1
|
Zhang Y, Xing X, Huang L, Su Y, Liu G, Zhang X, Yang Y. WDR64, a testis-specific protein, is involved in the manchette and flagellum formation by interacting with ODF1. Heliyon 2024; 10:e38263. [PMID: 39386799 PMCID: PMC11462348 DOI: 10.1016/j.heliyon.2024.e38263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
The WD40 repeat (WDR) domain is present in a wide range of proteins, providing sites for protein‒protein interactions. Recent studies have shown that WDR proteins play indispensable roles in spermatogenesis, such as in spermatocyte division, sperm head formation and flagellar assembly. In this study, we identified a novel testis-specific gene, WDR64, which has the typical characteristics of WD40 proteins with two β-propellers, and is highly conserved in Mammalia. RT-PCR and Western blot results revealed that WDR64 was highly expressed in testis. WDR64 protein was weakly expressed at postnatal Day 7, increased substantially at postnatal Day 28 and maintained at high levels thereafter. Further immunofluorescence demonstrated that WDR64 was localized posterior to the nucleus in steps 8-14 spermatids in line with the dynamic localization of manchette, moved to the flagella in steps 15-16 spermatids, and localized at the midpiece of the flagellum in mature spermatozoa. To explore the function of WDR64, we performed immunoprecipitation‒mass spectrometry (IP‒MS) to screen its interacting proteins and found that WDR64 interacted with ODF1 to form a complex. The WDR64/ODF1 complex is located at the manchette during nucleus shaping and finally at the midpiece of the mature spermatozoa tail, suggesting that it may be involved in the assembly of the manchette and flagella during spermiogenesis. Our findings provide the first understanding of the expression pattern of WDR64 and its potential molecular mechanism in spermiogenesis.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaowei Xing
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Huang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuyan Su
- Department of Laboratory Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Gang Liu
- The Institute of Reproduction and Stem Cell Engineering, Central South University, Changsha, China
| | - Xinxing Zhang
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Youbo Yang
- Department of Endocrinology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Wei H, Wang Z, Huang Y, Gao L, Wang W, Liu S, Sun Y, Liu H, Weng Y, Fan H, Zhang M. DCAF2 regulates the proliferation and differentiation of mouse progenitor spermatogonia by targeting p21 and thymine DNA glycosylase. Cell Prolif 2024; 57:e13676. [PMID: 38837535 PMCID: PMC11471390 DOI: 10.1111/cpr.13676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 06/07/2024] Open
Abstract
DDB1-Cullin-4-associated factor-2 (DCAF2, also known as DTL or CDT2), a conserved substrate recognition protein of Cullin-RING E3 ligase 4 (CRL4), recognizes and degrades several substrate proteins during the S phase to maintain cell cycle progression and genome stability. Dcaf2 mainly expressed in germ cells of human and mouse. Our study found that Dcaf2 was expressed in mouse spermatogonia and spermatocyte. The depletion of Dcaf2 in germ cells by crossing Dcaf2fl/fl mice with stimulated by retinoic acid gene 8(Stra8)-Cre mice caused a reduction in progenitor spermatogonia and differentiating spermatogonia, eventually leading to the failure of meiosis initiation and male infertility. Further studies showed that depletion of Dcaf2 in germ cells caused abnormal accumulation of the substrate proteins, cyclin-dependent kinase inhibitor 1A (p21) and thymine DNA glycosylase (TDG), decreasing of cell proliferation, increasing of DNA damage and apoptosis. Overexpression of p21 or TDG attenuates proliferation and increases DNA damage and apoptosis in GC-1 cells, which is exacerbated by co-overexpression of p21 and TDG. The findings indicate that DCAF2 maintains the proliferation and differentiation of progenitor spermatogonia by targeting the substrate proteins p21 and TDG during the S phase.
Collapse
Affiliation(s)
- Hongwei Wei
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Zhijuan Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yating Huang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Longwei Gao
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Weiyong Wang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Shuang Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yan‐Li Sun
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Huiyu Liu
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Yashuang Weng
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences Institute, Zhejiang UniversityHangzhouChina
| | - Meijia Zhang
- The Innovation Centre of Ministry of Education for Development and DiseasesThe second Affiliated Hospital, School of Medicine, South China University of TechnologyGuangzhouChina
| |
Collapse
|
3
|
Yang M, Wang K, Zhang L, Zhang H, Zhang C. DCAF2 is essential for the development of uterine epithelia and mouse fertility. Front Cell Dev Biol 2024; 12:1474660. [PMID: 39364135 PMCID: PMC11446810 DOI: 10.3389/fcell.2024.1474660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction The successful outcome of a pregnancy depends on the proper functioning uterine epithelium. DNA damage binding protein 1 and cullin 4-associated factor 2 (DCAF2), a conserved substrate receptor for the cullin 4-RING E3 ubiquitin ligase (CRL4) complex, is essential for maintaining genome stability by facilitating ubiquitin-mediated degradation of substrates. Methods To better understand the physiological role of DCAF2 in female reproduction, we conducted a study using mice with conditional knockout (cKO) of DCAF2 in the uterus using the progesterone receptor Cre (Pgr Cre/+) mouse model. Results Our results showed the cKO mice were completely infertile, despite having ovarian function. The cKO mice exhibited severely thin uteri, demonstrating notable defects in both the uterine epithelium and a lack of glands. In addition, there were impaired proliferation and differentiation of epithelial cells in the cKO mice, ultimately resulting in failed implantation. Moreover, through deciphering the uterine transcriptome of cKO mice, we revealed crucial differentially expressed genes associated with steroid signaling. Further experiments have demonstrated cKO mice exhibit elevated uterine PGR signaling and reduced estrogen receptor signaling, although the levels of progesterone and estrogen remained unaltered. These alterations may contribute to defects in epithelium. Discussion Overall, our findings highlight a previously unrecognized but indispensable role for DCAF2 in the development of uterine luminal and glandular epithelium by orchestrating PGR and estrogen receptor responses. Its deficiency in the uterus leads to mouse infertility.
Collapse
Affiliation(s)
- Man Yang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Kaixuan Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Liang Zhang
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongya Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
4
|
Lin Y, Tang W, Huang P, Wang Z, Duan L, Jia C, Sun R, Liu L, Shen J. Denticleless E3 ubiquitin protein ligase (DTL) maintains the proliferation and differentiation of epidermis and hair follicles during skin development. Dev Dyn 2024; 253:635-647. [PMID: 38131461 DOI: 10.1002/dvdy.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND A precise balance between the proliferation and differentiation of epidermal progenitors is required to achieve the barrier function during the development of epidermis. During the entire process of skin development, the newly formed basal layer cells divide, differentiate, and migrate outward to the surface of the skin, which is tightly regulated by a series of events related to cell cycle progression. The CRL4DTL complex (Cullin 4 RING ligase, in association with the substrate receptor DTL) has long emerged as a master regulator in various cellular processes, which mediates the degradation of key cell cycle proteins. However, the roles of DTL in regulating epidermal morphogenesis during skin development remain unclear. RESULTS We showed that DTL deficiency in epidermal progenitor cells leads to defects in epidermal stratification and loss of hair follicles accompanied by reduced epidermal progenitor cells and disturbed cell cycle progression during skin development. Transcriptome analysis revealed that p53 pathway is activated in DTL-depleted epidermal progenitor cells. The apoptosis of epidermal cells showed in DTL deficiency mice is rescued by the absence of p53, but the proliferation and differentiation defects were p53-independent. CONCLUSION Our findings indicate that DTL plays a vital role in epidermal malformation during skin development.
Collapse
Affiliation(s)
- Yanhui Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Weibo Tang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Laboratory of Tumor Targeted Therapy and Translational Medicine, Jilin Medical University, Jilin, China
| | - Peijun Huang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhendong Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lian Duan
- Central Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chonghui Jia
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Li Liu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jingling Shen
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
da Silva Z, Glanzner WG, Currin L, de Macedo MP, Gutierrez K, Guay V, Gonçalves PBD, Bordignon V. DNA Damage Induction Alters the Expression of Ubiquitin and SUMO Regulators in Preimplantation Stage Pig Embryos. Int J Mol Sci 2022; 23:ijms23179610. [PMID: 36077022 PMCID: PMC9455980 DOI: 10.3390/ijms23179610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
DNA damage in early-stage embryos impacts development and is a risk factor for segregation of altered genomes. DNA damage response (DDR) encompasses a sophisticated network of proteins involved in sensing, signaling, and repairing damage. DDR is regulated by reversible post-translational modifications including acetylation, methylation, phosphorylation, ubiquitylation, and SUMOylation. While important regulators of these processes have been characterized in somatic cells, their roles in early-stage embryos remain broadly unknown. The objective of this study was to explore how ubiquitylation and SUMOylation are involved in the regulation of early development in porcine embryos by assessing the mRNA profile of genes encoding ubiquitination (UBs), deubiquitination (DUBs), SUMOylation (SUMOs) or deSUMOylation (deSUMOs) enzymes in oocyte and embryos at different stages of development, and to evaluate if the induction of DNA damage at different stages of embryo development would alter the mRNA abundance of these genes. Pig embryos were produced by in vitro fertilization and DNA damage was induced by ultraviolet (UV) light exposure for 10 s on days 2, 4 or 7 of development. The relative mRNA abundance of most UBs, DUBs, SUMOs, and deSUMOs was higher in oocytes and early-stage embryos than in blastocysts. Transcript levels for UBs (RNF20, RNF40, RNF114, RNF169, CUL5, DCAF2, DECAF13, and DDB1), DUBs (USP16), and SUMOs (CBX4, UBA2 and UBC9), were upregulated in early-stage embryos (D2 and/or D4) compared to oocytes and blastocysts. In response to UV-induced DNA damage, transcript levels of several UBs, DUBs, SUMOs, and deSUMOs decreased in D2 and D4 embryos, but increased in blastocysts. These findings revealed that transcript levels of genes encoding for important UBs, DUBs, SUMOs, and deSUMOs are regulated during early embryo development and are modulated in response to induced DNA damage. This study has also identified candidate genes controlling post-translational modifications that may have relevant roles in the regulation of normal embryo development, repair of damaged DNA, and preservation of genome stability in the pig embryo.
Collapse
Affiliation(s)
- Zigomar da Silva
- Laboratory of Biotechnology and Animal Reproduction–BioRep, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Werner Giehl Glanzner
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Luke Currin
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | | | - Karina Gutierrez
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Vanessa Guay
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Paulo Bayard Dias Gonçalves
- Laboratory of Biotechnology and Animal Reproduction–BioRep, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Correspondence: ; Tel.: +1-514-398-7793
| |
Collapse
|
6
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
7
|
Wu K, Hopkins BD, Sanchez R, DeVita RJ, Pan ZQ. Targeting Cullin-RING E3 Ubiquitin Ligase 4 by Small Molecule Modulators. JOURNAL OF CELLULAR SIGNALING 2021; 2:195-205. [PMID: 34604860 PMCID: PMC8486283 DOI: 10.33696/signaling.2.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cullin-RING E3 ubiquitin ligase 4 (CRL4) plays an essential role in cell cycle progression. Recent efforts using high throughput screening and follow up hit-to-lead studies have led to identification of small molecules 33-11 and KH-4-43 that inhibit E3 CRL4's core ligase complex and exhibit anticancer potential. This review provides: 1) an updated perspective of E3 CRL4, including structural organization, major substrate targets and role in cancer; 2) a discussion of the challenges and strategies for finding the CRL inhibitor; and 3) a summary of the properties of the identified CRL4 inhibitors as well as a perspective on their potential utility to probe CRL4 biology and act as therapeutic agents.
Collapse
Affiliation(s)
- Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Benjamin D Hopkins
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Genetics and Genomics, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Roberto Sanchez
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA.,Drug Discovery Institute, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| |
Collapse
|
8
|
Luo L, Dang Y, Shi Y, Zhao P, Zhang Y, Zhang K. SIN3A Regulates Porcine Early Embryonic Development by Modulating CCNB1 Expression. Front Cell Dev Biol 2021; 9:604232. [PMID: 33692994 PMCID: PMC7937639 DOI: 10.3389/fcell.2021.604232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
SIN3A is the central scaffold protein of the SIN3/histone deacetylase (HDAC) transcriptional repressor complex. SIN3A participates in the mouse preimplantation development by fine-tuning HDAC1 expression. However, it remains unresolved if this functional significance of SIN3A was conserved in other mammals. Herein, RNA-seq results show a large amount of SIN3A mRNA is present in oocytes and early embryos prior to embryonic genome activation and a low amount thereafter, suggesting a maternal origin of SIN3A in pigs, cattle, mice, and humans. Interestingly, immunofluorescence data show that SIN3A protein level peaks at four-cell stage in pigs compared with morula stage in cattle. SIN3A depletion in early embryos causes a developmental arrest at two-cell stage in pigs but does not affect bovine early embryonic development. In contrast with mouse data, SIN3A depletion results in only a slight decrease and even no difference in HDAC1 expression in porcine and bovine early embryos, respectively. In addition, HDAC1 knockdown does not cause two-cell block but leads to a reduced blastocyst rate. By using unbiased RNA-seq approach, we found that Cyclin B1 (CCNB1) transcript level is dramatically reduced. Moreover, CCNB1 knockdown results in a similar phenotype as SIN3A depletion. Injection of exogenous CCNB1 mRNA into SIN3A-depleted embryos could partly rescue embryonic development to pass two-cell stage. In conclusion, our results indicate SIN3A plays an essential role in porcine early embryonic development, which probably involves the regulation of CCNB1 expression.
Collapse
Affiliation(s)
- Lei Luo
- Laboratory of Mammalian Molecular Embryology, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yanna Dang
- Laboratory of Mammalian Molecular Embryology, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yan Shi
- Laboratory of Mammalian Molecular Embryology, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Panpan Zhao
- Laboratory of Mammalian Molecular Embryology, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Toralova T, Kinterova V, Chmelikova E, Kanka J. The neglected part of early embryonic development: maternal protein degradation. Cell Mol Life Sci 2020; 77:3177-3194. [PMID: 32095869 PMCID: PMC11104927 DOI: 10.1007/s00018-020-03482-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 12/28/2022]
Abstract
The degradation of maternally provided molecules is a very important process during early embryogenesis. However, the vast majority of studies deals with mRNA degradation and protein degradation is only a very little explored process yet. The aim of this article was to summarize current knowledge about the protein degradation during embryogenesis of mammals. In addition to resuming of known data concerning mammalian embryogenesis, we tried to fill the gaps in knowledge by comparison with facts known about protein degradation in early embryos of non-mammalian species. Maternal protein degradation seems to be driven by very strict rules in terms of specificity and timing. The degradation of some maternal proteins is certainly necessary for the normal course of embryonic genome activation (EGA) and several concrete proteins that need to be degraded before major EGA have been already found. Nevertheless, the most important period seems to take place even before preimplantation development-during oocyte maturation. The defects arisen during this period seems to be later irreparable.
Collapse
Affiliation(s)
- Tereza Toralova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - Veronika Kinterova
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic.
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic.
| | - Eva Chmelikova
- Department of Veterinary Sciences, Czech University of Life Sciences in Prague, Prague, Czech Republic
| | - Jiri Kanka
- Laboratory of Developmental Biology, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| |
Collapse
|
10
|
Zhang J, Zhang YL, Zhao LW, Pi SB, Zhang SY, Tong C, Fan HY. The CRL4-DCAF13 ubiquitin E3 ligase supports oocyte meiotic resumption by targeting PTEN degradation. Cell Mol Life Sci 2020; 77:2181-2197. [PMID: 31492966 PMCID: PMC11105099 DOI: 10.1007/s00018-019-03280-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Cullin ring-finger ubiquitin ligase 4 (CRL4) has multiple functions in the maintenance of oocyte survival and meiotic cell cycle progression. DCAF13, a novel CRL4 adaptor, is essential for oocyte development. But the mechanisms by which CRL4-DCAF13 supports meiotic maturation remained unclear. In this study, we demonstrated that DCAF13 stimulates the meiotic resumption-coupled activation of protein synthesis in oocytes, partially by maintaining the activity of PI3K signaling pathway. CRL4-DCAF13 targets the polyubiquitination and degradation of PTEN, a lipid phosphatase that inhibits PI3K pathway as well as oocyte growth and maturation. Dcaf13 knockout in oocytes caused decreased CDK1 activity and impaired meiotic cell cycle progression and chromosome condensation defects. As a result, chromosomes fail to be aligned at the spindle equatorial plate, the spindle assembly checkpoint is activated, and most Dcaf13 null oocytes are arrested at the prometaphase I. The DCAF13-dependent PTEN degradation mechanism fits in as a missing link between CRL4 ubiquitin E3 ligase and PI3K pathway, both of which are crucial for translational activation during oocyte GV-MII transition.
Collapse
Affiliation(s)
- Jue Zhang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Shuai-Bo Pi
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chao Tong
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province; Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, 866 Yu Hang Tang Rd., Hangzhou, 310058, China.
| |
Collapse
|
11
|
Abstract
Cullin-RING ligase 4 (CRL4), a member of the cullin-RING ligase family, orchestrates a variety of critical cellular processes and pathophysiological events. Recent results from mouse genetics, clinical analyses, and biochemical studies have revealed the impact of CRL4 in development and cancer etiology and elucidated its in-depth mechanism on catalysis of ubiquitination as a ubiquitin E3 ligase. Here, we summarize the versatile roles of the CRL4 E3 ligase complexes in tumorigenesis dependent on the evidence obtained from knockout and transgenic mouse models as well as biochemical and pathological studies.
Collapse
|
12
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Zhang J, Zhang YL, Zhao LW, Guo JX, Yu JL, Ji SY, Cao LR, Zhang SY, Shen L, Ou XH, Fan HY. Mammalian nucleolar protein DCAF13 is essential for ovarian follicle maintenance and oocyte growth by mediating rRNA processing. Cell Death Differ 2018; 26:1251-1266. [PMID: 30283081 DOI: 10.1038/s41418-018-0203-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/22/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023] Open
Abstract
During mammalian oocyte growth, chromatin configuration transition from the nonsurrounded nucleolus (NSN) to surrounded nucleolus (SN) type plays a key role in the regulation of gene expression and acquisition of meiotic and developmental competence by the oocyte. Nonetheless, the mechanism underlying chromatin configuration maturation in oocytes is poorly understood. Here we show that nucleolar protein DCAF13 is an important component of the ribosomal RNA (rRNA)-processing complex and is essential for oocyte NSN-SN transition in mice. A conditional knockout of Dcaf13 in oocytes led to the arrest of oocyte development in the NSN configuration, follicular atresia, premature ovarian failure, and female sterility. The DCAF13 deficiency resulted in pre-rRNA accumulation in oocytes, whereas the total mRNA level was not altered. Further exploration showed that DCAF13 participated in the 18S rRNA processing in growing oocytes. The lack of 18S rRNA because of DCAF13 deletion caused a ribosome assembly disorder and then reduced global protein synthesis. DCAF13 interacted with a protein of the core box C/D ribonucleoprotein, fibrillarin, i.e., a factor of early pre-rRNA processing. When fibrillarin was knocked down in the oocytes from primary follicles, follicle development was inhibited as well, indicating that an rRNA processing defect in the oocyte indeed stunts chromatin configuration transition and follicle development. Taken together, these results elucidated the in vivo function of novel nucleolar protein DCAF13 in maintaining mammalian oogenesis.
Collapse
Affiliation(s)
- Jue Zhang
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Yin-Li Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Long-Wen Zhao
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jing-Xin Guo
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Jia-Li Yu
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Shu-Yan Ji
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Lan-Rui Cao
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Song-Ying Zhang
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China
| | - Xiang-Hong Ou
- Assisted Reproduction Unit, Second Hospital of Guangdong Province, China Southern Medical University, Guangzhou, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, 310058, Hangzhou, China. .,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, China.
| |
Collapse
|
14
|
Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol 2018; 19:436-450. [DOI: 10.1038/s41580-018-0008-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
First person – Yi-Wen Xu. J Cell Sci 2017. [DOI: 10.1242/jcs.210153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Yi-Wen Xu is the first author on ‘Maternal DCAF2 is crucial for maintenance of genome stability during the first cell cycle in mice’, published in Journal of Cell Science. Yi-Wen is a PhD student in the lab of Heng-Yu Fan at the Life Sciences Institute, Zhejiang University, China, investigating the mechanisms of mammalian germ cell development and disease models relating to the female reproductive system.
Collapse
|