1
|
Pederson T. Editorial: Gary Felsenfeld (1929-2024). Nucleic Acids Res 2024:gkae503. [PMID: 38888123 DOI: 10.1093/nar/gkae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Santos JC, Boucher D, Schneider LK, Demarco B, Dilucca M, Shkarina K, Heilig R, Chen KW, Lim RYH, Broz P. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nat Commun 2020; 11:3276. [PMID: 32581219 PMCID: PMC7314798 DOI: 10.1038/s41467-020-16889-z] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
The human non-canonical inflammasome controls caspase-4 activation and gasdermin-D-dependent pyroptosis in response to cytosolic bacterial lipopolysaccharide (LPS). Since LPS binds and oligomerizes caspase-4, the pathway is thought to proceed without dedicated LPS sensors or an activation platform. Here we report that interferon-induced guanylate-binding proteins (GBPs) are required for non-canonical inflammasome activation by cytosolic Salmonella or upon cytosolic delivery of LPS. GBP1 associates with the surface of cytosolic Salmonella seconds after bacterial escape from their vacuole, initiating the recruitment of GBP2-4 to assemble a GBP coat. The GBP coat then promotes the recruitment of caspase-4 to the bacterial surface and caspase activation, in absence of bacteriolysis. Mechanistically, GBP1 binds LPS with high affinity through electrostatic interactions. Our findings indicate that in human epithelial cells GBP1 acts as a cytosolic LPS sensor and assembles a platform for caspase-4 recruitment and activation at LPS-containing membranes as the first step of non-canonical inflammasome signaling. Detection of LPS derived from Gram-negative bacteria by innate immune receptors is a critical step in the host response. Here Santos and colleagues show human GBP1 binds to LPS resulting in non-canonical inflammasome activation.
Collapse
Affiliation(s)
- José Carlos Santos
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Dave Boucher
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | | | - Benjamin Demarco
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Marisa Dilucca
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kateryna Shkarina
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Rosalie Heilig
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Kaiwen W Chen
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Roderick Y H Lim
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056, Basel, Switzerland
| | - Petr Broz
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
3
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Ghirlando R, Felsenfeld G. Hydrodynamic studies on defined heterochromatin fragments support a 30-nm fiber having six nucleosomes per turn. J Mol Biol 2008; 376:1417-25. [PMID: 18234217 PMCID: PMC2774144 DOI: 10.1016/j.jmb.2007.12.051] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 11/25/2022]
Abstract
We have compared the physical properties of a 15.51-kb constitutive heterochromatin segment and a 16.17-kb facultative heterochromatin segment that form part of the chicken beta-globin locus. These segments were excised from an avian erythroleukemia cell line by restriction enzyme digestion and released from the nucleus, thus allowing measurement of the sedimentation coefficients by use of calibrated sucrose gradients. A determination of the buoyant density of the cross-linked particle in CsCl led to the total mass of the particles and their frictional coefficients, f. Despite the slight differences in nucleosome density, the measured value of f for both fragments was consistent with a rodlike particle having a diameter of 33-45 nm and a length corresponding to approximately six to seven nucleosomes per 11-nm turn. At higher ionic strengths we found no evidence of any abrupt conformational change, demonstrating that these chromatin fragments released from the nucleus did not assume the more compact conformations recently described for some reconstituted structures.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| | - Gary Felsenfeld
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892
| |
Collapse
|
5
|
Nakazawa F, Nagai H, Shin M, Sheng G. Negative regulation of primitive hematopoiesis by the FGF signaling pathway. Blood 2006; 108:3335-43. [PMID: 16888091 DOI: 10.1182/blood-2006-05-021386] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AbstractHematopoiesis is controlled by multiple signaling molecules during embryonic and postnatal development. The function of the fibroblast growth factor (FGF) pathway in this process is unclear. Here we show that FGF plays a key role in the regulation of primitive hematopoiesis in chicks. Using hemoglobin mRNA expression as a sensitive marker, we demonstrate that timing of blood differentiation can be separated from that of initial mesoderm patterning and subsequent migration. High FGF activity inhibits primitive blood differentiation and promotes endothelial cell fate. Conversely, inhibition of FGFR activity leads to ectopic blood formation and down-regulation of endothelial markers. Expression and functional analyses indicate that FGFR2 is the key receptor mediating these effects. The FGF pathway regulates primitive hematopoiesis by modulating Gata1 expression level and activity. We propose that the FGF pathway mediates repression of globin gene expression and that its removal is essential before terminal differentiation can occur.
Collapse
Affiliation(s)
- Fumie Nakazawa
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
6
|
Muntean AG, Ge Y, Taub JW, Crispino JD. Transcription factor GATA-1 and Down syndrome leukemogenesis. Leuk Lymphoma 2006; 47:986-97. [PMID: 16840187 DOI: 10.1080/10428190500485810] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mutations in transcription factors constitute one means by which normal hematopoietic progenitors are converted to leukemic stem cells. Recently, acquired mutations in the megakaryocytic regulator GATA1 have been found in essentially all cases of acute megakaryoblastic leukemia (AMkL) in children with Down syndrome and in the closely related malignancy transient myeloproliferative disorder. In all cases, mutations in GATA1 lead to the expression of a shorter isoform of GATA-1, named GATA-1s. Because GATA-1s retains both DNA binding zinc fingers, but is missing the N-terminal transactivation domain, it has been predicted that the inability of GATA-1s to regulate its normal class of megakaryocytic target genes is the mechanism by which mutations in GATA1 contribute to the disease. Indeed, several recent reports have confirmed that GATA-1s fails to properly regulate the growth of megakaryocytic precursors, likely through aberrant transcriptional regulation. Although the specific target genes of GATA-1 mis-regulated by GATA-1s that drive this abnormal growth remain undefined, multiple candidate genes have been identified via gene array studies. Finally, the inability of GATA-1s to promote expression of important metabolic genes, such as cytadine deaminase, likely contributes to the remarkable hypersensitivity of AMkL blasts to cytosine arabinoside. Future studies to define the entire class of genes dysregulated by mutations in GATA1 will provide important insights into the etiology of these malignancies.
Collapse
Affiliation(s)
- Andrew G Muntean
- Ben May Institute for Cancer Research, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
7
|
Li B, Jia N, Kapur R, Chun KT. Cul4A targets p27 for degradation and regulates proliferation, cell cycle exit, and differentiation during erythropoiesis. Blood 2006; 107:4291-9. [PMID: 16467204 PMCID: PMC1895787 DOI: 10.1182/blood-2005-08-3349] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
As erythroid progenitors differentiate into precursors and finally mature red blood cells, lineage-specific genes are induced, and proliferation declines until cell cycle exit. Cul4A encodes a core subunit of a ubiquitin ligase that targets proteins for ubiquitin-mediated degradation, and Cul4A-haploinsufficient mice display hematopoietic dysregulation with fewer multipotential and erythroid-committed progenitors. In this study, stress induced by 5-fluorouracil or phenylhydrazine revealed a delay in the recovery of erythroid progenitors, early precursors, and normal hematocrits in Cul4A(+/-) mice. Conversely, overexpression of Cul4A in a growth factor-dependent, proerythroblast cell line increased proliferation and the proportion of cells in S phase. When these proerythroblasts were induced to terminally differentiate, endogenous Cul4A protein expression declined 3.6-fold. Its enforced expression interfered with erythrocyte maturation and cell cycle exit and, instead, promoted proliferation. Furthermore, p27 normally accumulates during erythroid terminal differentiation, but Cul4A-enforced expression destabilized p27 and attenuated its accumulation. Cul4A and p27 proteins coimmunoprecipitate, indicating that a Cul4A ubiquitin ligase targets p27 for degradation. These findings indicate that a Cul4A ubiquitin ligase positively regulates proliferation by targeting p27 for degradation and that Cul4A down-regulation during terminal erythroid differentiation allows p27 to accumulate and signal cell cycle exit.
Collapse
Affiliation(s)
- Binghui Li
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
8
|
Rylski M, Welch JJ, Chen YY, Letting DL, Diehl JA, Chodosh LA, Blobel GA, Weiss MJ. GATA-1-mediated proliferation arrest during erythroid maturation. Mol Cell Biol 2003; 23:5031-42. [PMID: 12832487 PMCID: PMC162202 DOI: 10.1128/mcb.23.14.5031-5042.2003] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 03/07/2003] [Accepted: 04/17/2003] [Indexed: 12/15/2022] Open
Abstract
Transcription factor GATA-1 is essential for erythroid and megakaryocytic maturation. GATA-1 mutations are associated with hematopoietic precursor proliferation and leukemogenesis, suggesting a role in cell cycle control. While numerous GATA-1 target genes specifying mature hematopoietic phenotypes have been identified, how GATA-1 regulates proliferation remains unknown. We used a complementation assay based on synchronous inducible rescue of GATA-1(-) erythroblasts to show that GATA-1 promotes both erythroid maturation and G(1) cell cycle arrest. Molecular studies combined with microarray transcriptome analysis revealed an extensive GATA-1-regulated program of cell cycle control in which numerous growth inhibitors were upregulated and mitogenic genes were repressed. GATA-1 inhibited expression of cyclin-dependent kinase (Cdk) 6 and cyclin D2 and induced the Cdk inhibitors p18(INK4C) and p27(Kip1) with associated inactivation of all G(1) Cdks. These effects were dependent on GATA-1-mediated repression of the c-myc (Myc) proto-oncogene. GATA-1 inhibited Myc expression within 3 h, and chromatin immunoprecipitation studies indicated that GATA-1 occupies the Myc promoter in vivo, suggesting a direct mechanism for gene repression. Surprisingly, enforced expression of Myc prevented GATA-1-induced cell cycle arrest but had minimal effects on erythroid maturation. Our results illustrate how GATA-1, a lineage-determining transcription factor, coordinates proliferation arrest with cellular maturation through distinct, interrelated genetic programs.
Collapse
Affiliation(s)
- Marcin Rylski
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A detailed understanding of hemoglobin production in erythroid cells is of fundamental clinical importance for the treatment of hemoglobinopathies. Several hundred scientific reports and dozens of reviews describe this intriguing topic of research. Early studies demonstrated the temporal nature of a hemoglobin-switching phenomenon during development in the circulating erythrocytes of humans. The focus then shifted from descriptive to experimental analyses and model systems in an effort to define the switching mechanisms. The application of molecular biology in those experimental models has been a primary focus for the last two decades. Today, advances in the fields of stem cell biology and signal transduction are being integrated with those genetic studies. Genomic and proteomic approaches are also being developed to provide a more robust description of the biologic variables involved. This review highlights recent advances in erythroid genetics and cellular biology with an emphasis upon the modulation of fetal hemoglobin expression during the maturation of adult human erythrocytes.
Collapse
Affiliation(s)
- Jeffery L Miller
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
10
|
Ikonomi P, Noguchi CT, Miller W, Kassahun H, Hardison R, Schechter AN. Levels of GATA-1/GATA-2 transcription factors modulate expression of embryonic and fetal hemoglobins. Gene 2000; 261:277-87. [PMID: 11167015 DOI: 10.1016/s0378-1119(00)00510-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
GATA transcription factors bind the consensus sequence WGATAR, present in the flanking regions of most erythroid specific genes. GATA-1 and GATA-2, coexpressed in erythroid cells, are important for expression of erythroid genes. To elucidate the role of specific GATA transcription factors on globin gene expression, we examined the human alpha- and beta-globin gene clusters for all GATA sites. Conserved GATA sites were found in each of the hypersensitive sites in both beta-and alpha clusters and in proximal regulatory regions of the zeta-, epsilon- and gamma-globin but not the alpha, delta or beta-globin genes. We then tested the effect of increasing levels of GATA-1 and GATA-2 on the expression of endogenous globin genes in human erythroid cells. Increasing GATA-1 levels in K562 cells decreased the levels of epsilon-globin mRNA but had no effect on the levels of expression of gamma, zeta or alpha-globin genes. Increasing GATA-2 levels increased epsilon-globin and gamma-globin transcripts. Increasing levels of GATA-1 also caused a decrease in the expression of endogenous GATA-2, while increased levels of GATA-2 had no effect on GATA-1 mRNA. Our results indicate a differential role of GATA-1 and -2 transcription factors on globin transcripts and suggest a correlation between the conservation of GATA sites in the regulatory regions and the ability of endogenous globin genes to respond to GATA transcription factors. They also suggest that quantitative changes in the levels of GATA-1 or GATA-2 can result in alterations of globin target gene expression and may participate in the ontogenic control of the globin genes.
Collapse
Affiliation(s)
- P Ikonomi
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Building 10, Room 9N-307, 10 Center Drive, MSC 1822, MD, Bethesda 20892-1822, USA
| | | | | | | | | | | |
Collapse
|
11
|
Pedersen AG, Baldi P, Chauvin Y, Brunak S. The biology of eukaryotic promoter prediction--a review. COMPUTERS & CHEMISTRY 1999; 23:191-207. [PMID: 10404615 DOI: 10.1016/s0097-8485(99)00015-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance between functional promoters has been estimated to be in the range of 30-40 kilobases. Although it is conceivable that some of these predicted promoters correspond to cryptic initiation sites that are used in vivo, it is likely that most are false positives. This suggests that it is important to carefully reconsider the biological data that forms the basis of current algorithms, and we here present a review of data that may be useful in this regard. The review covers the following topics: (1) basal transcription and core promoters, (2) activated transcription and transcription factor binding sites, (3) CpG islands and DNA methylation, (4) chromosomal structure and nucleosome modification, and (5) chromosomal domains and domain boundaries. We discuss the possible lessons that may be learned, especially with respect to the wealth of information about epigenetic regulation of transcription that has been appearing in recent years.
Collapse
Affiliation(s)
- A G Pedersen
- Department of Biotechnology, Technical University of Denmark, Lyngby, Denmark.
| | | | | | | |
Collapse
|
12
|
Ge Y, Li ZH, Marshall MS, Broxmeyer HE, Lu L. Involvement of H-ras in erythroid differentiation of TF1 and human umbilical cord blood CD34 cells. Blood Cells Mol Dis 1998; 24:124-36; discussion 137. [PMID: 9628849 DOI: 10.1006/bcmd.1998.0179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the role of the ras gene in erythroid differentiation, a human erythroleukemic cell line, TF1, was transduced with a selectable retroviral vector carrying a mammalian wild type H-ras gene or a cytoplasmic dominant negative RAS1 gene. Transduction of TF1 cells with the wild type H-ras gene resulted in changes of cell types and up-regulation of erythroid-specific gene expression similar to that seen in differentiating erythroid cells. The number of red blood cell containing colonies derived from TF1 cells transduced with wild type H-ras cDNA was significantly increased and the cells in the colonies were more hemoglobinized as estimated by a deeper red color compared to those colony cells from mock or dominant negative RAS1 gene transduced TF1 cells, suggesting increased erythroid differentiation of TF1 cells after transduction of wild type H-ras in vitro. The mRNA levels of beta- and gamma-, but not alpha-, globin genes were significantly higher in H-ras transduced TF1 cells than those in TF1 cells transduced with mock or dominant negative RAS1 gene. Moreover, a 4kb pre-mRNA of the Erythropoietin receptor (EpoR) was highly expressed only in H-ras transduced TF1 cells. Additionally, human umbilical cord blood (CB) CD34 cells which are highly enriched for hematopoietic stem/progenitor cells were transduced with the same retroviral vectors to evaluate in normal primary cells the activities of H-ras in erythroid differentiation. Increased numbers of erythroid cell containing colonies (BFU-E and CFU-GEMM) were observed in CD34 cells transduced with the H-ras cDNA, compared to that from mock transduced cells. These data suggest a possible role for ras in erythroid differentiation.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology/Immunology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | |
Collapse
|
13
|
Li Q, Clegg C, Peterson K, Shaw S, Raich N, Stamatoyannopoulos G. Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA-1 is an in vivo repressor of human epsilon gene expression. Proc Natl Acad Sci U S A 1997; 94:2444-8. [PMID: 9122214 PMCID: PMC20107 DOI: 10.1073/pnas.94.6.2444] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To test whether human GATA-1 (hGATA-1) is involved in the transcriptional control of globin gene switching, we produced transgenic mice overexpressing hGATA-1, crossed them with mice carrying a human beta-globin locus yeast artificial chromosome (beta YAC), and analyzed globin gene expression in their progeny. Mice carrying both the hGATA-1 and the beta YAC transgenes had normal levels of gamma- and beta-globin mRNA and no distortion in the rate or in the timing of gamma-to-beta switch, indicating that hGATA-1 is not involved in the developmental control of gamma- and beta-globin genes. In contrast, mice carrying the hGATA-1 and the beta YAC transgenes had 5- to 6-fold lower expression of the human epsilon globin gene compared with beta YAC mice lacking the hGATA-1 transgene. These results provide direct in vivo evidence that hGATA-1 is a specific repressor of human epsilon gene expression. Our findings also suggest that binary transgenic mouse systems based on overexpression of transcriptional factors can be used to investigate the trans control of human globin gene switching. Systems as the one we describe here should be useful in the study of any developmentally controlled human gene for which transgenic mice are available.
Collapse
Affiliation(s)
- Q Li
- Division of Medical Genetics, University of Washington, Seattle 98185, USA
| | | | | | | | | | | |
Collapse
|
14
|
Wessely O, Deiner EM, Beug H, von Lindern M. The glucocorticoid receptor is a key regulator of the decision between self-renewal and differentiation in erythroid progenitors. EMBO J 1997; 16:267-80. [PMID: 9029148 PMCID: PMC1169634 DOI: 10.1093/emboj/16.2.267] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During development and in regenerating tissues such as the bone marrow, progenitor cells constantly need to make decisions between proliferation and differentiation. We have used a model system, normal erythroid progenitors of the chicken, to determine the molecular players involved in making this decision. The molecules identified comprised receptor tyrosine kinases (c-Kit and c-ErbB) and members of the nuclear hormone receptor superfamily (thyroid hormone receptor and estrogen receptor). Here we identify the glucocorticoid receptor (GR) as a key regulator of erythroid progenitor self-renewal (i.e. continuous proliferation in the absence of differentiation). In media lacking a GR ligand or containing a GR antagonist, erythroid progenitors failed to self-renew, even if c-Kit, c-ErbB and the estrogen receptor were activated simultaneously. To induce self-renewal, the GR required the continuous presence of an activated receptor tyrosine kinase and had to cooperate with the estrogen receptor for full activity. Mutant analysis showed that DNA binding and a functional AF-2 transactivation domain are required for proliferation stimulation and differentiation arrest. c-myb was identified as a potential target gene of the GR in erythroblasts. It could be demonstrated that delta c-Myb, an activated c-Myb protein, can functionally replace the GR.
Collapse
Affiliation(s)
- O Wessely
- Institute of Molecular Pathology, Vienna, Austria
| | | | | | | |
Collapse
|
15
|
Abstract
GATA proteins comprise a family of transcription factors that are required for appropriate development of hematopoietic lineages. In order to understand the transcriptional regulation of GATA genes, we have cloned the human GATA-2 gene and identified and characterized its promoter. Comparison with the Xenopus GATA-2 promoter demonstrates highly conserved CCAAT box elements, which are essential for appropriate Xenopus expression. Unlike the Xenopus gene, the human GATA-2 gene lacks GATA binding motifs within the first 800 bp of 5' flanking sequence. In addition, the human GATA-2 promoter has two highly conserved ets sites that resemble the binding site for a recently described ets repressor factor, ERF. These conserved DNA sequence motifs provide strong candidate regions for the regulation of GATA-2.
Collapse
Affiliation(s)
- D E Fleenor
- Duke University Medical Center, Department of Medicine, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
16
|
Chin K, Oda N, Shen K, Noguchi CT. Regulation of transcription of the human erythropoietin receptor gene by proteins binding to GATA-1 and Sp1 motifs. Nucleic Acids Res 1995; 23:3041-9. [PMID: 7659529 PMCID: PMC307147 DOI: 10.1093/nar/23.15.3041] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Erythropoietin (Epo), the primary regulator of the production of erythroid cells, acts by binding to a cell surface receptor (EpoR) on erythroid progenitors. We used deletion analysis and transfection assays with reporter gene constructs to examine the transcription control elements in the 5' flanking region of the human EpoR gene. In erythroid cells most of the transcription activity was contained in a 150 bp promoter fragment with binding sites for transcription factors AP2, Sp1 and the erythroid-specific GATA-1. The 150 bp hEpoR promoter exhibited high and low activity in erythroid OCIM1 and K562 cells, respectively, reflecting the high and low levels of constitutive hEpoR expression. The GATA-1 and Sp1 binding sites in this promoter lacking a TATA sequence were necessary for a high level of transcription activation. Protein-DNA binding studies suggested that Sp1 and two other CCGCCC binding proteins from erythroid and non-erythroid cells could bind to the Sp1 binding motif. By increasing GATA-1 levels via co-transfection, we were able to transactivate the hEpoR promoter in K562 cells and non-erythroid cells, but not in the highly active OCIM1 cells, although GATA-1 mRNA levels were comparable in OCIM1 and K562. Interestingly, when we mutated the Sp1 site, resulting in a marked decrease in hEpoR promoter activity, we could restore transactivation by increasing GATA-1 levels in OCIM1 cells. These data suggest that while GATA-1 can transactivate the EpoR promoter, the level of hEpoR gene expression does not depend on GATA-1 alone. Rather, hEpoR transcription activity depends on coordination between Sp1 and GATA-1 with other cell-specific factors, including possibly other Sp1-like binding proteins, to provide high level, tissue-specific expression.
Collapse
Affiliation(s)
- K Chin
- Laboratory of Chemical Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
17
|
Crossley M, Merika M, Orkin SH. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol Cell Biol 1995; 15:2448-56. [PMID: 7739529 PMCID: PMC230474 DOI: 10.1128/mcb.15.5.2448] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
GATA-1, the founding member of a distinctive family of transcription factors, is expressed predominantly in erythroid cells and participates in the expression of numerous erythroid cell-expressed genes. GATA-binding sites are found in the promoters and enhancers of globin and nonglobin erythroid genes as well as in the alpha- and beta-globin locus control regions. To elucidate how GATA-1 may function in a variety of regulatory contexts, we have examined its protein-protein interactions. Here we show that GATA-1 self-associates in solution and in whole-cell extracts and that the zinc finger region of the molecule is sufficient to mediate this interaction. This physical interaction can influence transcription, as GATA-1 self-association is able to recruit a transcriptionally active but DNA-binding-defective derivative of GATA-1 to promoter-bound GATA-1 and result in superactivation. Through in vitro studies with bacterially expressed glutathione S-transferase fusion proteins, we have localized the minimal domain required for GATA-1 self-association to 40 amino acid residues within the C-terminal zinc finger region. Finally, we have detected physical interaction of GATA-1 with other GATA family members (GATA-2 and GATA-3) also mediated through the zinc finger domain. These findings have broad implications for the involvement of GATA factors in transcriptional control. In particular, the interaction of GATA-1 with itself and with other transcription factors may facilitate its function at diverse promoters in erythroid cells and also serve to bring together, or stabilize, loops between distant regulatory elements, such as the globin locus control regions and downstream globin promoters. We suggest that the zinc finger region of GATA-1, and related proteins, is multifunctional and mediates not only DNA binding but also important protein-protein interactions.
Collapse
Affiliation(s)
- M Crossley
- Division of Hematology-Oncology, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Jahnke A, Stolpe A, Caldenhoven E, Johnson JP. Constitutive Expression of Human Intercellular Adhesion Molecule-1 (ICAM-1) is Regulated by Differentially Active Enhancing and Silencing Elements. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.00439.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Abstract
Fetal hemoglobin, the predominant hemoglobin of the fetus, is good for sickle cell anemia. This hemoglobin inhibits the polymerization of sickle hemoglobin. Clinical studies have shown that at any level of fetal hemoglobin, the more that is present, the better off is the patient. We are now able to increase fetal hemoglobin levels by pharmacologic means. We should know shortly if this is associated with clinical benefit.
Collapse
|