neurotrophin Receptor TrkA and Potassium Voltage-gated Channels 7.2/3 (Kv7.2/3). J Biol Chem 2016; 291:19132-45. [PMID: 27445338 DOI: 10.1074/jbc.m116.722637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/06/2022] Open
Abstract
Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.
Collapse
Affiliation(s)
- Begoña Anta
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Carlos Martín-Rodríguez
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Carolina Gomis-Perez
- the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Universidad del País Vasco, barrio Sarriena s/n, 48940 Leoia, Spain
| | - Laura Calvo
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Saray López-Benito
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Andrés A Calderón-García
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Cristina Vicente-García
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| | - Álvaro Villarroel
- the Unidad de Biofísica, Consejo Superior de Investigaciones Científicas, CSIC, UPV/EHU, Universidad del País Vasco, barrio Sarriena s/n, 48940 Leoia, Spain
| | - Juan C Arévalo
- From the Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain, the Institute of Biomedical Research of Salamanca, 47195 Salamanca, Spain, and
| |
Collapse
|