1
|
Saxe R, Stuart H, Marshall A, Abdullahi F, Chen Z, Emiliani F, McKenna A. Hierarchical Lineage Tracing Reveals Diverse Pathways of AML Treatment Resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640600. [PMID: 40093111 PMCID: PMC11908168 DOI: 10.1101/2025.02.27.640600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cancer cells adapt to treatment, leading to the emergence of clones that are more aggressive and resistant to anti-cancer therapies. We have a limited understanding of the development of treatment resistance as we lack technologies to map the evolution of cancer under the selective pressure of treatment. To address this, we developed a hierarchical, dynamic lineage tracing method called FLARE (Following Lineage Adaptation and Resistance Evolution). We use this technique to track the progression of acute myeloid leukemia (AML) cell lines through exposure to Cytarabine (AraC), a front-line treatment in AML, in vitro and in vivo. We map distinct cellular lineages in murine and human AML cell lines predisposed to AraC persistence and/or resistance via the upregulation of cell adhesion and motility pathways. Additionally, we highlight the heritable expression of immunoproteasome 11S regulatory cap subunits as a potential mechanism aiding AML cell survival, proliferation, and immune escape in vivo. Finally, we validate the clinical relevance of these signatures in the TARGET-AML cohort, with a bisected response in blood and bone marrow. Our findings reveal a broad spectrum of resistance signatures attributed to significant cell transcriptional changes. To our knowledge, this is the first application of dynamic lineage tracing to unravel treatment response and resistance in cancer, and we expect FLARE to be a valuable tool in dissecting the evolution of resistance in a wide range of tumor types.
Collapse
Affiliation(s)
- Rachel Saxe
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Hannah Stuart
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Quantitative Biomedical Science Program, Dartmouth College, Lebanon, NH
| | - Abigail Marshall
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Fahiima Abdullahi
- The Dartmouth MD-PhD Undergraduate Summer Fellowship Program, Lebanon, NH
| | - Zoë Chen
- Dartmouth Cancer Center, Dartmouth College, Lebanon, NH
| | - Francesco Emiliani
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH
| | - Aaron McKenna
- Molecular and Systems Biology, Dartmouth College, Hanover, NH
- Dartmouth Cancer Center, Dartmouth College, Lebanon, NH
| |
Collapse
|
2
|
Lin X, Long S, Yan C, Zou X, Zhang G, Zou J, Wu G. Therapeutic potential of vasculogenic mimicry in urological tumors. Front Oncol 2023; 13:1202656. [PMID: 37810976 PMCID: PMC10551447 DOI: 10.3389/fonc.2023.1202656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Angiogenesis is an essential process in the growth and metastasis of cancer cells, which can be hampered by an anti-angiogenesis mechanism, thereby delaying the progression of tumors. However, the benefit of this treatment modality could be restricted, as most patients tend to develop acquired resistance during treatment. Vasculogenic mimicry (VM) is regarded as a critical alternative mechanism of tumor angiogenesis, where studies have demonstrated that patients with tumors supplemented with VM generally have a shorter survival period and a poorer prognosis. Inhibiting VM may be an effective therapeutic strategy to prevent cancer progression, which could prove helpful in impeding the limitations of lone use of anti-angiogenic therapy when performed concurrently with other anti-tumor therapies. This review summarizes the mechanism of VM signaling pathways in urological tumors, i.e., prostate cancer, clear cell renal cell carcinoma, and bladder cancer. Furthermore, it also summarizes the potential of VM as a therapeutic strategy for urological tumors.
Collapse
Affiliation(s)
- Xinyu Lin
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Sheng Long
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Congcong Yan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xiaofeng Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guoxi Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Gengqing Wu
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
3
|
Grigorieva O, Basalova N, Vigovskiy M, Arbatskiy M, Dyachkova U, Kulebyakina M, Kulebyakin K, Tyurin-Kuzmin P, Kalinina N, Efimenko A. Novel Potential Markers of Myofibroblast Differentiation Revealed by Single-Cell RNA Sequencing Analysis of Mesenchymal Stromal Cells in Profibrotic and Adipogenic Conditions. Biomedicines 2023; 11:biomedicines11030840. [PMID: 36979822 PMCID: PMC10045579 DOI: 10.3390/biomedicines11030840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are the key regulators of tissue homeostasis and repair after damage. Accumulating evidence indicates the dual contribution of MSCs into the development of fibrosis induced by chronic injury: these cells can suppress the fibrotic process due to paracrine activity, but their promoting role in fibrosis by differentiating into myofibroblasts has also been demonstrated. Many model systems reproducing fibrosis have shown the ability of peroxisome proliferator-activated receptor (PPAR) agonists to reverse myofibroblast differentiation. Thus, the differentiation of multipotent cells into myofibroblasts and adipocytes can be considered as processes that require the activation of opposite patterns of gene expression. To test this hypothesis, we analyzed single cell RNA-Seq transcriptome of human adipose tissue MSCs after stimulation of the myofibroblast or adipogenic differentiation and revealed several genes that changed their expression in a reciprocal manner upon these conditions. We validated the expression of selected genes by RT-PCR, and evaluated the upregulation of several relevant proteins using immunocytochemistry, refining the results obtained by RNA-Seq analysis. We have shown, for the first time, the expression of neurotrimin (NTM), previously studied mainly in the nervous tissue, in human adipose tissue MSCs, and demonstrated its increased gene expression and clustering of membrane receptors upon the stimulation of myofibroblast differentiation. We also showed an increased level of CHD3 (Chromodomain-Helicase-DNA-binding protein 3) in MSCs under profibrotic conditions, while retinol dehydrogenase-10 (RDH10) was detected only in MSCs after adipogenic induction, which contradicted the data of transcriptomic analysis and again highlights the need to validate the data obtained by omics methods. Our findings suggest the further analysis of the potential contribution of neurotrimin and CHD3 in the regulation of myofibroblast differentiation and the development of fibrosis.
Collapse
Affiliation(s)
- Olga Grigorieva
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Correspondence:
| | - Nataliya Basalova
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
| | - Maksim Vigovskiy
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Mikhail Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Uliana Dyachkova
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Maria Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Konstantin Kulebyakin
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Lomonosovsky Ave., 27/10, 119192 Moscow, Russia; (N.B.); (M.V.); (K.K.); (A.E.)
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia; (M.A.); (U.D.); (M.K.); (P.T.-K.); (N.K.)
| |
Collapse
|
4
|
Prognostic Modeling of Lung Adenocarcinoma Based on Hypoxia and Ferroptosis-Related Genes. JOURNAL OF ONCOLOGY 2022; 2022:1022580. [PMID: 36245988 PMCID: PMC9553523 DOI: 10.1155/2022/1022580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Background. It is well known that hypoxia and ferroptosis are intimately connected with tumor development. The purpose of this investigation was to identify whether they have a prognostic signature. To this end, genes related to hypoxia and ferroptosis scores were investigated using bioinformatics analysis to stratify the risk of lung adenocarcinoma. Methods. Hypoxia and ferroptosis scores were estimated using The Cancer Genome Atlas (TCGA) database-derived cohort transcriptome profiles via the single sample gene set enrichment analysis (ssGSEA) algorithm. The candidate genes associated with hypoxia and ferroptosis scores were identified using weighted correlation network analysis (WGCNA) and differential expression analysis. The prognostic genes in this study were discovered using the Cox regression (CR) model in conjunction with the LASSO method, which was then utilized to create a prognostic signature. The efficacy, accuracy, and clinical value of the prognostic model were evaluated using an independent validation cohort, Receiver Operator Characteristic (ROC) curve, and nomogram. The analysis of function and immune cell infiltration was also carried out. Results. Here, we appraised 152 candidate genes expressed not the same, which were related to hypoxia and ferroptosis for prognostic modeling in The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) cohort, and these genes were further validated in the GSE31210 cohort. We found that the 14-gene-based prognostic model, utilizing MAPK4, TNS4, WFDC2, FSTL3, ITGA2, KLK11, PHLDB2, VGLL3, SNX30, KCNQ3, SMAD9, ANGPTL4, LAMA3, and STK32A, performed well in predicting the prognosis in lung adenocarcinoma. ROC and nomogram analyses showed that risk scores based on prognostic signatures provided desirable predictive accuracy and clinical utility. Moreover, gene set variance analysis showed differential enrichment of 33 hallmark gene sets between different risk groups. Additionally, our results indicated that a higher risk score will lead to more fibroblasts and activated CD4 T cells but fewer myeloid dendritic cells, endothelial cells, eosinophils, immature dendritic cells, and neutrophils. Conclusion. Our research found a 14-gene signature and established a nomogram that accurately predicted the prognosis in patients with lung adenocarcinoma. Clinical decision-making and therapeutic customization may benefit from these results, which may serve as a valuable reference in the future.
Collapse
|
5
|
Daulat AM, Wagner MS, Audebert S, Kowalczewska M, Ariey-Bonnet J, Finetti P, Bertucci F, Camoin L, Borg JP. The serine/threonine kinase MINK1 directly regulates the function of promigratory proteins. J Cell Sci 2022; 135:276338. [PMID: 35971817 DOI: 10.1242/jcs.259347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 08/08/2022] [Indexed: 11/20/2022] Open
Abstract
Upregulation of the developmental Wnt/planar cell polarity pathway is observed in many cancers and is associated with cancer development. We recently showed that PRICKLE1, a core Wnt/PCP component, is a poor-prognosis marker in triple negative breast cancer (TNBC). PRICKLE1 is phosphorylated by the serine/threonine kinase MINK1 and contributes to TNBC cell motility and invasiveness. However, the identity of MINK1 substrates and the role of MINK1 enzymatic activity in this process remain to be addressed. We performed a phosphoproteomic strategy and identified MINK1 substrates including LL5β. LL5β anchors microtubules at the cell cortex through its association with CLASPs to trigger focal adhesion disassembly. LL5β is phosphorylated by MINK1 promoting its interaction with CLASPs. Using a kinase inhibitor, we demonstrate that the enzymatic activity of MINK1 is involved in the protein complex assembly and localization, and cell migration. Analysis of gene expression data show that the concomitant up-regulation of PRICKLE1 and LL5β mRNA levels encoding MINK1 substrates is associated with a poor metastasis-free survival in TNBC patients. Altogether, our results suggest that MINK1 may represent a potential target in TNBC.
Collapse
Affiliation(s)
- Avais M Daulat
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Mônica S Wagner
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Malgorzata Kowalczewska
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France
| | - Jeremy Ariey-Bonnet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Biologie Structurale et Chimie-Biologie Intégrée, Marseille, France
| | - Pascal Finetti
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - François Bertucci
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Predictive Oncology', Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell polarity, Cell signaling and Cancer', Marseille, France.,Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France.,Institut universitaire de France, France
| |
Collapse
|
6
|
Lv J, Zhang S, Liu Y, Li C, Guo T, Zhang S, Li Z, Jiao Z, Sun H, Zhang Y, Xu L. NR2F1-AS1/miR-190a/PHLDB2 Induces the Epithelial-Mesenchymal Transformation Process in Gastric Cancer by Promoting Phosphorylation of AKT3. Front Cell Dev Biol 2021; 9:688949. [PMID: 34746118 PMCID: PMC8569557 DOI: 10.3389/fcell.2021.688949] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/07/2021] [Indexed: 01/09/2023] Open
Abstract
The median survival time of patients with advanced gastric cancer (GC) who received radiotherapy and chemotherapy was <1 year. Epithelial-mesenchymal transformation (EMT) gives GC cells the ability to invade, which is an essential biological mechanism in the progression of GC. The long non-coding RNA (lncRNA)-based competitive endogenous RNA (ceRNA) system has been shown to play a key role in the GC-related EMT process. Although the AKT pathway is essential for EMT in GC, the relationship between AKT3 subtypes and EMT in GC is unclear. Here, we evaluated the underlying mechanism of ceRNA involving NR2F1-AS1/miR-190a/PHLDB2 in inducing EMT by promoting the expression and phosphorylation of AKT3. The results of bioinformatics analysis showed that the expression of NR2F1-AS1/miR-190a/PHLDB2 in GC was positively associated with the pathological features, staging, poor prognosis, and EMT process. We performed cell transfection, qRT-PCR, western blot, cell viability assay, TUNEL assay, Transwell assay, cell morphology observation, and double luciferase assay to confirm the regulation of NR2F1-AS1/miR-190a/PHLDB2 and its effect on EMT transformation. Finally, GSEA and GO/KEGG enrichment analysis identified that PI3K/AKT pathway was positively correlated to NR2F1-AS1/miR-190a/PHLDB2 expression. AKT3 knockout cells were co-transfected with PHLDB2-OE, and the findings revealed that AKT3 expression and phosphorylation were essential for the PHLDB2-mediated EMT process. Thus, our results showed that NR2F1-AS1/miR-190a/PHLDB2 promoted the phosphorylation of AKT3 to induce EMT in GC cells. This study provides a comprehensive understanding of the underlying mechanism involved in the EMT process as well as the identification of new EMT markers.
Collapse
Affiliation(s)
- Jinqi Lv
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Simeng Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Tianshu Guo
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Shuairan Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zenan Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Zihan Jiao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Haina Sun
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, China
| | - Ling Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| |
Collapse
|
7
|
Han X, Zhang C, Ma X, Yan X, Xiong B, Shen W, Yin S, Zhang H, Sun Q, Zhao Y. Muscarinic acetylcholine receptor M5 is involved in spermatogenesis through the modification of cell-cell junctions. Reproduction 2021; 162:47-59. [PMID: 33970124 PMCID: PMC8183636 DOI: 10.1530/rep-21-0079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/10/2021] [Indexed: 01/08/2023]
Abstract
Muscarinic acetylcholine receptor (mAChR) antagonists have been reported to decrease male fertility; however, the roles of mAChRs in spermatogenesis and the underlying mechanisms are not understood yet. During spermatogenesis, extensive remodeling between Sertoli cells and/or germ cells interfaces takes place to accommodate the transport of developing germ cells across the blood-testis barrier (BTB) and adluminal compartment. The cell–cell junctions play a vital role in the spermatogenesis process. This study used ICR male mice and spermatogonial cells (C18-4) and Sertoli cells (TM-4). shRNA of control or M5 gene was injected into 5-week-old ICR mice testes. Ten days post-viral grafting, mice were deeply anesthetized with pentobarbital and the testes were collected. One testicle was fresh frozen for RNA-seq analysis or Western blotting (WB). The second testicle was fixed for immunofluorescence staining (IHF). C18-4 or TM-4 cells were treated with shRNA of control or M5 gene. Then, the cells were collected for RNA-seq analysis, WB, or IHF. Knockdown of mAChR M5 disrupted mouse spermatogenesis and damaged the actin-based cytoskeleton and many types of junction proteins in both Sertoli cells and germ cells. M5 knockdown decreased Phldb2 expression in both germ cells and Sertoli cells which suggested that Phldb2 may be involved in cytoskeleton and cell–cell junction formation to regulate spermatogenesis. Our investigation has elucidated a novel role for mAChR M5 in the regulation of spermatogenesis through the interactions of Phldb2 and cell–cell junctions. M5 may be an attractive future therapeutic target in the treatment of male reproductive disorders.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Cong Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiangping Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Xiaowei Yan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Bohui Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qingyuan Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China.,Fertility Preservation Lab, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Life Sciences, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
8
|
Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, Zhang Q, Chen F, Li Y, Shao H. PRICKLE1, a Wnt/PCP signaling component, is overexpressed and associated with inferior prognosis in acute myeloid leukemia. J Transl Med 2021; 19:211. [PMID: 34001134 PMCID: PMC8130533 DOI: 10.1186/s12967-021-02873-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prickle planar cell polarity protein 1 (PRICKLE1), a core component of the non-canonical Wnt/planar cell polarity (PCP) pathway, was recently reported to be upregulated and correlated with poor prognosis in solid cancers. However, the effect of PRICKLE1 on acute myeloid leukemia (AML) remains unknown. This study aims to characterize the prognostic significance of PRICKLE1 expression in patients with AML. METHODS RNA-seq was performed to compare mRNA expression profiles of AML patients and healthy controls. qRT-PCR and western blotting were used to analyze the expression of PRICKLE1 in AML patients and cell lines, and two independent datasets (TCGA-LAML and TARGET-AML) online were used to validate the expression results. The correlations between the expression of PRICKLE1 and clinical features were further analyzed. RESULTS Our data showed that PRICKLE1 expression levels were markedly high in AML patients at the time of diagnosis, decreased after complete remission and increased again at relapse. Of note, PRICKLE1 was highly expressed in drug resistant AML cells and monocytic-AML patients. High PRICKLE1 expression was found in FLT3/DNMT3A/IDH1/IDH2-mutant AML and associated with poor prognosis. Furthermore, high expression of PRICKLE1 may be correlated with migration and invasion components upregulation in AML patients. CONCLUSIONS These results indicated that high PRICKLE1 expression may be a poor prognostic biomarker and therapeutic target of AML.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangping Chen
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haigang Shao
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
Hahn JM, McFarland KL, Combs KA, Anness MC, Supp DM. Analysis of HOX gene expression and the effects of HOXA9 overexpression in fibroblasts derived from keloid lesions and normal skin. Wound Repair Regen 2021; 29:777-791. [PMID: 33811779 DOI: 10.1111/wrr.12917] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
Keloids are fibroproliferative lesions resulting from an abnormal wound healing process due to pathological mechanisms that remain incompletely understood. Keloids tend to occur more frequently in anterior versus posterior body regions (e.g., ears, face, upper torso); this has been attributed to higher skin tension in those areas, although this has not yet been conclusively proven. Previous studies reported reduced expression of multiple homeobox (HOX) genes in keloid versus normal fibroblasts, suggesting a role for HOX genes in keloid pathology. However, HOX genes are differentially expressed along the anterior-posterior axis. Hypothetically, differential HOX expression may be due to differences in body sites, as matched donor sites are often unavailable for keloids and normal skin. To better understand the basis for differential HOX gene expression in cells from keloids compared with normal skin, we compared HOXA7, HOXA9, HOXC8 and HOXC11 expression in keloid and normal skin-derived fibroblasts from various body sites. When keloid (N = 20) and normal (N = 12) fibroblast cell strains were evaluated, expression of HOXA7, HOXA9 and HOXC8 was significantly lower in keloid versus normal fibroblasts. However, HOX gene expression was lower in fibroblasts from more anterior versus posterior body sites. When keloid and normal cells from similar body sites were compared, differential HOX expression was not observed. To investigate the phenotypic relevance of HOX expression, HOXA9 was overexpressed in keloid and normal fibroblasts. HOXA9 overexpression did not affect proliferation but significantly reduced fibroblast migration and altered gene expression. The results suggest that differential HOX expression may be due to differences in positional identity between keloid and normal fibroblasts. However, HOX genes can potentially regulate fibroblast phenotype, suggesting that differential HOX gene expression may play a role in keloid development in anterior body sites.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kevin L McFarland
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelly A Combs
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Meridith C Anness
- Women in Science and Engineering Program and Undergraduate Program in Medical Sciences, University of Cincinnati, Cincinnati, Ohio, USA.,Michigan State University College of Human Medicine, East Lansing, Michigan, USA
| | - Dorothy M Supp
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Scientific Staff, Shriners Children's Ohio, Dayton, Ohio, USA
| |
Collapse
|
10
|
Wang H, Wang L, Zheng Q, Lu Z, Chen Y, Shen D, Xue D, Jiang M, Ding L, Zhang J, Wu H, Xia L, Qian J, Li G, Lu J. Oncometabolite L-2-hydroxyglurate directly induces vasculogenic mimicry through PHLDB2 in renal cell carcinoma. Int J Cancer 2021; 148:1743-1755. [PMID: 33320958 PMCID: PMC7986127 DOI: 10.1002/ijc.33435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Metabolism reprograming is a hallmark of cancer and plays an important role in tumor progression. The aberrant metabolism in renal cell carcinoma (RCC) leads to accumulation of the oncometabolite l‐2‐hydroxyglurate (L‐2HG). L‐2HG has been reported to inhibit the activity of some α‐ketoglutarate‐dependent dioxygenases such as TET enzymes, which mediate epigenetic alteration, including DNA and histone demethylation. However, the detailed functions of L‐2HG in renal cell carcinoma have not been investigated thoroughly. In our study, we found that L‐2HG was significantly elevated in tumor tissues compared to adjacent tissues. Furthermore, we demonstrated that L‐2HG promoted vasculogenic mimicry (VM) in renal cancer cell lines through reducing the expression of PHLDB2. A mechanism study revealed that activation of the ERK1/2 pathway was involved in L‐2HG‐induced VM formation. In conclusion, these findings highlighted the pathogenic link between L‐2HG and VM and suggested a novel therapeutic target for RCC. What's new? Metabolic reprograming, a hallmark of cancer, influences tumor progression. In the case of renal cell carcinoma (RCC) specifically, progression appears to be facilitated by the oncometabolite L‐2‐hydroxyglurate (L‐2HG), though underlying mechanisms remain enigmatic. Here, the authors investigated the ability of L‐2HG in RCC to promote vasculogenic mimicry (VM), in which aggressive cancer cells form vessel‐like networks that support tumor growth. Analyses of RCC patient tissues revealed elevated L‐2HG levels, wherein tumor cells with greater L‐2HG levels exhibited more VM structures. TCGA data and high‐throughput sequencing analyses further show that L‐2HG contributes to VM formation via reduction of PHLDB2 levels.
Collapse
Affiliation(s)
- Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanlei Chen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dingwei Xue
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minxiao Jiang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhang
- Department of Urology, The Affiliated Hangzhou First People's Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyang Wu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Qian
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jieyang Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Ge D, Shao Y, Wang M, Tao H, Mu M, Tao X. RNA-seq-Based Screening in Coal Dust-Treated Cells Identified PHLDB2 as a Novel Lung Cancer-Related Molecular Marker. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1978434. [PMID: 34337001 PMCID: PMC8314042 DOI: 10.1155/2021/1978434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/05/2021] [Indexed: 01/06/2023]
Abstract
Lung cancer is one of the most serious leading cancers with high incidence globally. Identifying molecular markers is key for disease diagnosis and treatment. Coal dust might be important triggering factors in disease development. Here, we first performed RNA-seq-based screening in coal dust treated and nontreated RAW264.7 cell lines. PHLDB2 was found to be the top differentially expressed gene. By retrieving TCGA lung cancer dataset, we observed that PHLDB2 showed upregulations in males and smoker patients. Patients with lower PHLDB2 expression survived longer than those with higher expressions. Furthermore, PHLDB2 was negatively correlated with EMT makers, and a total of 2.74% mutation rate were observed in 1,059 patients. This finding highlights the critical role of PHLDB2 in lung cancer development. PHLDB2 might be a molecular maker for disease diagnosis or treatment.
Collapse
Affiliation(s)
- Deyong Ge
- 1Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education (Anhui University of Science and Technology), China
- 2Anhui Province Engineering Laboratory of Occupational Health and Safety, China
- 3School of Medicine, Anhui University of Science and Technology, No. 168 Taifeng Road, Huainan, Anhui Province, China
| | - Yuhan Shao
- 3School of Medicine, Anhui University of Science and Technology, No. 168 Taifeng Road, Huainan, Anhui Province, China
| | - Mengjie Wang
- 3School of Medicine, Anhui University of Science and Technology, No. 168 Taifeng Road, Huainan, Anhui Province, China
| | - Huihui Tao
- 1Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education (Anhui University of Science and Technology), China
- 2Anhui Province Engineering Laboratory of Occupational Health and Safety, China
- 3School of Medicine, Anhui University of Science and Technology, No. 168 Taifeng Road, Huainan, Anhui Province, China
| | - Min Mu
- 1Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education (Anhui University of Science and Technology), China
- 2Anhui Province Engineering Laboratory of Occupational Health and Safety, China
- 3School of Medicine, Anhui University of Science and Technology, No. 168 Taifeng Road, Huainan, Anhui Province, China
| | - Xinrong Tao
- 1Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education (Anhui University of Science and Technology), China
- 2Anhui Province Engineering Laboratory of Occupational Health and Safety, China
- 3School of Medicine, Anhui University of Science and Technology, No. 168 Taifeng Road, Huainan, Anhui Province, China
| |
Collapse
|
12
|
Norden PR, Sabine A, Wang Y, Demir CS, Liu T, Petrova TV, Kume T. Shear stimulation of FOXC1 and FOXC2 differentially regulates cytoskeletal activity during lymphatic valve maturation. eLife 2020; 9:53814. [PMID: 32510325 PMCID: PMC7302880 DOI: 10.7554/elife.53814] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 06/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the transcription factor FOXC2 are predominately associated with lymphedema. Herein, we demonstrate a key role for related factor FOXC1, in addition to FOXC2, in regulating cytoskeletal activity in lymphatic valves. FOXC1 is induced by laminar, but not oscillatory, shear and inducible, endothelial-specific deletion impaired postnatal lymphatic valve maturation in mice. However, deletion of Foxc2 induced valve degeneration, which is exacerbated in Foxc1; Foxc2 mutants. FOXC1 knockdown (KD) in human lymphatic endothelial cells increased focal adhesions and actin stress fibers whereas FOXC2-KD increased focal adherens and disrupted cell junctions, mediated by increased ROCK activation. ROCK inhibition rescued cytoskeletal or junctional integrity changes induced by inactivation of FOXC1 and FOXC2 invitro and vivo respectively, but only ameliorated valve degeneration in Foxc2 mutants. These results identify both FOXC1 and FOXC2 as mediators of mechanotransduction in the postnatal lymphatic vasculature and posit cytoskeletal signaling as a therapeutic target in lymphatic pathologies.
Collapse
Affiliation(s)
- Pieter R Norden
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Amélie Sabine
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, United States
| | - Cansaran Saygili Demir
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Ting Liu
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Tatiana V Petrova
- Department of Oncology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Epalinges, Switzerland
| | - Tsutomu Kume
- Feinberg Cardiovascular and Renal Research Institute, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
13
|
Zeng Z, Cheng J, Ye Q, Zhang Y, Shen X, Cai J, Li M. A 14-Methylation-Driven Differentially Expressed RNA as a Signature for Overall Survival Prediction in Patients with Uterine Corpus Endometrial Carcinoma. DNA Cell Biol 2020; 39:975-991. [PMID: 32397815 DOI: 10.1089/dna.2019.5313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
DNA methylation has been implicated as an important mechanism for the development of uterine corpus endometrial carcinoma (UCEC), indicating that methylation-driven genes may be potential biomarkers for survival prediction. In this study, we aimed to identify a new prognostic methylation signature for UCEC based on differentially expressed genes (DEGs) and long noncoding RNAs (lncRNAs) (DELs). Sample-matched RNA-sequencing and methylation-array data were downloaded from The Cancer Genome Atlas database, by analysis of which a total of 269 DEGs and 4 DELs were identified to be methylation driven. Least absolute shrinkage and selection operator analysis screened that 14 methylation-driven genes were significantly associated with overall survival (OS) and thus were used as a signature to establish a prognostic risk model. Based on the median threshold, the patients were divided into the low-risk and the high-risk groups, which showed significantly different survival periods under the Kaplan-Meier curve. The area under receiver operating characteristic curve (AUC) was 0.934, 0.919, and 0.952 for the training, validation, and entire cohort, respectively. Stratification analysis showed that the established risk model may add prognostic values to conventional clinical factors (age, neoplasm histologic grade, and clinical stage). A nomogram was constructed based on the risk model and clinical parameters, with the AUC of 0.978 and c-index of 0.8079. Database for Annotation, Visualization, and Integrated Discovery (DAVID) function enrichment and Human Protein Atlas (HPA) protein expression validation showed 5 of these 14 genes may be especially important for UCEC (hypermethylated lowly expressed: CCBE1, FOXL2, PHLDB2, and DTNA; hypomethylated highly expressed: CCNE1). Comparison with breast cancer in the methylation level indicated ABCA12, CCNE1, and CLRN3 may be specific methylation-driven genes for UCEC. LncRNA HCG11 may function by coexpressing with DTNA. In conclusion, this 14-DNA methylation signature combined with clinical factors may a potentially effective biomarker in predicting OS for UCEC patients.
Collapse
Affiliation(s)
- Zhi Zeng
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juan Cheng
- Department of Gynecology and The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingjian Ye
- Department of Gynecology and The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaoting Shen
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Manchao Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
14
|
Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, Chambery A, Russo R, Ayo-Martin AC, Giordano M, Hoffmann A, Ciusani E, Canafoglia L, Götz M, Di Giaimo R, Cappello S. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med 2020; 12:e11419. [PMID: 32378798 PMCID: PMC7278547 DOI: 10.15252/emmm.201911419] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive myoclonus epilepsy (PME) of Unverricht–Lundborg type (EPM1) is an autosomal recessive neurodegenerative disorder with the highest incidence of PME worldwide. Mutations in the gene encoding cystatin B (CSTB) are the primary genetic cause of EPM1. Here, we investigate the role of CSTB during neurogenesis in vivo in the developing mouse brain and in vitro in human cerebral organoids (hCOs) derived from EPM1 patients. We find that CSTB (but not one of its pathological variants) is secreted into the mouse cerebral spinal fluid and the conditioned media from hCOs. In embryonic mouse brain, we find that functional CSTB influences progenitors’ proliferation and modulates neuronal distribution by attracting interneurons to the site of secretion via cell‐non‐autonomous mechanisms. Similarly, in patient‐derived hCOs, low levels of functional CSTB result in an alteration of progenitor's proliferation, premature differentiation, and changes in interneurons migration. Secretion and extracellular matrix organization are the biological processes particularly affected as suggested by a proteomic analysis in patients’ hCOs. Overall, our study sheds new light on the cellular mechanisms underlying the development of EPM1.
Collapse
Affiliation(s)
- Francesco Di Matteo
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Fabrizia Pipicelli
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - Isabella Tovecci
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University Federico II, Naples, Italy
| | - Eduardo Penna
- Department of Biology, University Federico II, Naples, Italy
| | | | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Ane Cristina Ayo-Martin
- Max Planck Institute of Psychiatry, Munich, Germany.,International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | | | - Emilio Ciusani
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Magdalena Götz
- Physiological Genomics, Biomedical Center (BMC), Ludwig-Maximilians-Universitaet (LMU), Planegg/Martinsried, Germany.,Helmholtz Center Munich, Biomedical Center (BMC), Institute of Stem Cell Research, Planegg/Martinsried, Germany.,SyNergy Excellence Cluster, Munich, Germany
| | - Rossella Di Giaimo
- Max Planck Institute of Psychiatry, Munich, Germany.,Department of Biology, University Federico II, Naples, Italy
| | | |
Collapse
|
15
|
Chen G, Zhou T, Ma T, Cao T, Yu Z. Oncogenic effect of PHLDB2 is associated with epithelial-mesenchymal transition and E-cadherin regulation in colorectal cancer. Cancer Cell Int 2019; 19:184. [PMID: 31346319 PMCID: PMC6636018 DOI: 10.1186/s12935-019-0903-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Pleckstrin Homology Like Domain Family Member 2 (PHLDB2) is an important protein with a PH-domain for interaction with partners to regulate cell migration. However, the role of PHLDB2 in human cancer metastasis, especially in colon cancer, still remains elusive. Methods The RNA-seq and clinical data of colorectal cancer patients from the Cancer Genome Atlas (TCGA) were analyzed for correlations between PHLDB2 and clinical outcomes as well as epithelial-mesenchymal transition (EMT) markers. Wound healing and transwell invasion assays were used to determine the effects of PHLDB2 on cell migration and invasiveness. Western blot and qRT-PCR analyses were employed to detect protein and mRNA changes, respectively. Co-immunoprecipitation was performed to assess protein-protein interaction. Results In the present report, by following our previous study, we found that PHLDB2 expression is associated with poorer prognosis, including disease-free survival, tumor stage, nodes pathology, as well as lymphatic and vascular invasion through TCGA data analysis. In addition, PHLDB2 expression is highly correlated with multiple epithelial-mesenchymal transition (EMT) markers involving cell-surface proteins (N-cadherin and OB-cadherin), cytoskeletal markers (α-SMA and Vimentin), ECM proteins (Fibronectin and Laminin 5), and transcription factors (Snail2, ZEB1, and Ets-1). We also demonstrated that PHLDB2 knockdown mediated by siRNA was sufficient to attenuate colon cancer cell migration and invasion, as well as E-Cadherin reduction, by TGF-β treatment. Interestingly, PHLDB2 expression levels were significantly elevated in response to EMT induction by TGF-β and EGF. Moreover, we found that PHLDB2 could bind to MDM2 and facilitate MDM2-mediated E-Cadherin degradation. Conclusions Our findings suggest that PHLDB2 is a downstream effector of EMT pathway and may present as an important biomarker for colon cancer prognosis and a target for colon cancer intervention.
Collapse
Affiliation(s)
- Geng Chen
- 1Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Tong Zhou
- 2Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Tantan Ma
- 1Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Tingting Cao
- 1Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Zhenxiang Yu
- 3Department of Respiration, The First Hospital of Jilin University, Xinmin Street, 71, Changchun, 130021 Jilin People's Republic of China
| |
Collapse
|
16
|
ECT2 associated to PRICKLE1 are poor-prognosis markers in triple-negative breast cancer. Br J Cancer 2019; 120:931-940. [PMID: 30971775 PMCID: PMC6734648 DOI: 10.1038/s41416-019-0448-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023] Open
Abstract
Background Triple-negative breast cancers (TNBC) are poor-prognosis tumours candidate to chemotherapy as only systemic treatment. We previously found that PRICKLE1, a prometastatic protein involved in planar cell polarity, is upregulated in TNBC. We investigated the protein complex associated with PRICKLE1 in TNBC to identify proteins possibly involved in metastatic dissemination, which might provide new prognostic and/or therapeutic targets. Methods We used a proteomic approach to identify protein complexes associated with PRICKLE1. The mRNA expression levels of the corresponding genes were assessed in 8982 patients with invasive primary breast cancer. We then characterised the molecular interaction between PRICKLE1 and the guanine nucleotide exchange factor ECT2. Finally, experiments in Xenopus were carried out to determine their evolutionarily conserved interaction. Results Among the PRICKLE1 proteins network, we identified several small G-protein regulators. Combined analysis of the expression of PRICKLE1 and small G-protein regulators had a strong prognostic value in TNBC. Notably, the combined expression of ECT2 and PRICKLE1 provided a worst prognosis than PRICKLE1 expression alone in TNBC. PRICKLE1 regulated ECT2 activity and this interaction was evolutionary conserved. Conclusions This work supports the idea that an evolutionarily conserved signalling pathway required for embryogenesis and activated in cancer may represent a suitable therapeutic target.
Collapse
|
17
|
Mapping Cellular Polarity Networks Using Mass Spectrometry-based Strategies. J Mol Biol 2018; 430:3545-3564. [DOI: 10.1016/j.jmb.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 11/22/2022]
|
18
|
Myer NM, Myers KA. CLASP1 regulates endothelial cell branching morphology and directed migration. Biol Open 2017; 6:1502-1515. [PMID: 28860131 PMCID: PMC5665473 DOI: 10.1242/bio.028571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) branching is critically dependent upon the dynamic nature of the microtubule (MT) cytoskeleton. Extracellular matrix (ECM) mechanosensing is a prominent mechanism by which cytoskeletal reorganization is achieved; yet how ECM-induced signaling is able to target cytoskeletal reorganization intracellularly to facilitate productive EC branching morphogenesis is not known. Here, we tested the hypothesis that the composition and density of the ECM drive the regulation of MT growth dynamics in ECs by targeting the MT stabilizing protein, cytoplasmic linker associated protein 1 (CLASP1). High-resolution fluorescent microscopy coupled with computational image analysis reveal that CLASP1 promotes slow MT growth on glass ECMs and promotes short-lived MT growth on high-density collagen-I and fibronectin ECMs. Within EC branches, engagement of either high-density collagen-I or high-density fibronectin ECMs results in reduced MT growth speeds, while CLASP1-dependent effects on MT dynamics promotes elevated numbers of short, branched protrusions that guide persistent and directed EC migration. Summary: CLASP1 modulates microtubule dynamics with sub-cellular specificity in response to extracellular matrix density and composition. CLASP1 effects on microtubules promote short, branched protrusions that guide persistent and directional EC migration. This article has an associated First Person interview with the first author of the paper as part of the supplementary information.
Collapse
Affiliation(s)
- Nicole M Myer
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia PA 19104, USA
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia PA 19104, USA
| |
Collapse
|
19
|
Barlan K, Cetera M, Horne-Badovinac S. Fat2 and Lar Define a Basally Localized Planar Signaling System Controlling Collective Cell Migration. Dev Cell 2017; 40:467-477.e5. [PMID: 28292425 DOI: 10.1016/j.devcel.2017.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/20/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023]
Abstract
Collective migration of epithelial cells underlies diverse tissue-remodeling events, but the mechanisms that coordinate individual cell migratory behaviors for collective movement are largely unknown. Studying the Drosophila follicular epithelium, we show that the cadherin Fat2 and the receptor tyrosine phosphatase Lar function in a planar signaling system that coordinates leading and trailing edge dynamics between neighboring cells. Fat2 signals from each cell's trailing edge to induce leading edge protrusions in the cell behind, in part by stabilizing Lar's localization in these cells. Conversely, Lar signals from each cell's leading edge to stimulate trailing edge retraction in the cell ahead. Fat2/Lar signaling is similar to planar cell polarity signaling in terms of sub-cellular protein localization; however, Fat2/Lar signaling mediates short-range communication between neighboring cells instead of transmitting long-range information across a tissue. This work defines a key mechanism promoting epithelial migration and establishes a different paradigm for planar cell-cell signaling.
Collapse
Affiliation(s)
- Kari Barlan
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Maureen Cetera
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA; Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
20
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
21
|
Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res 2017; 18:54. [PMID: 28390425 PMCID: PMC5385055 DOI: 10.1186/s12931-017-0544-7] [Citation(s) in RCA: 205] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of which regulate all or part of the migrated process. The dynamic actin cytoskeleton spatially and temporally regulates protrusion, adhesions, contraction, and retraction from the cell front to the rear. c-Abl tyrosine kinase plays a critical role in regulating actin dynamics and migration of airway smooth muscle cells and nonmuscle cells. Recent studies suggest that intermediate filaments undergo reorganization during migration, which coordinates focal adhesion dynamics, cell contraction, and nucleus rigidity. In particular, vimentin intermediate filaments undergo phosphorylation and reorientation in smooth muscle cells, which may regulate cell contraction and focal adhesion assembly/disassembly. Motile cells are characterized by a front-rear polarization of the microtubule framework, which regulates all essential processes leading to cell migration through its role in cell mechanics, intracellular trafficking, and signaling. This review recapitulates our current knowledge how the three cytoskeletal systems spatially and temporally modulate the migratory properties of cells. We also summarize the potential role of migration-associated biomolecules in lung and vascular diseases.
Collapse
Affiliation(s)
- Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| | - Brennan D Gerlach
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| |
Collapse
|
22
|
Chen G, Zhou T, Li Y, Yu Z, Sun L. p53 target miR-29c-3p suppresses colon cancer cell invasion and migration through inhibition of PHLDB2. Biochem Biophys Res Commun 2017; 487:90-95. [PMID: 28392396 DOI: 10.1016/j.bbrc.2017.04.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
miR-29c-3p is a potential tumor suppressor microRNA that is reportedly downregulated in several types of human cancers, but its role in colon cancer remains to be elucidated. Meanwhile, TP53, one of the most important tumor suppressors, is highly mutated in colon cancer. In the attempt to connect p53 and miR-29c-3p, we found that the upstream of miR-29c-3p gene contains a functional p53 consensus responsive element that is driven by p53 transcriptional factor activity, suggesting miR-29c-3p as a direct p53 target gene. Through online software prediction and in vivo validation, we demonstrated that Pleckstrin Homology Like Domain Family Member 2 (PHLDB2) is a valid miR-29c-3p target gene. Analysis of human cancer databases available from PROGgeneV2 showed that higher expression of PHLDB2 is associated with shorter overall survival and metastasis-free survival of colon cancer patients. Further, suppression of colon cancer cell invasion and migration by miR-29c-3p was significantly attenuated in the presence of ectopic PHLDB2, indicating PHLDB2 is a critical downstream target of miR-29c-3p. Collectively, our findings present the first to elucidate that miR-29c is a direct p53 target gene, and also identify PHLDB2 as an important miR-29c target gene involved in colon cancer metastasis.
Collapse
Affiliation(s)
- Geng Chen
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China; Department of Gastroenterology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Tong Zhou
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yang Li
- Department of Respiration, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenxiang Yu
- Department of Respiration, The First Hospital of Jilin University, Changchun, 130021, China
| | - Liankun Sun
- Department of Pathophysiology, Basic College of Medicine, Jilin University, Changchun, 130021, China.
| |
Collapse
|
23
|
Daulat AM, Borg JP. Wnt/Planar Cell Polarity Signaling: New Opportunities for Cancer Treatment. Trends Cancer 2017; 3:113-125. [PMID: 28718442 DOI: 10.1016/j.trecan.2017.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 01/08/2023]
Abstract
Cancer cells are addicted to a large spectrum of extracellular cues implicated in initiation, stem cell renewal, tumor growth, dissemination in the body, and resistance to treatment. Wingless/Int-1 (Wnt) ligands and their associated signaling cascades contribute to most of these processes, paving the way for opportunities in therapeutic development. The developmental Wnt/planar cell polarity (PCP) pathway is the most recently described branch of Wnt signaling strongly implicated in cancer development at early and late stages. We describe here some of the latest knowledge accumulated on this pathway and the pending questions, present the most convincing findings about its role in cancer, and review the most promising strategies currently designed to target its components.
Collapse
Affiliation(s)
- Avais M Daulat
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, 'Cell Polarity, Cell Signalling, and Cancer - Equipe Labellisée Ligue Contre le Cancer', Marseille, France
| | - Jean-Paul Borg
- Centre de Recherche en Cancérologie de Marseille, Aix Marseille Univ UM105, Inst Paoli-Calmettes, UMR7258 CNRS, U1068 INSERM, 'Cell Polarity, Cell Signalling, and Cancer - Equipe Labellisée Ligue Contre le Cancer', Marseille, France.
| |
Collapse
|
24
|
Abstract
Migratory polarity and epithelial polarity share many common regulatory mechanisms. Rho GTPases play a key role in modulating cell polarity, which in migrating cells has been conventionally studied along the solitary front-rear axis. In recent work, we discovered that Prickle1 (Pk1), a core com-ponent of planar cell polarity (PCP) signaling, mediates a novel lateral signaling pathway that coordinates multi-axial protrusive activities from the lateral cortex of migrating cancer cells. We identified that Arhgap21 and 23 are essential effectors of Pk1, and that lateral signaling regulates RhoA, actomyosin and focal adhesion dynamics. Interestingly, we showed that lateral signaling coordinates shape dynamics that are critical during cell migration and function orthogonally to front-rear directional polarity.
Collapse
Affiliation(s)
- Liang Zhang
- a Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto , ON , Canada.,c Department of Biomedical Sciences , City University of Hong Kong , Hong Kong
| | - Jeffrey L Wrana
- a Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital , Toronto , ON , Canada.,b Department of Molecular Genetics , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
25
|
Abstract
A new study reveals that a protein called talin forms a vital link between microtubules and focal adhesions at the surface of cells.
Collapse
Affiliation(s)
- Sarah K Armitage
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Sergey V Plotnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|