1
|
Kim S, Park S, Kim YJ, Hyun J, Choi J. miRNA-199b-5p suppresses of oral squamous cell carcinoma by targeting apical-basolateral polarity via Scribble/Lgl. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102363. [PMID: 39558906 PMCID: PMC11570515 DOI: 10.1016/j.omtn.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024]
Abstract
In epithelial cells, Scribble forms cell-cell junctions and contributes to cell morphology and homeostasis by regulating apical-basolateral polarity in mammals and functions as a tumor suppressor in many carcinomas. The initial diagnosis of oral squamous cell carcinoma is important, and its prognosis is poor when accompanied by metastasis. However, research on the mechanisms of oral squamous cell carcinoma metastasis is insufficient. Herein, we showed that Scribble regulates the apical-basolateral polarity of oral squamous cell carcinoma by regulating lethal giant larvae 1, Scribble module and E-cadherin, the adhesion junction. The expression of lethal giant larvae 1 and E-cadherin decreased when the expression of Scribble was knocked down and their localization was completely disrupted in both the oral squamous cell carcinoma cell line and in vivo model. In particular, the Scribble was involved in oral squamous cell carcinoma metastasis via hsa-miR-199b-5p, which is a microenvironmental factor of hypoxia. The disruption of Scribble localization under hypoxic conditions, but its localization was maintained in miR-199b-5p oral squamous cell carcinoma cell lines and in vivo. These results suggest that Scribble functions as a tumor suppressor marker mediated by miR-199b-5p in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shihyun Kim
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Suyeon Park
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| | - Yong-Jae Kim
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do 31116, Republic of Korea
- Department of Biomedical Sciences & Biosystem, College of Bio-convergence, Dankook University, Cheonan 311166, Republic of Korea
| | - Jongho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si, Gangwon-do 25457, Republic of Korea
| |
Collapse
|
2
|
Raykhel I, Ronkainen VP, Myllyharju J, Manninen A. HIF2α-dependent Dock4/Rac1-signaling regulates formation of adherens junctions and cell polarity in normoxia. Sci Rep 2024; 14:12153. [PMID: 38802496 PMCID: PMC11130225 DOI: 10.1038/s41598-024-62955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/23/2024] [Indexed: 05/29/2024] Open
Abstract
Hypoxia-inducible factors (HIF) 1 and 2 regulate similar but distinct sets of target genes. Although HIFs are best known for their roles in mediating the hypoxia response accumulating evidence suggests that under certain conditions HIFs, particularly HIF2, may function also under normoxic conditions. Here we report that HIF2α functions under normoxic conditions in kidney epithelial cells to regulate formation of adherens junctions. HIF2α expression was required to induce Dock4/Rac1/Pak1-signaling mediating stability and compaction of E-cadherin at nascent adherens junctions. Impaired adherens junction formation in HIF2α- or Dock4-deficient cells led to aberrant cyst morphogenesis in 3D kidney epithelial cell cultures. Taken together, we show that HIF2α functions in normoxia to regulate epithelial morphogenesis.
Collapse
Affiliation(s)
- I Raykhel
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - V-P Ronkainen
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - J Myllyharju
- Extracellular Matrix and Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| | - A Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Andrés-San Román JA, Gordillo-Vázquez C, Franco-Barranco D, Morato L, Fernández-Espartero CH, Baonza G, Tagua A, Vicente-Munuera P, Palacios AM, Gavilán MP, Martín-Belmonte F, Annese V, Gómez-Gálvez P, Arganda-Carreras I, Escudero LM. CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia. CELL REPORTS METHODS 2023; 3:100597. [PMID: 37751739 PMCID: PMC10626192 DOI: 10.1016/j.crmeth.2023.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.
Collapse
Affiliation(s)
- Jesús A Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Carmen Gordillo-Vázquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Daniel Franco-Barranco
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| | - Laura Morato
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Cecilia H Fernández-Espartero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ramón & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | | | - Ana M Palacios
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - María P Gavilán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), JA/CSIC/Universidad de Sevilla/Universidad Pablo de Olavide and Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ramón & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute, 48940 Leioa, Spain.
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Xia F, Zeng Q. miR-125a-3p aggravates ox-LDL-induced HUVEC injury through BAMBI. J Biochem Mol Toxicol 2022; 36:e23198. [PMID: 35993694 DOI: 10.1002/jbt.23198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/27/2022] [Accepted: 08/05/2022] [Indexed: 11/08/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaque in the intima of arteries. Among the known regulators of atherosclerosis, microRNAs (miRNAs) have been reported to play critical roles in lipoprotein homeostasis and plaque formation. But the roles of microRNA-125a-3p (miR-125a-3p) in the pathogenesis of AS remain unknown. Human umbilical vein endothelial cells (HUVECs) were treated with oxidized low-density lipoprotein (ox-LDL) to construct the vascular injury model of AS pathogenesis in vitro. miR-125a-3p and BMP and activin membrane-bound inhibitor (BAMBI) expression levels in HUVECs were then measured by quantitative real-time polymerase chain reaction and western blot. The viability and apoptosis of HUVECs were analyzed by Cell Counting Kit-8 assay, TUNEL assay, and flow cytometry, respectively. The relationship between BAMBI 3'-untranslated region and miR-125a-3p was validated by dual luciferase reporter gene assay. miR-125a-3p expression was raised in HUVECs induced with ox-LDL. In HUVECs, miR-125a-3p enhanced the effects of ox-LDL treatment on repressing the viability and promoting the apoptosis of cells. Additionally, BAMBI was confirmed as a direct target of miR-125a-3p and BAMBI overexpression reversed the effects of miR-125a-3p on HUVECs. miR-125a-3p aggravates the dysfunction of HUVECs induced by ox-LDL via BAMBI, which implies that miR-125a-3p is involved in the pathogenesis of AS.
Collapse
Affiliation(s)
- Feng Xia
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
| | - Qingrong Zeng
- Department of Cardiovascular Surgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Tong KL, Tan KE, Lim YY, Tien XY, Wong PF. CircRNA-miRNA interactions in atherogenesis. Mol Cell Biochem 2022; 477:2703-2733. [PMID: 35604519 DOI: 10.1007/s11010-022-04455-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/27/2022] [Indexed: 11/30/2022]
Abstract
Atherosclerosis is the major cause of coronary artery disease (CAD) which includes unstable angina, myocardial infarction, and heart failure. The onset of atherogenesis, a process of atherosclerotic lesion formation in the intima of arteries, is driven by lipid accumulation, a vicious cycle of reactive oxygen species (ROS)-induced oxidative stress and inflammatory reactions leading to endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) activation, and foam cell formation which further fuel plaque formation and destabilization. In recent years, there is a surge in the number of publications reporting the involvement of circular RNAs (circRNAs) in the pathogenesis of cardiovascular diseases, cancers, and metabolic syndromes. These studies have advanced our understanding on the biological functions of circRNAs. One of the most common mechanism of action of circRNAs reported is the sponging of microRNAs (miRNAs) by binding to the miRNAs response element (MRE), thereby indirectly increases the transcription of their target messenger RNAs (mRNAs). Individual networks of circRNA-miRNA-mRNA associated with atherogenesis have been extensively reported, however, there is a need to connect these findings for a complete overview. This review aims to provide an update on atherogenesis-related circRNAs and analyze the circRNA-miRNA-mRNA interactions in atherogenesis. The atherogenic mechanisms and clinical relevance of each atherogenesis-related circRNA were systematically discussed for better understanding of the knowledge gap in this area.
Collapse
Affiliation(s)
- Kind-Leng Tong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ke-En Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yat-Yuen Lim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Xin-Yi Tien
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Shehata MM, Sallam AAM, Naguib MG, El-Mesallamy HO. Overexpression of BAMBI and SMAD7 impacts prognosis of acute myeloid leukemia patients: A potential TERT non-canonical role. Cancer Biomark 2021; 31:47-58. [PMID: 33780363 DOI: 10.3233/cbm-200927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) and mothers against decapentaplegic homolog 7 (SMAD7) are important transforming growth factor-β (TGF-β) signaling antagonists, however their roles in acute myeloid leukemia (AML) remains unclear. Telomerase reverse transcriptase (TERT) may be involved in regulating BAMBI and SMAD7 expressions; a role beyond telomeres that is not clinically validated yet. OBJECTIVE In this study, we examined the expression levels and prognostic values of BAMBI, SMAD7 and TERT and their association with AML patients' outcomes. METHODS Blood samples were collected from 74 de-novo AML patients and 16 controls. Real-time quantitative PCR (qRT-PCR) was performed to analyze BAMBI, SMAD7 and TERT expressions. RESULTS BAMBI and SMAD7 expression in AML were significantly upregulated versus controls (p< 0.05). BAMBI, SMAD7 and TERT levels were significantly correlated together (p< 0.001). Kaplan-Meier analysis indicated that patients with high BAMBI, SMAD7 and TERT expression levels had markedly shorter event free survival (EFS) and overall survival (OS) time (p< 0.01). Furthermore, multivariate analysis revealed that only high BAMBI expression was an independent risk factor for OS (p= 0.001). CONCLUSIONS BAMBI is a novel biomarker in predicting prognosis in AML patients. Moreover, a potential interplay is found between BAMBI, SMAD7 and TERT in AML pathogenies.
Collapse
Affiliation(s)
- Miral Magdy Shehata
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University (ASU), Abassia, Cairo, Egypt
| | - Al-Aliaa Mohamed Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University (ASU), Abassia, Cairo, Egypt.,Biochemistry Department, School of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Mary Gamal Naguib
- Hematology Department, Faculty of Medicine, Ain Shams University (ASU), Cairo, Egypt
| | - Hala Osman El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University (ASU), Abassia, Cairo, Egypt.,Biochemistry Department, Dean of Faculty of Pharmacy, Sinai University (SU), Sinai, Egypt
| |
Collapse
|
7
|
Chen X, Zhao C, Xu Y, Huang K, Wang Y, Wang X, Zhou X, Pang W, Yang G, Yu T. Adipose-specific BMP and activin membrane-bound inhibitor (BAMBI) deletion promotes adipogenesis by accelerating ROS production. J Biol Chem 2021; 296:100037. [PMID: 33158991 PMCID: PMC7949090 DOI: 10.1074/jbc.ra120.014793] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/24/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
With the improvement of people's living standards, the number of obese patients has also grown rapidly. It is reported that the level of oxidative stress in obese patients has significantly increased, mainly caused by the increase in reactive oxygen species (ROS) levels in adipose tissue. Studies have shown that the use of siRNA to interfere with bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) expression could promote adipocyte differentiation, and under hypoxic conditions, BAMBI could act as a regulator of HIF1α to regulate the polarity damage of epithelial cells. In view of these results, we speculated that BAMBI may regulate adipogenesis by regulating the level of ROS. In this study, we generated adipose-specific BAMBI knockout mice (BAMBI AKO) and found that compared with control mice, BAMBI AKO mice showed obesity when fed with high-fat diet, accompanied by insulin resistance, glucose intolerance, hypercholesterolemia, and increased inflammation in adipose tissue. Interestingly, adipose-specific deficiency of BAMBI could cause an increase in the expression level of Nox4, thereby promoting ROS production in cytoplasm and mitochondria and the DNA-binding activity of C/EBPβ and ultimately promoting adipogenesis. Consistently, our findings indicated that BAMBI may be a reactive oxygen regulator to affect adipogenesis, thereby controlling obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Xiaochang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chen Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanting Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kuilong Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yulong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoge Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
8
|
Fearing BV, Speer JE, Jing L, Kalathil A, P. Kelly M, M. Buchowski J, P. Zebala L, Luhmann S, C. Gupta M, A. Setton L. Verteporfin treatment controls morphology, phenotype, and global gene expression for cells of the human nucleus pulposus. JOR Spine 2020; 3:e1111. [PMID: 33392449 PMCID: PMC7770208 DOI: 10.1002/jsp2.1111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
Cells of the nucleus pulposus (NP) are essential contributors to extracellular matrix synthesis and function of the intervertebral disc. With age and degeneration, the NP becomes stiffer and more dehydrated, which is associated with a loss of phenotype and biosynthetic function for its resident NP cells. Also, with aging, the NP cell undergoes substantial morphological changes from a rounded shape with pronounced vacuoles in the neonate and juvenile, to one that is more flattened and spread with a loss of vacuoles. Here, we make use of the clinically relevant pharmacological treatment verteporfin (VP), previously identified as a disruptor of yes-associated protein-TEA domain family member-binding domain (TEAD) signaling, to promote morphological changes in adult human NP cells in order to study variations in gene expression related to differences in cell shape. Treatment of adult, degenerative human NP cells with VP caused a shift in morphology from a spread, fibroblastic-like shape to a rounded, clustered morphology with decreased transcriptional activity of TEAD and serum-response factor. These changes were accompanied by an increased expression of vacuoles, NP-specific gene markers, and biosynthetic activity. The contemporaneous observation of VP-induced changes in cell shape and prominent, time-dependent changes within the transcriptome of NP cells occurred over all timepoints in culture. Enriched gene sets with the transition to VP-induced cell rounding suggest a major role for cell adhesion, cytoskeletal remodeling, vacuolar lumen, and MAPK activity in the NP phenotypic and functional response to changes in cell shape.
Collapse
Affiliation(s)
- Bailey V. Fearing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Julie E. Speer
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Liufang Jing
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Aravind Kalathil
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Michael P. Kelly
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Jacob M. Buchowski
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lukas P. Zebala
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Scott Luhmann
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Munish C. Gupta
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | - Lori A. Setton
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
- Department of Orthopaedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
9
|
Saxena K, Jolly MK, Balamurugan K. Hypoxia, partial EMT and collective migration: Emerging culprits in metastasis. Transl Oncol 2020; 13:100845. [PMID: 32781367 PMCID: PMC7419667 DOI: 10.1016/j.tranon.2020.100845] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular biological process involved in migration of primary cancer cells to secondary sites facilitating metastasis. Besides, EMT also confers properties such as stemness, drug resistance and immune evasion which can aid a successful colonization at the distant site. EMT is not a binary process; recent evidence suggests that cells in partial EMT or hybrid E/M phenotype(s) can have enhanced stemness and drug resistance as compared to those undergoing a complete EMT. Moreover, partial EMT enables collective migration of cells as clusters of circulating tumor cells or emboli, further endorsing that cells in hybrid E/M phenotypes may be the 'fittest' for metastasis. Here, we review mechanisms and implications of hybrid E/M phenotypes, including their reported association with hypoxia. Hypoxia-driven activation of HIF-1α can drive EMT. In addition, cyclic hypoxia, as compared to acute or chronic hypoxia, shows the highest levels of active HIF-1α and can augment cancer aggressiveness to a greater extent, including enriching for a partial EMT phenotype. We also discuss how metastasis is influenced by hypoxia, partial EMT and collective cell migration, and call for a better understanding of interconnections among these mechanisms. We discuss the known regulators of hypoxia, hybrid EMT and collective cell migration and highlight the gaps which needs to be filled for connecting these three axes which will increase our understanding of dynamics of metastasis and help control it more effectively.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
10
|
Bone morphogenetic protein 2 induces the activation of WNT/β-catenin signaling and human trophoblast invasion through up-regulating BAMBI. Cell Signal 2020; 67:109489. [DOI: 10.1016/j.cellsig.2019.109489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
|
11
|
Yao X, Yu T, Xi F, Xu Y, Ma L, Pan X, Chen S, Han M, Yin Y, Dai X, Xu G, Zhang H, Yang G, Xie L. BAMBI shuttling between cytosol and membrane is required for skeletal muscle development and regeneration. Biochem Biophys Res Commun 2018; 509:125-132. [PMID: 30580997 DOI: 10.1016/j.bbrc.2018.12.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI) gene encodes a transmembrane protein and is involved in multiple physiological and pathological processes, such as inflammatory response, tumor development and progression, cell proliferation and differentiation. A previous study suggested that BAMBI may interact with the Wnt/β-catenin signaling pathway via promoting β-catenin nuclear translocation associated with C2C12 myogenic myoblast differentiation. However, its biological function in skeletal muscle still remains unknown and requires further characterization. The present work sought to investigate its biological function in skeletal muscle, especially the physiological roles of BAMBI during skeletal muscle growth and regeneration. Our current work suggests that BAMBI protein is highly expressed in skeletal muscle and is only detected in cytosolic fraction in the resting muscle. Moreover, BAMBI protein is co-localized in fast-twitch (glycolytic) fibers, but not in slow-twitch (oxidative) fibers. Comparing with the cytosolic trapping in resting muscle, BAMBI protein is enriched on cellular membrane during the muscle growth and regeneration, suggesting that BAMBI-mediated a significant signaling pathway may be an essential part of muscle growth and regeneration.
Collapse
Affiliation(s)
- Xiangping Yao
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China; Guangdong Bide Biotech CO. L.T.D., Guangzhou, Guangdong, China
| | - Taiyong Yu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Fengxue Xi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yanting Xu
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lu Ma
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaohan Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China; Guangdong Bide Biotech CO. L.T.D., Guangzhou, Guangdong, China
| | - Shujie Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China; Guangdong Bide Biotech CO. L.T.D., Guangzhou, Guangdong, China
| | - Mulan Han
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China; Guangdong Bide Biotech CO. L.T.D., Guangzhou, Guangdong, China
| | - Yulong Yin
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China
| | - Xiaoshuang Dai
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China; Guangdong Bide Biotech CO. L.T.D., Guangzhou, Guangdong, China
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, 230032, China.
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Liwei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, China; Guangdong Bide Biotech CO. L.T.D., Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Yin J, Hou X, Yang S. microRNA-338-3p promotes ox-LDL-induced endothelial cell injury through targeting BAMBI and activating TGF-β/Smad pathway. J Cell Physiol 2018; 234:11577-11586. [PMID: 30556591 DOI: 10.1002/jcp.27814] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) have been revealed to participate in the pathological process of atherosclerosis (AS). However, the exact role of miR-338-3p, a target miRNA of BMP and activin membrane-bound inhibitor (BAMBI), and its possible molecular mechanism in AS remain unidentified. In this study, we found that BAMBI was significantly decreased, whereas miR-338-3p increased in patients with AS and oxidized low-density lipoprotein (ox-LDL)-induced HUVEC cells. Furthermore, overexpression of miR-338-3p significantly decreased cell viability and elevated cell apoptosis, whereas its inhibition significantly promoted cell viability and inhibited cell apoptosis in ox-LDL-induced HUVEC cells. Moreover, miR-338-3p overexpression increased TGF-β/Smad pathway activation in ox-LDL-induced HUVEC cells. A dual-luciferase reporter assay confirmed the direct interaction between miR-338-3p and the 3'-untranslated region of BAMBI messenger RNA. Furthermore, the suppression of BAMBI ameliorated the effect of miR-338-3p inhibition against ox-LDL-induced HUVEC cell injury. In conclusion, our study thus suggests that miR-338-3p promoted ox-LDL-induced HUVEC cell injury by targeting BAMBI and activating the TGF-β/Smad pathway, which may provide a novel and promising therapeutic target for AS.
Collapse
Affiliation(s)
- Jian Yin
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Xuhui Hou
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Songbai Yang
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
13
|
Drynda A, Drynda S, Kekow J, Lohmann CH, Bertrand J. Differential Effect of Cobalt and Chromium Ions as Well as CoCr Particles on the Expression of Osteogenic Markers and Osteoblast Function. Int J Mol Sci 2018; 19:ijms19103034. [PMID: 30301134 PMCID: PMC6213485 DOI: 10.3390/ijms19103034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023] Open
Abstract
The balance of bone formation and resorption is the result of a regulated crosstalk between osteoblasts, osteoclasts, and osteocytes. Inflammation, mechanical load, and external stimuli modulate this system. Exposure of bone cells to metal ions or wear particles are thought to cause osteolysis via activation of osteoclasts and inhibition of osteoblast activity. Co2+ ions have been shown to impair osteoblast function and the expression of the three transforming growth factor (TGF)-β isoforms. The current study was performed to analyze how Co2+ and Cr3+ influence the expression, proliferation, and migration profile of osteoblast-like cells. The influence of Co2+, Cr3+, and CoCr particles on gene expression was analyzed using an osteogenesis PCR Array. The expression of different members of the TGF-β signaling cascade were down-regulated by Co2+, as well as several TGF-β regulated collagens, however, Cr3+ had no effect. CoCr particles partially affected similar genes as the Co2+treatment. Total collagen production of Co2+ treated osteoblasts was reduced, which can be explained by the reduced expression levels of various collagens. While proliferation of MG63 cells appears unaffected by Co2+, the migration capacity was impaired. Our data may improve the knowledge of changes in gene expression patterns, and the proliferation and migration effects caused by artificial materials.
Collapse
Affiliation(s)
- Andreas Drynda
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Susanne Drynda
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
- Clinic for Rheumatology, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Jörn Kekow
- Clinic for Rheumatology, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Christoph Hubertus Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|