1
|
Rajam SM, Varghese PC, Shirude MB, Syed KM, Devarajan A, Natarajan K, Dutta D. Kinase activity of histone chaperone APLF maintains steady state of centrosomes in mouse embryonic stem cells. Eur J Cell Biol 2024; 103:151439. [PMID: 38968704 DOI: 10.1016/j.ejcb.2024.151439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024] Open
Abstract
Our recent studies revealed the role of mouse Aprataxin PNK-like Factor (APLF) in development. Nevertheless, the comprehensive characterization of mouse APLF remains entirely unexplored. Based on domain deletion studies, here we report that mouse APLF's Acidic Domain and Fork Head Associated (FHA) domain can chaperone histones and repair DNA like the respective human orthologs. Immunofluorescence studies in mouse embryonic stem cells showed APLF co-localized with γ-tubulin within and around the centrosomes and govern the number and integrity of centrosomes via PLK4 phosphorylation. Enzymatic analysis established mouse APLF as a kinase. Docking studies identified three putative ATP binding sites within the FHA domain. Site-directed mutagenesis showed that R37 residue within the FHA domain is indispensable for the kinase activity of APLF thereby regulating the centrosome number. These findings might assist us comprehend APLF in different pathological and developmental conditions and reveal non-canonical kinase activity of proteins harbouring FHA domains that might impact multiple cellular processes.
Collapse
Affiliation(s)
- Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Mayur Balkrishna Shirude
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India; Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Khaja Mohieddin Syed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Kathiresan Natarajan
- Rajiv Gandhi Centre for Biotechnology (RGCB), Transdisciplinary Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology (RGCB), Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram, Kerala 695014, India.
| |
Collapse
|
2
|
Guo S, Wang D. Novel insights into the potential applications of stem cells in pulmonary hypertension therapy. Respir Res 2024; 25:237. [PMID: 38849894 PMCID: PMC11162078 DOI: 10.1186/s12931-024-02865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Pulmonary hypertension (PH) refers to a group of deadly lung diseases characterized by vascular lesions in the microvasculature and a progressive increase in pulmonary vascular resistance. The prevalence of PH has increased over time. Currently, the treatment options available for PH patients have limited efficacy, and none of them can fundamentally reverse pulmonary vascular remodeling. Stem cells represent an ideal seed with proven efficacy in clinical studies focusing on liver, cardiovascular, and nerve diseases. Since the potential therapeutic effect of mesenchymal stem cells (MSCs) on PH was first reported in 2006, many studies have demonstrated the efficacy of stem cells in PH animal models and suggested that stem cells can help slow the deterioration of lung tissue. Existing PH treatment studies basically focus on the paracrine action of stem cells, including protein regulation, exosome pathway, and cell signaling; however, the specific mechanisms have not yet been clarified. Apoptotic and afunctional pulmonary microvascular endothelial cells (PMVECs) and alveolar epithelial cells (AECs) are two fundamental promoters of PH although they have not been extensively studied by researchers. This review mainly focuses on the supportive communication and interaction between PMVECs and AECs as well as the potential restorative effect of stem cells on their injury. In the future, more studies are needed to prove these effects and explore more radical cures for PH.
Collapse
Affiliation(s)
- Sijia Guo
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Dachun Wang
- Stem Cell Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- The Brown Foundation Institute of Molecular Medicine for the prevention of Human Diseases, University of Texas Medical School at Houston, Houston, TX, USA
| |
Collapse
|
3
|
Hameed J S F, Devarajan A, M S DP, Bhattacharyya A, Shirude MB, Dutta D, Karmakar P, Mukherjee A. PTEN-negative endometrial cancer cells protect their genome through enhanced DDB2 expression associated with augmented nucleotide excision repair. BMC Cancer 2023; 23:399. [PMID: 37142958 PMCID: PMC10157935 DOI: 10.1186/s12885-023-10892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) arises from uterine endometrium tissue and is the most prevalent cancer of the female reproductive tract in developed countries. It has been predicted that the global prevalence of EC will increase in part because of its positive association with economic growth and lifestyle. The majority of EC presented with endometrioid histology and mutations in the tumor suppressor gene PTEN, resulting in its loss of function. PTEN negatively regulates the PI3K/Akt/mTOR axis of cell proliferation and thus serves as a tumorigenesis gatekeeper. Through its chromatin functions, PTEN is also implicated in genome maintenance procedures. However, our comprehension of how DNA repair occurs in the absence of PTEN function in EC is inadequate. METHODS We utilized The Cancer Genome Atlas (TCGA) data analysis to establish a correlation between PTEN and DNA damage response genes in EC, followed by a series of cellular and biochemical assays to elucidate a molecular mechanism utilizing the AN3CA cell line model for EC. RESULTS The TCGA analyses demonstrated an inverse correlation between the expression of the damage sensor protein of nucleotide excision repair (NER), DDB2, and PTEN in EC. The transcriptional activation of DDB2 is mediated by the recruitment of active RNA polymerase II to the DDB2 promoter in the PTEN-null EC cells, revealing a correlation between increased DDB2 expression and augmented NER activity in the absence of PTEN. CONCLUSION Our study indicated a causal relationship between NER and EC that may be exploited in disease management.
Collapse
Affiliation(s)
- Fathima Hameed J S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anjali Devarajan
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Devu Priya M S
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Ahel Bhattacharyya
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Mayur Balkrishna Shirude
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S.C. Mullick Road, Kolkata, West Bengal, 700 032, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud, Poojappura, Thiruvananthapuram, Kerala, 695014, India.
| |
Collapse
|
4
|
Baral I, Shirude MB, Jothi DL, Mukherjee A, Dutta D. Characterization of a Distinct State in the Continuum of Pluripotency Facilitated by Inhibition of PKCζ in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2023; 19:1098-1115. [PMID: 36781773 DOI: 10.1007/s12015-023-10513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Inhibition of PKC (PKCi) signaling maintains pluripotency of embryonic stem cells (ESCs) across different mammalian species. However, the position of PKCi maintained ESCs in the pluripotency continuum is largely unknown. Here we demonstrate that mouse ESCs when cultured continuously, with PKCi, for 75 days are retained in naïve state of pluripotency. Gene expression analysis and proteomics studies demonstrated enhanced naïve character of PKCi maintained ESCs in comparison to classical serum/LIF (S/L) supported ESCs. Molecular analysis revealed that activation of PKCζ isoform associate with primed state of pluripotency, present in epiblast-like stem cells generated in vitro while inhibition of PKCζ phosphorylation associated with naïve state of pluripotency in vitro and in vivo. Phosphoproteomics and chromatin modification enzyme array based studies showed loss in DNA methyl transferase 3B (DNMT3B) and its phosphorylation level upon functional inhibition of PKCζ as one of the crucial components of this regulatory pathway. Unlike ground state of pluripotency maintained by MEK/GSK3 inhibitor in addition to LIF (2i/LIF), loss in DNMT3B is a reversible phenomenon in PKCi maintained ESCs. Absence of phosphorylation of c-MYC, RAF1, SPRY4 while presence of ERF, DUSP6, CIC and YAP1 phosphorylation underlined the phosphoproteomics signature of PKCi mediated maintenance of naïve pluripotency. States of pluripotency represent the developmental continuum and the existence of PKCi mediated mouse ESCs in a distinct state in the continuum of pluripotency (DiSCo) might contribute to the establishment of stages of murine embryonic development that were non-permissible till date.
Collapse
Affiliation(s)
- Ishita Baral
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Mayur Balkrishna Shirude
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.,Manipal Academy of Higher Education, Karnataka State, Manipal, 576104, India
| | - Dhana Lakshmi Jothi
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Ananda Mukherjee
- Cancer Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India
| | - Debasree Dutta
- Regenerative Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
5
|
Epigenetics as "conductor" in "orchestra" of pluripotent states. Cell Tissue Res 2022; 390:141-172. [PMID: 35838826 DOI: 10.1007/s00441-022-03667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
Abstract
Pluripotent character is described as the potency of cells to differentiate into all three germ layers. The best example to reinstate the term lies in the context of embryonic stem cells (ESCs). Pluripotent ESC describes the in vitro status of those cells that originate during the complex process of embryogenesis. Pre-implantation to post-implantation development of embryo embrace cells with different levels of stemness. Currently, four states of pluripotency have been recognized, in the progressing order of "naïve," "poised," "formative," and "primed." Epigenetics act as the "conductor" in this "orchestra" of transition in pluripotent states. With a distinguishable gene expression profile, these four states associate with different epigenetic signatures, sometimes distinct while otherwise overlapping. The present review focuses on how epigenetic factors, including DNA methylation, bivalent chromatin, chromatin remodelers, chromatin/nuclear architecture, and microRNA, could dictate pluripotent states and their transition among themselves.
Collapse
|
6
|
Varghese PC, Rajam SM, Nandy D, Jory A, Mukherjee A, Dutta D. Histone chaperone APLF level dictates the implantation of mouse embryos. J Cell Sci 2021; 134:jcs.246900. [PMID: 33277378 DOI: 10.1242/jcs.246900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Our recent findings demonstrated that the histone chaperone and DNA repair factor aprataxin and PNK-like factor (APLF) could regulate epithelial to mesenchymal transition (EMT) during the reprogramming of murine fibroblasts and in breast cancer metastasis. Therefore, we investigated the function of APLF in EMT associated with mouse development. Here, we show that APLF is predominantly enhanced in trophectoderm (TE) and lineages derived from TE in pre- and post-implantation embryos. Downregulation of APLF induced the hatching of embryos in vitro, with a significant increase in Cdh1 and Cdx2 expression. Aplf short hairpin RNA-microinjected embryos failed to implant in vivo Rescue experiments neutralized the knockdown effects of APLF both in vitro and in vivo Reduced expression of Snai2 and Tead4, and the gain in Cdh1 and sFlt1 (also known as Flt1) level, marked the differentiation of APLF-knocked down trophoblast stem cells that might contribute towards the impaired implantation of embryos. Hence, our findings suggest a novel role for APLF during implantation and post-implantation development of mouse embryos. We anticipate that APLF might contribute to the establishment of maternal-fetal connection, as its fine balance is required to achieve implantation and thereby attain proper pregnancy.
Collapse
Affiliation(s)
- Pallavi Chinnu Varghese
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Sruthy Manuraj Rajam
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Debparna Nandy
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India
| | - Aurelie Jory
- Mouse Genome Engineering Facility, National Centre for Biological Sciences, Bellary Road, Bengaluru, Karnataka 560065, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Regenerative Biology Program, Thycaud PO, Poojappura, Thiruvananthapuram 695014, Kerala, India
| |
Collapse
|
7
|
Epigenetic modifications in the embryonic and induced pluripotent stem cells. Gene Expr Patterns 2018; 29:1-9. [PMID: 29625185 DOI: 10.1016/j.gep.2018.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/03/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Epigenetic modifications are involved in global reprogramming of the cell transcriptome. Therefore, synchronized major shifts in the expression of many genes could be achieved through epigenetic changes. The regulation of gene expression could be implemented by different epigenetic events including histone modifications, DNA methylation and chromatin remodelling. Interestingly, it has been documented that reprogramming of somatic cells to induced pluripotent stem (iPS) cells is also a typical example of epigenetic modifications. Additionally, epigenetic would determine the fates of almost all cells upon differentiation of stem cells into somatic cells. Currently, generation of iPS cells through epigenetic modifications is a routine laboratory practice. Despite all our knowledge, inconsistency in the results of reprogramming and differentiation of stem cells, highlight the need for more thorough investigation into the role of epigenetic modification in generation and maintenance of stem cells. Besides, subtle differences have been observed among different iPS cells and between iPS and ES cells. Although, a handful of detailed review regarding the status of epigenetics in stem cells has been published previously, in the current review, an abstracted and rather simplified view has been presented for those who want to gain a more general overview on this subject. However, almost all key references and ground breaking studies were included, which could be further explored to gain more in depth knowledge regarding this topic. The most dominant epigenetic changes have been presented followed by the impacts of such changes on the global gene expression. Epigenetic status in iPS and ES cells were compared. In addition to including the issues related to X-chromosome reactivation in the stem cells, we have also included loss of imprinting for some genes as a major drawback in generation of iPS cells. Finally, the overall impacts of epigenetic modifications on different aspects of stem cells has been discussed, including their use in cell therapy.
Collapse
|
8
|
Majumder A, Syed KM, Mukherjee A, Lankadasari MB, Azeez JM, Sreeja S, Harikumar KB, Pillai MR, Dutta D. Enhanced expression of histone chaperone APLF associate with breast cancer. Mol Cancer 2018; 17:76. [PMID: 29580241 PMCID: PMC5870250 DOI: 10.1186/s12943-018-0826-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
DNA damage-specific histone chaperone Aprataxin PNK-like factor (APLF) regulates mesenchymal-to-epithelial transition (MET) during cellular reprogramming. We investigated the role of APLF in epithelial-to-mesenchymal transition (EMT) linked to breast cancer invasiveness and metastasis. Here, we show that a significant manifestation of APLF is present in tumor sections of patients with invasive ductal carcinoma when compared to their normal adjacent tissues. APLF was significantly induced in triple negative breast cancer (TNBC) cells, MDAMB-231, in comparison to invasive MCF7 or normal MCF10A breast cells and supported by studies on invasive breast carcinoma in The Cancer Genome Atlas (TCGA). Functionally, APLF downregulation inhibited proliferative capacity, altered cell cycle behavior, induced apoptosis and impaired DNA repair ability of MDAMB-231 cells. Reduction in APLF level impeded invasive, migratory, tumorigenic and metastatic potential of TNBC cells with loss in expression of genes associated with EMT while upregulation of MET-specific gene E-cadherin (CDH1). So, here we provided novel evidence for enrichment of APLF in breast tumors, which could regulate metastasis-associated EMT in invasive breast cancer. We anticipate that APLF could be exploited as a biomarker for breast tumors and additionally could be targeted in sensitizing cancer cells towards DNA damaging agents.
Collapse
Affiliation(s)
- Aditi Majumder
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Khaja Moheiddin Syed
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India.,Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Ananda Mukherjee
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India
| | - Manendra Babu Lankadasari
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India
| | - Juberiya Mohammed Azeez
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India
| | - Sreeharshan Sreeja
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India
| | - Kuzhuvelil B Harikumar
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India
| | - Madhavan Radhakrishna Pillai
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India
| | - Debasree Dutta
- Rajiv Gandhi Centre for Biotechnology, Cancer Research Program, Thycaud PO, Poojappura, Thiruvananthapuram, 695014, India.
| |
Collapse
|
9
|
Epigenetic regulation of somatic cell reprogramming. Curr Opin Genet Dev 2017; 46:156-163. [PMID: 28823984 DOI: 10.1016/j.gde.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 12/16/2022]
Abstract
Pluripotent stem cells, having self-renewal capacities and multi-lineage differentiation abilities, offer great potential in disease modeling and therapeutic applications. The successful generation of induced pluripotent stem cells (iPSCs) by the Yamanaka group in 2006 is a milestone event in both reprogramming and stem cell research fields, which makes in vitro somatic cell reprogramming and personalized stem cell therapy feasible. During the past 10 years, several important progresses have been made in uncovering the molecular mechanisms involved in the reprogramming process, which shed light on improving the reprogramming efficiency and iPSC quality. Here, we briefly review the important progresses in the epigenetic regulation including histone and DNA modifications during somatic cell reprogramming.
Collapse
|
10
|
Syed KM, Joseph S, Mukherjee A, Majumder A, Teixeira JM, Dutta D, Pillai MR. Histone chaperone APLF regulates induction of pluripotency in murine fibroblasts. Development 2017. [DOI: 10.1242/dev.148056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|