1
|
Stefanov BA, Fussenegger M. Biomarker-driven feedback control of synthetic biology systems for next-generation personalized medicine. Front Bioeng Biotechnol 2022; 10:986210. [PMID: 36225597 PMCID: PMC9548536 DOI: 10.3389/fbioe.2022.986210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Many current clinical therapies for chronic diseases involve administration of drugs using dosage and bioavailability parameters estimated for a generalized population. This standard approach carries the risk of under dosing, which may result in ineffective treatment, or overdosing, which may cause undesirable side effects. Consequently, maintaining a drug concentration in the therapeutic window often requires frequent monitoring, adversely affecting the patient’s quality of life. In contrast, endogenous biosystems have evolved finely tuned feedback control loops that govern the physiological functions of the body based on multiple input parameters. To provide personalized treatment for chronic diseases, therefore, we require synthetic systems that can similarly generate a calibrated therapeutic response. Such engineered autonomous closed-loop devices should incorporate a sensor that actively tracks and evaluates the disease severity based on one or more biomarkers, as well as components that utilize these molecular inputs to bio compute and deliver the appropriate level of therapeutic output. Here, we review recent advances in applications of the closed-loop design principle in biomedical implants for treating severe and chronic diseases, highlighting translational studies of cellular therapies. We describe the engineering principles and components of closed-loop therapeutic devices, and discuss their potential to become a key pillar of personalized medicine.
Collapse
Affiliation(s)
| | - Martin Fussenegger
- ETH Zürich, Department of Biosystems Science and Engineering, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
- *Correspondence: Martin Fussenegger,
| |
Collapse
|
2
|
Zhao JL, Qiao XH, Mao JH, Liu F, Fu HD. The interaction between cellular senescence and chronic kidney disease as a therapeutic opportunity. Front Pharmacol 2022; 13:974361. [PMID: 36091755 PMCID: PMC9459105 DOI: 10.3389/fphar.2022.974361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 01/10/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasingly serious public health problem in the world, but the effective therapeutic approach is quite limited at present. Cellular senescence is characterized by the irreversible cell cycle arrest, senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Renal senescence shares many similarities with CKD, including etiology, mechanism, pathological change, phenotype and outcome, however, it is difficult to judge whether renal senescence is a trigger or a consequence of CKD, since there is a complex correlation between them. A variety of cellular signaling mechanisms are involved in their interactive association, which provides new potential targets for the intervention of CKD, and then extends the researches on senotherapy. Our review summarizes the common features of renal senescence and CKD, the interaction between them, the strategies of senotherapy, and the open questions for future research.
Collapse
Affiliation(s)
- Jing-Li Zhao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiao-Hui Qiao
- Department of Pediatric Internal Medicine, Ningbo Women and Children’s Hospital, Ningbo, China
| | - Jian-Hua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jian-Hua Mao,
| | - Fei Liu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hai-Dong Fu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
3
|
Jadav A, Truong K. Creation of a synthesis-friendly inflammation-inducible promoter suitable for cell therapy. Integr Biol (Camb) 2021; 13:230-236. [PMID: 34632498 DOI: 10.1093/intbio/zyab015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/08/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022]
Abstract
The development of 'smart' cell-based therapeutics requires cells that first recognize conditions consistent with disease (e.g. inflammation) and then subsequently release therapeutic proteins, thereby reducing potential toxicity from otherwise continuous expression. Promoters containing NF-κB response elements are often used as reporters of inflammation; however, endogenous promoters have crosstalk with other pathways, and current synthetic promoters have many exact sequence repeats of NF-κB response elements which make them both difficult to synthesize and inherently genetically unstable. Herein, a synthesis-friendly inflammation-inducible promoter (named SFNp) was created by the packing of 14 NF-κB response elements, which have no repeats >9 bp, followed by a minimal cytomegalovirus promoter. In stably expressing human embryonic kidney 293 cells, we assessed the ability of SFNp to inducibly transcribe genes for reporting expression, changing cell morphology, and performing cell fusion. These experiments represent simple milestones for potentially using SFNp in the development of cell-based therapeutics. As strongly repeated DNA can compromise the long-term stability of genetic circuits, new designs used in 'smart' cell therapy will become more reliant on synthesis-friendly components like SFNp.
Collapse
Affiliation(s)
- Anish Jadav
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Circle, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
4
|
Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep 2021; 11:20358. [PMID: 34645909 PMCID: PMC8514501 DOI: 10.1038/s41598-021-99852-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues. The senolytics tested so far lack specificity and have significant off-target effects, suggesting that a targeted approach could be more clinically relevant. Here, we propose to use an extracellular epitope of B2M, a recently identified membrane marker of senescence, as a target for the specific delivery of toxic drugs into senescent cells. We show that an antibody-drug conjugate (ADC) against B2M clears senescent cells by releasing duocarmycin into them, while an isotype control ADC was not toxic for these cells. This effect was dependent on p53 expression and therefore more evident in stress-induced senescence. Non-senescent cells were not affected by either antibody, confirming the specificity of the treatment. Our results provide a proof-of-principle assessment of a novel approach for the specific elimination of senescent cells using a second generation targeted senolytic against proteins of their surfaceome, which could have clinical applications in pathological ageing and associated diseases.
Collapse
|
5
|
Kizilay Mancini O, Huynh DN, Menard L, Shum-Tim D, Ong H, Marleau S, Colmegna I, Servant MJ. Ex vivo Ikkβ ablation rescues the immunopotency of mesenchymal stromal cells from diabetics with advanced atherosclerosis. Cardiovasc Res 2021; 117:756-766. [PMID: 32339220 PMCID: PMC7898947 DOI: 10.1093/cvr/cvaa118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Diabetes is a conventional risk factor for atherosclerotic cardiovascular disease and myocardial infarction (MI) is the most common cause of death among these patients. Mesenchymal stromal cells (MSCs) in patients with type 2 diabetes mellitus (T2DM) and atherosclerosis have impaired ability to suppress activated T-cells (i.e. reduced immunopotency). This is mediated by an inflammatory shift in MSC-secreted soluble factors (i.e. pro-inflammatory secretome) and can contribute to the reduced therapeutic effects of autologous T2DM and atherosclerosis-MSC post-MI. The signalling pathways driving the altered secretome of atherosclerosis- and T2DM-MSC are unknown. Specifically, the effect of IκB kinase β (IKKβ) modulation, a key regulator of inflammatory responses, on the immunopotency of MSCs from T2DM patients with advanced atherosclerosis has not been studied. METHODS AND RESULTS MSCs were isolated from adipose tissue obtained from patients with (i) atherosclerosis and T2DM (atherosclerosis+T2DM MSCs, n = 17) and (ii) atherosclerosis without T2DM (atherosclerosis MSCs, n = 17). MSCs from atherosclerosis+T2DM individuals displayed an inflammatory senescent phenotype and constitutively expressed active forms of effectors of the canonical IKKβ nuclear factor-κB transcription factors inflammatory pathway. Importantly, this constitutive pro-inflammatory IKKβ signature resulted in an altered secretome and impaired in vitro immunopotency and in vivo healing capacity in an acute MI model. Notably, treatment with a selective IKKβ inhibitor or IKKβ knockdown (KD) (clustered regularly interspaced short palindromic repeats/Cas9-mediated IKKβ KD) in atherosclerosis+T2DM MSCs reduced the production of pro-inflammatory secretome, increased survival, and rescued their immunopotency both in vitro and in vivo. CONCLUSIONS Constitutively active IKKβ reduces the immunopotency of atherosclerosis+T2DM MSC by changing their secretome composition. Modulation of IKKβ in atherosclerosis+T2DM MSCs enhances their myocardial repair ability.
Collapse
Affiliation(s)
- Ozge Kizilay Mancini
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - David N Huynh
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Liliane Menard
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Surgical Research, Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Huy Ong
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Sylvie Marleau
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Ines Colmegna
- Division of Rheumatology, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Marc J Servant
- Faculty of Pharmacy, University of Montreal, C.P. 6128, Succursale Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
6
|
Lam CKC, Truong K. Engineering a Synthesis-Friendly Constitutive Promoter for Mammalian Cell Expression. ACS Synth Biol 2020; 9:2625-2631. [PMID: 32927951 DOI: 10.1021/acssynbio.0c00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Since cell-based therapies require the constitutive and stable expression of therapeutic transgenes, lentiviral infection is commonly used to integrate gene material regulated by standard constitutive promoters. Unfortunately, none of the standard or synthetic constitutive promoters can be easily synthesized at low cost due to the presence of repeated subsequences. Thus, in this paper, we designed a synthetic constitutive promoter (named SFCp) that can drive the expression of fluorescent proteins that subsequently trafficked to intended subcellular localizations and the expression of synthetic proteins that rewired the cellular response of Ca2+ to cell morphology changes. Furthermore, SFCp can be used to avoid sequence homology that can theoretically result in loss of genetic material by homologous recombination in tandem constructs. As gene synthesis becomes an indispensable tool in the arsenal of synthetic biology, it is essential to develop a toolbox of gene synthesis friendly components for cell engineering such as constitutive promoters.
Collapse
Affiliation(s)
- Chee Ka Candice Lam
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
7
|
Schroth J, Thiemermann C, Henson SM. Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Front Cell Dev Biol 2020; 8:564461. [PMID: 33163486 PMCID: PMC7581911 DOI: 10.3389/fcell.2020.564461] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic kidney disease (CKD) presents an ever-growing disease burden for the world's aging population. It is characterized by numerous changes to the kidney, including a decrease in renal mass, renal fibrosis, and a diminished glomerular filtration rate. The premature aging phenotype observed in CKD is associated with cellular senescence, particularly of renal tubular epithelial cells (TECs), which contributes to chronic inflammation through the production of a proinflammatory senescence associated secretory phenotype (SASP). When coupled with changes in immune system composition and progressive immune dysfunction, the accumulation of senescent kidney cells acts as a driver for the progression of CKD. The targeting of senescent cells may well present an attractive therapeutic avenue for the treatment of CKD. We propose that the targeting of senescent cells either by direct inhibition of pro-survival pathways (senolytics) or through the inhibition of their proinflammatory secretory profile (senomorphics) together with immunomodulation to enhance immune system surveillance of senescent cells could be of benefit to patients with CKD.
Collapse
Affiliation(s)
| | | | - Siân M. Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
8
|
Sfera A, Osorio C, Jafri N, Diaz EL, Campo Maldonado JE. Intoxication With Endogenous Angiotensin II: A COVID-19 Hypothesis. Front Immunol 2020; 11:1472. [PMID: 32655579 PMCID: PMC7325923 DOI: 10.3389/fimmu.2020.01472] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 has spread rapidly around the globe. However, despite its high pathogenicity and transmissibility, the severity of the associated disease, COVID-19, varies widely. While the prognosis is favorable in most patients, critical illness, manifested by respiratory distress, thromboembolism, shock, and multi-organ failure, has been reported in about 5% of cases. Several studies have associated poor COVID-19 outcomes with the exhaustion of natural killer cells and cytotoxic T cells, lymphopenia, and elevated serum levels of D-dimer. In this article, we propose a common pathophysiological denominator for these negative prognostic markers, endogenous, angiotensin II toxicity. We hypothesize that, like in avian influenza, the outlook of COVID-19 is negatively correlated with the intracellular accumulation of angiotensin II promoted by the viral blockade of its degrading enzyme receptors. In this model, upregulated angiotensin II causes premature vascular senescence, leading to dysfunctional coagulation, and immunity. We further hypothesize that angiotensin II blockers and immune checkpoint inhibitors may be salutary for COVID-19 patients with critical illness by reversing both the clotting and immune defects (Graphical Abstract).
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Lee Diaz
- Patton State Hospital, San Bernardino, CA, United States
| | - Jose E Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| |
Collapse
|
9
|
Scheller L, Fussenegger M. From synthetic biology to human therapy: engineered mammalian cells. Curr Opin Biotechnol 2019; 58:108-116. [PMID: 30933864 DOI: 10.1016/j.copbio.2019.02.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 02/28/2019] [Indexed: 01/05/2023]
Abstract
Mammalian synthetic biology has evolved to become a key driver of biomedical innovation in the area of cell therapy. Advances in receptor engineering, immunotherapy and cell implants promise new treatment options for complex diseases. Synthetic receptors have already found applications in cellular immunotherapy for cancer treatment, and are being introduced into the field of cell implants. Here, we discuss prospects for the next generation of engineered mammalian cells for human therapy, highlighting selected recent studies.
Collapse
Affiliation(s)
- Leo Scheller
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058, Basel, Switzerland; University of Basel, Faculty of Science, Mattenstrasse 26, CH-4058, Basel, Switzerland.
| |
Collapse
|
10
|
Abstract
Breakthroughs in gene synthesis has allowed synthetic biologists the ability to design any DNA sequence of interest, enabling the possibility to create complex systems inside cells with novel functions to tackle problems in immunology. Synthetic immunology of mammalian cells expressing natural or synthetic genes can guide and induce immune responses in patients. Through recent developments in engineering chimeric receptors, it is now feasible to customize control over engineered cells to target the disease sites with specificity. These cells can avoid immune rejection if derived from expandable cell types (e.g., stem cells or T cells) and then can be grown in abundance before implantation. However, safety concerns of engineered cells in circulation necessitates the development of a wide range of mechanisms to kill cells after their therapeutic life ends. This therapeutic effect is still predominantly the secretion of therapeutic proteins, but novel therapeutic interventions have been explored by synthetic biologists. In the pursuit of engineering new cell functions for synthetic immunology, it is possible that many problems previously thought intractable may actually be possible.
Collapse
Affiliation(s)
- Niema Binth Mohammad
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Candice Chee Ka Lam
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada
| | - Kevin Truong
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , 164 College Street , Toronto , Ontario M5S 3G9 , Canada.,Edward S. Rogers, Sr. Department of Electrical and Computer Engineering , University of Toronto , 10 King's College Circle , Toronto , Ontario M5S 3G4 , Canada
| |
Collapse
|
11
|
Rolt A, Nair A, Cox LS. Optimisation of a screening platform for determining IL-6 inflammatory signalling in the senescence-associated secretory phenotype (SASP). Biogerontology 2019; 20:359-371. [PMID: 30741380 PMCID: PMC6535418 DOI: 10.1007/s10522-019-09796-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023]
Abstract
Cellular senescence has been shown to be sufficient for the development of multiple age-related pathologies. Senescent cells adopt a secretory phenotype (the SASP) which comprises a large number of pro-inflammatory cytokines, chemokines and proteases. The SASP itself is thought to be causative in many pathologies of age-related diseases, and there is growing interest in developing seno-modifying agents that can suppress the SASP. However, in order to identify new agents, it is necessary to conduct moderate to high throughput screening with robust assays for the required outcome. Here, we describe optimisation and validation of a cell-based biosensor HEK cell line for measurement of IL-6 concentrations within the range secreted into conditioned medium by primary senescent fibroblasts, adapted for a 384 well plate format suitable for library screening applications. We further show that the assay can measure changes in IL-6 secretion dependent on cell population age, and that the assay is responsive to mTOR inhibition in the senescent cells, which reduces the SASP, including IL-6. Hence, we propose that this optimised biosensor, which we term HEK-SASP, may prove of value in studies requiring robust, renewable and relatively inexpensive assays for measuring SASP factors.
Collapse
Affiliation(s)
- Adam Rolt
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anitha Nair
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Lynne S Cox
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
12
|
Burton DG, Stolzing A. Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Res Rev 2018; 43:17-25. [PMID: 29427795 DOI: 10.1016/j.arr.2018.02.001] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022]
Abstract
In response to persistent DNA damage, induction into cell senescence promotes an immunogenic program which facilitates immune clearance of these damaged cells. Under physiological conditions, senescent cells can activate both innate and adaptive immune responses, functioning to maintain tissue homeostasis. In addition, emerging findings suggest that programmed induction of cell senescence may be important for regulating reproductive processes, partly facilitated by immune clearance. However, likely owing to ageing of the immune system, a failure to eliminate senescent cells can contribute to their persistence in tissues, leading to the development and progression of age-related diseases. Such immune failure may in part be due to activation of the senescence program in immune cells, leading to their dysfunction. Furthermore, senescent cells under certain biological contexts have been shown to instead promote immune suppression, a response that may reflect differences between an acute verses chronic senescent phenotype. In this review, we provide an overview of the research to date concerning senescence immunosurviellance, including a focused discussion on the mechanisms by which macrophages may recognise senescent cells. Senescence immunotherapy strategies as an alternative to senolytics for the removal of senescent cells will also be discussed.
Collapse
|
13
|
Mosabbir AA, Qudrat A, Truong K. A monoclonal antibody acts as a migratory cue via Ca 2+ re-wiring. Integr Biol (Camb) 2018; 10:166-173. [PMID: 29504002 DOI: 10.1039/c7ib00203c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As monoclonal antibodies have two epitopes for their target ligand, they should theoretically dimerize target receptors upon binding. In particular, the dimerization of the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) stimulates early events occurring within minutes (e.g. Ca2+ signal generation) and late events occurring over hours and days (e.g. cell migration in angiogenesis). Although studies have noted that antibodies targeting VEGFR2 (anti-VEGFR2) inhibited cell migration in angiogenesis, we show in this paper that an anti-VEGFR2 stimulus nevertheless triggered a Ca2+ signal in VEGFR2 expressing cells. This Ca2+ signal was then re-wired to promote cell migration by co-expressing an engineered Ca2+ activated RhoA (called CaRQ), thereby engineering the opposite anticipated effect of an anti-VEGFR2 antibody. In these cells, the anti-VEGFR2 antibody stimulus induced cellular blebbing, migration across a membrane, and in vitro scratch wound healing. This work expands the utility of monoclonal antibodies to induce tailored responses in engineered cells such as changes in cell fluorescence via Ca2+ reporters or migration patterns via CaRQ.
Collapse
Affiliation(s)
- Abdullah A Mosabbir
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, Ontario M5S 3G9, Canada.
| | - Anam Qudrat
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, Ontario M5S 3G9, Canada.
| | - Kevin Truong
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Room 407, Toronto, Ontario M5S 3G9, Canada. and Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Circle, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|