1
|
Moaeen-ud-Din M, Khan MS, Muner RD, Reecy JM. Potential SNPs and candidate genes influencing growth characteristics in Pakistani Beetal goat identified by GWAS analysis. THE JOURNAL OF BASIC AND APPLIED ZOOLOGY 2025; 86:18. [DOI: 10.1186/s41936-025-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/22/2025] [Indexed: 04/20/2025]
Abstract
Abstract
Background
A higher body weight at a younger age is an economically important trait for profitable goat farming. This study focussed on the identification of regions of the genome that harbour genetic variants associated with body weight using the Illumina GoatSNP50K Bead Chip. A total of 631 purebred Beetal goats (151 males and 480 females) were recorded for body weight, age and body measurement and then genotyped. Genome-wide association analysis was carried out with GEMMA.
Results
After application of quality control filters with Plink 1.9 i.e. call rate less than or equal to 0.9, minor allele frequency < 0.05 and HWE P value < 0.001, 594 animals and 45,744 SNPs were used to carry out the analyses for association. The association analysis for body weight with covariates of age, sex, morphometric measurements and contemporary group returned 10 significant SNPs (P = − log10e-4 to − log10e-6). Three associated SNPs were present within genes i.e. BTAF1 (snp1131-scaffold1029-1983670 on chromosome 26), NTM (snp53070-scaffold799-1,702,189 on chromosome 29) and GRID1 (snp3363-scaffold1102-797993 on chromosome 28) when blasted against ARS1(accession GCA_001704415.1). Moreover, some associated SNPs were localized close to genes i.e. CEP78 (snp44634-scaffold606-4621460 on chromosome 8), ROBO1 (snp11793-scaffold1437-557,127 on chromosome 1), ZFP36L2 (snp9758-scaffold135-2,388,277 on chromosome 11), SPTLC3 (snp25720-scaffold265-581,526 on chromosome 13), CTR9 (snp31951-scaffold358-554,703 on chromosome 15) and ZFHX3 (snp9581-scaffold1344-19,492 on chromosome 18) genes.
Conclusions
The study identified SNPs and genes with potential role in growth of goat which may be useful for generation of customized chip in the future.
Collapse
|
2
|
Liu M, Wen Z, Zhao D, Tian W, Lv Q, Zhang C, Zhang X, Meng F, Liu H, Gao J, Yao Z. Cep78 knockout causes sterility and oligoasthenoteratozoospermia in male mice. Sci Rep 2025; 15:63. [PMID: 39747485 PMCID: PMC11697357 DOI: 10.1038/s41598-024-84006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Oligoasthenoteratozoospermia (OAT) is a common cause of infertility among males, and the majority of cases of idiopathic OAT are thought to be attributed to genetic defects. In this study, the role of the CEP78 protein in spermatogenesis was initially investigated using Cep78 knockout (Cep78-/-) mice. Notably, the male Cep78-/- mice exhibited the OAT phenotype and sterility. To elucidate the mechanisms underlying the functions of the Cep78 gene in spermatogenesis, the histomorphology of germ cells was investigated during different stages of mitosis, meiosis, and spermiogenesis. Apoptotic assays and RNA-sequencing analyses were additionally performed using the testicular tissue samples of control and Cep78-/- mice. The findings strongly suggested that defects in the Cep78 gene can lead to male infertility with OAT and that the CEP78 protein is essential for acrosomal biogenesis, sperm head shaping, and formation of flagella during spermiogenesis. The findings are expected to expand the spectrum of genetic defects in OAT and enhance the accuracy of genetic screening and clinical diagnosis.
Collapse
Affiliation(s)
- Min Liu
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Rd, Huaiyin District, Jinan, Jinan, 250117, Shandong, China
| | - Zongzhuang Wen
- Department of Reproductive Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Dapeng Zhao
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China
| | - Wei Tian
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Qingfeng Lv
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China
| | - Chunling Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China
| | - Xueyan Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China
| | - Fengling Meng
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China
| | - Hui Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Rd, Huaiyin District, Jinan, Jinan, 250117, Shandong, China.
| | - Jiangang Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Rd, Huaiyin District, Jinan, Jinan, 250117, Shandong, China.
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, 27 Shandanan Rd, Licheng District, Jinan, 250100, Shandong, China.
| | - Zhiwei Yao
- The Affiliated Taian City Central Hospital of Qingdao University, 29 Longtan Rd, Taishan District, Taian, 271000, Shandong, China.
| |
Collapse
|
3
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Reyer H, Abou-Soliman I, Schulze M, Henne H, Reinsch N, Schoen J, Wimmers K. Genome-Wide Association Analysis of Semen Characteristics in Piétrain Boars. Genes (Basel) 2024; 15:382. [PMID: 38540441 PMCID: PMC10969825 DOI: 10.3390/genes15030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 06/14/2024] Open
Abstract
Since artificial insemination is common practice in pig breeding, the quality and persistence of the semen are decisive for the usability of individual boars. In the current study, genome-wide association analyses were performed to investigate the genetic variability underlying phenotypic variations in semen characteristics. These traits comprise sperm morphology and sperm motility under different temporal and thermal storage conditions, in addition to standard semen quality parameters. Two consecutive samples of the fourth and fifth ejaculates from the same boar were comprehensively analyzed in a genotyped Piétrain boar population. A total of 13 genomic regions on different chromosomes were identified that contain single-nucleotide polymorphisms significantly associated with these traits. Subsequent analysis of the genomic regions revealed candidate genes described to be involved in spermatogenesis, such as FOXL3, GPER1, PDGFA, PRKAR1B, SNRK, SUN1, and TSPO, and sperm motility, including ARRDC4, CEP78, DNAAF5, and GPER1. Some of these genes were also associated with male fertility or infertility in mammals (e.g., CEP78, GPER1). The analyses based on these laboriously determined and valuable phenotypes contribute to a better understanding of the genetic background of male fertility traits in pigs and could prospectively contribute to the improvement of sperm quality through breeding approaches.
Collapse
Affiliation(s)
- Henry Reyer
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
| | - Ibrahim Abou-Soliman
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
- Department of Animal and Poultry Breeding, Desert Research Center, Cairo 11753, Egypt
| | - Martin Schulze
- Institute for Reproduction of Farm Animals Schönow, 16321 Bernau, Germany;
| | | | - Norbert Reinsch
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
| | - Jennifer Schoen
- Leibniz Institute for Zoo and Wildlife Research (IZW), 10315 Berlin, Germany;
- Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (I.A.-S.); (N.R.); (K.W.)
- Faculty of Agricultural and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
5
|
Zhu T, Zhang Y, Sheng X, Zhang X, Chen Y, Zhu H, Guo Y, Qi Y, Zhao Y, Zhou Q, Chen X, Guo X, Zhao C. Absence of CEP78 causes photoreceptor and sperm flagella impairments in mice and a human individual. eLife 2023; 12:76157. [PMID: 36756949 PMCID: PMC9984195 DOI: 10.7554/elife.76157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Cone-rod dystrophy (CRD) is a genetically inherited retinal disease that can be associated with male infertility, while the specific genetic mechanisms are not well known. Here, we report CEP78 as a causative gene of a particular syndrome including CRD and male infertility with multiple morphological abnormalities of sperm flagella (MMAF) both in human and mouse. Cep78 knockout mice exhibited impaired function and morphology of photoreceptors, typified by reduced ERG amplitudes, disrupted translocation of cone arrestin, attenuated and disorganized photoreceptor outer segments (OS) disks and widen OS bases, as well as interrupted connecting cilia elongation and abnormal structures. Cep78 deletion also caused male infertility and MMAF, with disordered '9+2' structure and triplet microtubules in sperm flagella. Intraflagellar transport (IFT) proteins IFT20 and TTC21A are identified as interacting proteins of CEP78. Furthermore, CEP78 regulated the interaction, stability, and centriolar localization of its interacting protein. Insufficiency of CEP78 or its interacting protein causes abnormal centriole elongation and cilia shortening. Absence of CEP78 protein in human caused similar phenotypes in vision and MMAF as Cep78-/- mice. Collectively, our study supports the important roles of CEP78 defects in centriole and ciliary dysfunctions and molecular pathogenesis of such multi-system syndrome.
Collapse
Affiliation(s)
- Tianyu Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yuxin Zhang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Xunlun Sheng
- Gansu Aier Ophthalmiology and Optometry HospitalLanzhouChina
- Ningxia Eye Hospital, People’s Hospital of Ningxia Hui Autonomous Region, Third Clinical Medical College of Ningxia Medical UniversityYinchuanChina
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yu Chen
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Hongjing Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Yichen Zhao
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Qi Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical UniversityNanjingChina
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Gusu School, Nanjing Medical UniversityNanjingChina
| | - Chen Zhao
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan UniversityShanghaiChina
| |
Collapse
|
6
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
7
|
Asadollahi H, Vaez Torshizi R, Ehsani A, Masoudi AA. An association of CEP78, MEF2C, VPS13A and ARRDC3 genes with survivability to heat stress in an F 2 chicken population. J Anim Breed Genet 2022; 139:574-582. [PMID: 35218583 DOI: 10.1111/jbg.12675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 02/02/2022] [Accepted: 02/09/2022] [Indexed: 01/09/2023]
Abstract
Heat stress is a serious problem in the poultry industry. An effective tool for improving heat tolerance can be genomic selection based on single nucleotide polymorphisms. This study was performed to identify genomic regions controlling survivability to heat stress in a population of F2 chickens that accidentally experienced acute heat stress, using Illumina 60K Chicken SNP Bead Chip. After quality control in markers, 47,730 SNPs remained for genome-wide association study (GWAS). The GWAS results indicated that markers Gga_rs16111480 (p = 8.503e-08), GGaluGA354375 (p = 5.99e-07) and Gga_rs14748694 (p = 7.085e-07) located on Z chromosome showed significant association with heat stress tolerance trait. The Gga_rs16111480 marker was located inside the CEP78 gene. The marker GGaluGA354375 was located inside the LOC101752071 gene and next to the MEF2C gene. The Gga_rs14748694 marker was adjacent to LOC101752071 and MEF2C genes. Moreover, the SNP maker of Gga_rs16111480 was located on 243 kb downstream of the VPS13A gene, and the GGaluGA354375 and Gga_rs14748694 SNPs were located on 947 kb and 888 kb downstream of the ARRDC3 gene, respectively. The results of this study suggest that apart from the gene LOC101752071, which its function was unknown, each of the two MEF2C and CEP78 genes were found to be closely related to heat stress resistance in bird.
Collapse
Affiliation(s)
- Hamed Asadollahi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Alireza Ehsani
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Frikstad KA, Schink K, Gilani S, Pedersen L, Patzke S. 3D-Structured Illumination Microscopy of Centrosomes in Human Cell Lines. Bio Protoc 2022; 12:e4360. [DOI: 10.21769/bioprotoc.4360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 11/02/2022] Open
|
9
|
Igelman AD, Ku C, da Palma MM, Georgiou M, Schiff ER, Lam BL, Sankila EM, Ahn J, Pyers L, Vincent A, Ferraz Sallum JM, Zein WM, Oh JK, Maldonado RS, Ryu J, Tsang SH, Gorin MB, Webster AR, Michaelides M, Yang P, Pennesi ME. Expanding the clinical phenotype in patients with disease causing variants associated with atypical Usher syndrome. Ophthalmic Genet 2021; 42:664-673. [PMID: 34223797 PMCID: PMC9233901 DOI: 10.1080/13816810.2021.1946704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 10/20/2022]
Abstract
Atypical Usher syndrome (USH) is poorly defined with a broad clinical spectrum. Here, we characterize the clinical phenotype of disease caused by variants in CEP78, CEP250, ARSG, and ABHD12.Chart review evaluating demographic, clinical, imaging, and genetic findings of 19 patients from 18 families with a clinical diagnosis of retinal disease and confirmed disease-causing variants in CEP78, CEP250, ARSG, or ABHD12.CEP78-related disease included sensorineural hearing loss (SNHL) in 6/7 patients and demonstrated a broad phenotypic spectrum including: vascular attenuation, pallor of the optic disc, intraretinal pigment, retinal pigment epithelium mottling, areas of mid-peripheral hypo-autofluorescence, outer retinal atrophy, mild pigmentary changes in the macula, foveal hypo-autofluorescence, and granularity of the ellipsoid zone. Nonsense and frameshift variants in CEP250 showed mild retinal disease with progressive, non-congenital SNHL. ARSG variants resulted in a characteristic pericentral pattern of hypo-autofluorescence with one patient reporting non-congenital SNHL. ABHD12-related disease showed rod-cone dystrophy with macular involvement, early and severe decreased best corrected visual acuity, and non-congenital SNHL ranging from unreported to severe.This study serves to expand the clinical phenotypes of atypical USH. Given the variable findings, atypical USH should be considered in patients with peripheral and macular retinal disease even without the typical RP phenotype especially when SNHL is noted. Additionally, genetic screening may be useful in patients who have clinical symptoms and retinal findings even in the absence of known SNHL given the variability of atypical USH.
Collapse
Affiliation(s)
- Austin D Igelman
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Cristy Ku
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mariana Matioli da Palma
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Michalis Georgiou
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Elena R Schiff
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eeva-Marja Sankila
- Department of Ophthalmology, Helsinki University Eye Hospital, Helsinki, Finland
| | - Jeeyun Ahn
- UCLA Stein Eye Institute, Division of Retinal Disorders and Ophthalmic Genetics, Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Ophthalmology, Seoul National University, College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Lindsey Pyers
- UCLA Stein Eye Institute, Division of Retinal Disorders and Ophthalmic Genetics, Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, the Hospital for Sick Children, University of Toronto, Canada
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jin Kyun Oh
- Jonas Children's Vision Care, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, USA
- College of Medicine, State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | - Ramiro S Maldonado
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA
| | - Joseph Ryu
- Jonas Children's Vision Care, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology, Pathology & Cell Biology, Columbia Stem Cell Initiative, New York, USA
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael B Gorin
- UCLA Stein Eye Institute, Division of Retinal Disorders and Ophthalmic Genetics, Department of Ophthalmology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Andrew R Webster
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London, UK
- Department of Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
10
|
Gonçalves AB, Hasselbalch SK, Joensen BB, Patzke S, Martens P, Ohlsen SK, Quinodoz M, Nikopoulos K, Suleiman R, Damsø Jeppesen MP, Weiss C, Christensen ST, Rivolta C, Andersen JS, Farinelli P, Pedersen LB. CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels. eLife 2021; 10:63731. [PMID: 34259627 PMCID: PMC8354638 DOI: 10.7554/elife.63731] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
CEP78 is a centrosomal protein implicated in ciliogenesis and ciliary length control, and mutations in the CEP78 gene cause retinal cone-rod dystrophy associated with hearing loss. However, the mechanism by which CEP78 affects cilia formation is unknown. Based on a recently discovered disease-causing CEP78 p.L150S mutation, we identified the disease-relevant interactome of CEP78. We confirmed that CEP78 interacts with the EDD1-DYRK2-DDB1VPRBP E3 ubiquitin ligase complex, which is involved in CP110 ubiquitination and degradation, and identified a novel interaction between CEP78 and CEP350 that is weakened by the CEP78L150S mutation. We show that CEP350 promotes centrosomal recruitment and stability of CEP78, which in turn leads to centrosomal recruitment of EDD1. Consistently, cells lacking CEP78 display significantly increased cellular and centrosomal levels of CP110, and depletion of CP110 in CEP78-deficient cells restored ciliation frequency to normal. We propose that CEP78 functions downstream of CEP350 to promote ciliogenesis by negatively regulating CP110 levels via an EDD1-dependent mechanism.
Collapse
Affiliation(s)
- André Brás Gonçalves
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah Kirstine Hasselbalch
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Beinta Biskopstø Joensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian Patzke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Pernille Martens
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Signe Krogh Ohlsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | | | - Reem Suleiman
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Magnus Per Damsø Jeppesen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Catja Weiss
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren Tvorup Christensen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University of Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jens S Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Pietro Farinelli
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Bang Pedersen
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ascari G, Rendtorff ND, De Bruyne M, De Zaeytijd J, Van Lint M, Bauwens M, Van Heetvelde M, Arno G, Jacob J, Creytens D, Van Dorpe J, Van Laethem T, Rosseel T, De Pooter T, De Rijk P, De Coster W, Menten B, Rey AD, Strazisar M, Bertelsen M, Tranebjaerg L, De Baere E. Long-Read Sequencing to Unravel Complex Structural Variants of CEP78 Leading to Cone-Rod Dystrophy and Hearing Loss. Front Cell Dev Biol 2021; 9:664317. [PMID: 33968938 PMCID: PMC8097100 DOI: 10.3389/fcell.2021.664317] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Inactivating variants as well as a missense variant in the centrosomal CEP78 gene have been identified in autosomal recessive cone-rod dystrophy with hearing loss (CRDHL), a rare syndromic inherited retinal disease distinct from Usher syndrome. Apart from this, a complex structural variant (SV) implicating CEP78 has been reported in CRDHL. Here we aimed to expand the genetic architecture of typical CRDHL by the identification of complex SVs of the CEP78 region and characterization of their underlying mechanisms. Approaches used for the identification of the SVs are shallow whole-genome sequencing (sWGS) combined with quantitative polymerase chain reaction (PCR) and long-range PCR, or ExomeDepth analysis on whole-exome sequencing (WES) data. Targeted or whole-genome nanopore long-read sequencing (LRS) was used to delineate breakpoint junctions at the nucleotide level. For all SVs cases, the effect of the SVs on CEP78 expression was assessed using quantitative PCR on patient-derived RNA. Apart from two novel canonical CEP78 splice variants and a frameshifting single-nucleotide variant (SNV), two SVs affecting CEP78 were identified in three unrelated individuals with CRDHL: a heterozygous total gene deletion of 235 kb and a partial gene deletion of 15 kb in a heterozygous and homozygous state, respectively. Assessment of the molecular consequences of the SVs on patient's materials displayed a loss-of-function effect. Delineation and characterization of the 15-kb deletion using targeted LRS revealed the previously described complex CEP78 SV, suggestive of a recurrent genomic rearrangement. A founder haplotype was demonstrated for the latter SV in cases of Belgian and British origin, respectively. The novel 235-kb deletion was delineated using whole-genome LRS. Breakpoint analysis showed microhomology and pointed to a replication-based underlying mechanism. Moreover, data mining of bulk and single-cell human and mouse transcriptional datasets, together with CEP78 immunostaining on human retina, linked the CEP78 expression domain with its phenotypic manifestations. Overall, this study supports that the CEP78 locus is prone to distinct SVs and that SV analysis should be considered in a genetic workup of CRDHL. Finally, it demonstrated the power of sWGS and both targeted and whole-genome LRS in identifying and characterizing complex SVs in patients with ocular diseases.
Collapse
Affiliation(s)
- Giulia Ascari
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Nanna D Rendtorff
- The Kennedy Center, Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marieke De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Michel Van Lint
- Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium
| | - Miriam Bauwens
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mattias Van Heetvelde
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Gavin Arno
- Great Ormond Street Hospital, London, United Kingdom.,Moorfields Eye Hospital, London, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Julie Jacob
- Department of Ophthalmology, University Hospitals Leuven, Leuven, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Thalia Van Laethem
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Toon Rosseel
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Tim De Pooter
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter De Rijk
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Alfredo Dueñas Rey
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Mojca Strazisar
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mette Bertelsen
- The Kennedy Center, Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark
| | - Lisbeth Tranebjaerg
- The Kennedy Center, Department of Clinical Genetics, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
13
|
Nolen RM, Hufnagel RB, Friedman TB, Turriff AE, Brewer CC, Zalewski CK, King KA, Wafa TT, Griffith AJ, Brooks BP, Zein WM. Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genet 2020; 41:401-412. [PMID: 32372680 DOI: 10.1080/13816810.2020.1747090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.
Collapse
Affiliation(s)
- Rosalie M Nolen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Christopher K Zalewski
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Kelly A King
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Talah T Wafa
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
14
|
Ascari G, Peelman F, Farinelli P, Rosseel T, Lambrechts N, Wunderlich KA, Wagner M, Nikopoulos K, Martens P, Balikova I, Derycke L, Holtappels G, Krysko O, Van Laethem T, De Jaegere S, Guillemyn B, De Rycke R, De Bleecker J, Creytens D, Van Dorpe J, Gerris J, Bachert C, Neuhofer C, Walraedt S, Bischoff A, Pedersen LB, Klopstock T, Rivolta C, Leroy BP, De Baere E, Coppieters F. Functional characterization of the first missense variant in CEP78, a founder allele associated with cone-rod dystrophy, hearing loss, and reduced male fertility. Hum Mutat 2020; 41:998-1011. [PMID: 31999394 PMCID: PMC7187288 DOI: 10.1002/humu.23993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Inactivating variants in the centrosomal CEP78 gene have been found in cone-rod dystrophy with hearing loss (CRDHL), a particular phenotype distinct from Usher syndrome. Here, we identified and functionally characterized the first CEP78 missense variant c.449T>C, p.(Leu150Ser) in three CRDHL families. The variant was found in a biallelic state in two Belgian families and in a compound heterozygous state-in trans with c.1462-1G>T-in a third German family. Haplotype reconstruction showed a founder effect. Homology modeling revealed a detrimental effect of p.(Leu150Ser) on protein stability, which was corroborated in patients' fibroblasts. Elongated primary cilia without clear ultrastructural abnormalities in sperm or nasal brushes suggest impaired cilia assembly. Two affected males from different families displayed sperm abnormalities causing infertility. One of these is a heterozygous carrier of a complex allele in SPAG17, a ciliary gene previously associated with autosomal recessive male infertility. Taken together, our data indicate that a missense founder allele in CEP78 underlies the same sensorineural CRDHL phenotype previously associated with inactivating variants. Interestingly, the CEP78 phenotype has been possibly expanded with male infertility. Finally, CEP78 loss-of-function variants may have an underestimated role in misdiagnosed Usher syndrome, with or without sperm abnormalities.
Collapse
Affiliation(s)
- Giulia Ascari
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Frank Peelman
- Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Flanders Institute for Biotechnology (VIB), Ghent University, Ghent, Belgium
| | - Pietro Farinelli
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Toon Rosseel
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Nina Lambrechts
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Kirsten A Wunderlich
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Physiological Genomics, BMC, Ludwig-Maximilians-Universität München, Planegg, Germany
| | - Matias Wagner
- Institute of Human Genetics, Faculty of Medicine, Technical University of Munich, Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany.,Institut für Neurogenomik, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Konstantinos Nikopoulos
- Oncogenomics laboratory, Department of Hematology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Pernille Martens
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Irina Balikova
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Department of Ophthalmology, University Hospital Leuven, Leuven, Belgium
| | - Lara Derycke
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Gabriële Holtappels
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Olga Krysko
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Thalia Van Laethem
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sarah De Jaegere
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Brecht Guillemyn
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium.,VIB Center for Inflammation Research and BioImaging Core, VIB, Ghent, Belgium
| | - Jan De Bleecker
- Department of Neurology, Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Jan Gerris
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
| | - Claus Bachert
- Upper Airways Research Laboratory, Department Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Christiane Neuhofer
- Institute of Human Genetics, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Sophie Walraedt
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Almut Bischoff
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians-University, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Carlo Rivolta
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.,Department of Ophthalmology, University Hospital Basel, Basel, Switzerland.,Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Bart P Leroy
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium.,Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Division of Ophthalmology and Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elfride De Baere
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- Department of Biomolecular Medicine, Center for Medical Genetics Ghent, Ghent University Hospital, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Abstract
The pyridoxal 5'-phosphate-binding protein (PLPBP) is an evolutionarily conserved protein linked to pyridoxal 5'-phosphate-binding. Although mutations in PLPBP were shown to cause vitamin B6-dependent epilepsy, its cellular role and function remain elusive. We here report a detailed biochemical investigation of human PLPBP and its epilepsy-causing mutants by evaluating stability, cofactor binding, and oligomerization. In this context, chemical cross-linking combined with mass spectrometry unraveled an unexpected dimeric assembly of PLPBP. Furthermore, the interaction network of PLPBP was elucidated by chemical cross-linking paired with co-immunoprecipitation. A mass spectrometric analysis in a PLPBP knockout cell line resulted in distinct proteomic changes compared to wild type cells, including upregulation of several cytoskeleton- and cell division-associated proteins. Finally, transfection experiments with vitamin B6-dependent epilepsy-causing PLPBP variants indicate a potential role of PLPBP in cell division as well as proper muscle function. Taken together, our studies on the structure and cellular role of human PLPBP enable a better understanding of the physiological and pathological mechanism of this important protein.
Collapse
Affiliation(s)
- Anja Fux
- Department
of Chemistry, Chair of Organic Chemistry II, Center for Integrated
Protein Science (CIPSM), Technische Universität
München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Stephan A. Sieber
- Department
of Chemistry, Chair of Organic Chemistry II, Center for Integrated
Protein Science (CIPSM), Technische Universität
München, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
16
|
Hammad MO, Elabbasy LM, Abd Elghaffar MA, Zaki MMA, Bazeed FB, Zahran MA. Significance of CEP78 and WDR62 gene expressions in differentiated thyroid carcinoma: Possible predictors of lateral lymph node metastasis. Asia Pac J Clin Oncol 2019; 15:e154-e161. [PMID: 30884127 DOI: 10.1111/ajco.13143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/17/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study aimed at investigating the clinical significance of CEP78 and WDR62 in differentiated thyroid carcinoma (DTC). This study also aimed at finding predictors that help in detecting patients with DTC who have high risk for lateral lymph node metastasis (LNM). METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to examine CEP78, and WDR62 mRNA expressions in 40 tissue specimens of DTC, and 40 goiter tissue specimens. Additionally, we reviewed clinical, ultrasound, laboratory, pathological data of patients to analyze the associations between these characteristics and lateral LNM. RESULTS Our results demonstrated that relative CEP78 mRNA levels were significantly decreased in thyroid cancer tissues than goiter tissues (P = 0.002). ROC curve analysis confirmed the diagnostic value of CEP78 mRNA expression, providing an AUC equals to 0.698 (95% confidence intervals (CI), 0.583-0.813; P = 0.002). The relative WDR62 mRNA expression was not statistically different in DTC tissues and goiter tissues (P = 0.686). Furthermore, the DTC patients had been included to examine risk factors for lateral LNM. In multivariate analysis, the significant factors for predicting lateral LNM were low CEP78 mRNA expression (cut off value ≤0.54; P = 0.03; OR = 19.62; 95% CI, 1.3-296.23), central LNM (P = 0.011; OR = 33.6; 95% CI, 2.24-503.6) and calcifications (P = 0.023; OR = 27.187; 95% CI, 1.57-469.5). CONCLUSIONS CEP78 can be used as a promising molecular biomarker for differentiation between DTC and goiter tissues, in addition it might serve as a predictor of lateral LNM in DTC along with central LNM and calcifications. Unlike CEP78, WDR62 mRNA expression was not statistically different in DTC and goiter.
Collapse
Affiliation(s)
- Maha O Hammad
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lamiaa M Elabbasy
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Marwa M A Zaki
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Fagr B Bazeed
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed A Zahran
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
17
|
Hossain D, Javadi Esfehani Y, Das A, Tsang WY. Cep78 controls centrosome homeostasis by inhibiting EDD-DYRK2-DDB1 VprBP. EMBO Rep 2017; 18:632-644. [PMID: 28242748 PMCID: PMC5376967 DOI: 10.15252/embr.201642377] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 01/13/2017] [Accepted: 02/03/2017] [Indexed: 01/08/2023] Open
Abstract
The centrosome plays a critical role in various cellular processes including cell division and cilia formation, and deregulation of centrosome homeostasis is a hallmark feature of many human diseases. Here, we show that centrosomal protein of 78 kDa (Cep78) localizes to mature centrioles and directly interacts with viral protein R binding protein (VprBP). Although VprBP is a component of two distinct E3 ubiquitin ligases, EDD-DYRK2-DDB1VprBP and CRL4VprBP, Cep78 binds specifically to EDD-DYRK2-DDB1VprBP and inhibits its activity. A pool of EDD-DYRK2-DDB1VprBP is active at the centrosome and mediates ubiquitination of CP110, a novel centrosomal substrate. Deregulation of Cep78 or EDD-DYRK2-DDB1VprBP perturbs CP110 ubiquitination and protein stability, thereby affecting centriole length and cilia assembly. Mechanistically, ubiquitination of CP110 entails its phosphorylation by DYRK2 and binding to VprBP Cep78 specifically impedes the transfer of ubiquitin from EDD to CP110 without affecting CP110 phosphorylation and binding to VprBP Thus, we identify Cep78 as a new player that regulates centrosome homeostasis by inhibiting the final step of the enzymatic reaction catalyzed by EDD-DYRK2-DDB1VprBP.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Yalda Javadi Esfehani
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Arindam Das
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - William Y Tsang
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Fu Q, Xu M, Chen X, Sheng X, Yuan Z, Liu Y, Li H, Sun Z, Li H, Yang L, Wang K, Zhang F, Li Y, Zhao C, Sui R, Chen R. CEP78 is mutated in a distinct type of Usher syndrome. J Med Genet 2016; 54:190-195. [PMID: 27627988 DOI: 10.1136/jmedgenet-2016-104166] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Usher syndrome is a genetically heterogeneous disorder featured by combined visual impairment and hearing loss. Despite a dozen of genes involved in Usher syndrome having been identified, the genetic basis remains unknown in 20-30% of patients. In this study, we aimed to identify the novel disease-causing gene of a distinct subtype of Usher syndrome. METHODS Ophthalmic examinations and hearing tests were performed on patients with Usher syndrome in two consanguineous families. Target capture sequencing was initially performed to screen causative mutations in known retinal disease-causing loci. Whole exome sequencing (WES) and whole genome sequencing (WGS) were applied for identifying novel disease-causing genes. RT-PCR and Sanger sequencing were performed to evaluate the splicing-altering effect of identified CEP78 variants. RESULTS Patients from the two independent families show a mild Usher syndrome phenotype featured by juvenile or adult-onset cone-rod dystrophy and sensorineural hearing loss. WES and WGS identified two homozygous rare variants that affect mRNA splicing of a ciliary gene CEP78. RT-PCR confirmed that the two variants indeed lead to abnormal splicing, resulting in premature stop of protein translation due to frameshift. CONCLUSIONS Our results provide evidence that CEP78 is a novel disease-causing gene for Usher syndrome, demonstrating an additional link between ciliopathy and Usher protein network in photoreceptor cells and inner ear hair cells.
Collapse
Affiliation(s)
- Qing Fu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China.,Department of Ophthalmology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xunlun Sheng
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Zhisheng Yuan
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Yani Liu
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Huiping Li
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Fangxia Zhang
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First affiliated hospital of Northwest University for Nationalities), Yinchuan, Ningxia, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Chen Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University and State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|