1
|
Wang G, Zhang Y, Li H, Luo S, He Z, Yang Z, Wu Z, Liang L, Zhang Z, Guo C, Wang X, Zhou J. Enhanced wound healing function of fibronectin variants via fusing with platelet factor 4. Int J Biol Macromol 2025; 312:144197. [PMID: 40373928 DOI: 10.1016/j.ijbiomac.2025.144197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/04/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Skin injuries affect the daily life of millions of individuals, which may result in serious infection or even death. Wound healing is a complex process involved in cell differentiation, migration, proliferation, and has a significant influence on health status. Fibronectin (FN) is an essential non-collagenous glycoprotein of the extracellular matrix (ECM), which plays critical roles in complex physiological process by binding to integrins, syndecans, collagen, and growth factors, especially in the wound healing process. Herein, we report a FN mutant, named FN1, which assembles with specific domains of full-length FN. Two FN variants, PF4-FN1 and FN1-PF4, fuse with platelet factor 4 (PF4) peptide-a secondary messenger related to anti-aging-at the N-terminal or C-terminal of FN1. We also characterized the biological activities at the cellular level including cell migration, proliferation, adhesion, and efficiency of wound healing through animal experiments. Our results revealed that PF4-FN1 exhibited a significant influence on cell proliferation and adhesion compared with FN1 and FN1-PF4. Using a mouse skin injury model and detection of inflammatory factors, the PF4-FN1 could suppress inflammation during the healing process, and result in faster healing.
Collapse
Affiliation(s)
- Guangyuan Wang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China
| | - Yunjia Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Hui Li
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Shan Luo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Zhimin He
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Zhen Yang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Zhuobin Wu
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Linlin Liang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Zhan Zhang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Caiping Guo
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China
| | - Xueyun Wang
- Shenzhen Weiguang Biological Products Co., Ltd., Shenzhen, 518107, Guangdong Province, PR China.
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China; Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong Province, PR China.
| |
Collapse
|
2
|
Wang Y, Zhang L, Xu J, Ma J. The Proteomic Landscape of Monocytes in Response to Colorectal Cancer Cells. J Proteome Res 2024; 23:4067-4081. [PMID: 39106312 PMCID: PMC11385372 DOI: 10.1021/acs.jproteome.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Colorectal cancer (CRC) involves a complex interaction between tumor cells and immune cells, notably monocytes, leading to immunosuppression. This study explored these interactions using in vitro coculture systems of THP-1 cells and CRC cell lines, employing quantitative proteomics to analyze protein changes in monocytes. Multiple analytical methods were utilized to delineate the altered proteomic landscape, identify key proteins, and their associated functional pathways for comprehensive data analysis. Differentially expressed proteins (DEPs) were selected and validated by cross-referencing them with publicly available TCGA and GEO data sets to explore their potential clinical significance. Our analysis identified 161 up-regulated and 130 down-regulated DEPs. The enrichment results revealed impairments in adhesion and innate immune functions in monocytes, potentially facilitating cancer progression. The down-regulation of FN1, THSB1, and JUN may contribute to these impairments. Furthermore, the overexpression of ADAMTSL4, PRAM1, GPNMB, and NPC2 on monocytes was associated with unfavorable prognostic outcomes in CRC patients, suggesting potential biomarkers or therapeutic targets. This study illustrated the proteomic landscape of monocytes in response to CRC cells, providing clues for future investigations of the crosstalk between cancer cells and monocytes within the tumor microenvironment.
Collapse
Affiliation(s)
- Yiran Wang
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Luyao Zhang
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Xu
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jie Ma
- Peking University Fifth School of Clinical Medicine, Beijing 100730, China
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
3
|
VanSlyke JK, Boswell BA, Musil LS. TGFβ overcomes FGF-induced transinhibition of EGFR in lens cells to enable fibrotic secondary cataract. Mol Biol Cell 2024; 35:ar75. [PMID: 38598298 PMCID: PMC11238076 DOI: 10.1091/mbc.e24-01-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFβ to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFβ, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFβ upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
4
|
VanSlyke JK, Boswell BA, Musil LS. Tonic ErbB signaling underlies TGFβ-induced activation of ERK and is required for lens cell epithelial to myofibroblast transition. Mol Biol Cell 2024; 35:ar35. [PMID: 38170570 PMCID: PMC10916858 DOI: 10.1091/mbc.e23-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Fibrosis is a major, but incompletely understood, component of many diseases. The most common vision-disrupting complication of cataract surgery involves differentiation of residual lens cells into myofibroblasts. In serum-free primary cultures of lens epithelial cells (DCDMLs), inhibitors of either ERK or of ErbB signaling prevent TGFβ from upregulating both early (fibronectin) and late (αSMA) markers of myofibroblast differentiation. TGFβ stimulates ERK in DCDMLs within 1.5 h. Kinase inhibitors of ErbBs, but not of several other growth factor receptors in lens cells, reduce phospho ERK to below basal levels in the absence or presence of TGFβ. This effect is attributable to constitutive ErbB activity playing a major role in regulating the basal levels pERK. Additional studies support a model in which TGFβ-generated reactive oxygen species serve to indirectly amplify ERK signaling downstream of tonically active ErbBs to mediate myofibroblast differentiation. ERK activity is in turn essential for expression of ErbB1 and ErbB2, major inducers of ERK signaling. By mechanistically linking TGFβ, ErbB, and ERK signaling to myofibroblast differentiation, our data elucidate a new role for ErbBs in fibrosis and reveal a novel mode by which TGFβ directs lens cell fate.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
5
|
Sun H, Guo Z, Hong H, Zhang Z, Zhang Y, Wang Y, Le S, Chen H. Free Energy Landscape of Type III Fibronectin Domain with Identified Intermediate State and Hierarchical Symmetry. PHYSICAL REVIEW LETTERS 2023; 131:218402. [PMID: 38072617 DOI: 10.1103/physrevlett.131.218402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 10/23/2023] [Indexed: 12/18/2023]
Abstract
The tenth domain of type III fibronectin (FNIII_{10}) mediates cell adhesion to the extracellular matrix. Despite its structural similarity to immunoglobulin domains, FNIII_{10} exhibits unique unfolding behaviors. We employed magnetic tweezers to investigate the unfolding and folding dynamics of FNIII_{10} under physiological forces (4-50 pN). Our results showed that FNIII_{10} follows a consistent transition pathway with an intermediate state characterized by detached A and G β strands. We determined the folding free energies and all force-dependent transition rates of FNIII_{10} and found that both unfolding rates from the native state to the intermediate state and from the intermediate state to the unfolded state deviate from Bell's model. We constructed a quantitative free energy landscape with well-defined traps and barriers that exhibits a hierarchical symmetrical pattern. Our findings provide a comprehensive understanding of FNIII_{10} conformational dynamics and demonstrate how free energy landscape of multistate biomolecules can be precisely mapped, illuminating the relationship between thermal stability, intermediate states, and folding rates in protein folding.
Collapse
Affiliation(s)
- Hao Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Zilong Guo
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Haiyan Hong
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Zhuwei Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Yuhang Zhang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yang Wang
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Shimin Le
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Hu Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| |
Collapse
|
6
|
VanSlyke JK, Boswell BA, Musil LS. ErbBs in Lens Cell Fibrosis and Secondary Cataract. Invest Ophthalmol Vis Sci 2023; 64:6. [PMID: 37418274 PMCID: PMC10337807 DOI: 10.1167/iovs.64.10.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Purpose TGFβ-induced epithelial-to-myofibroblast transition (EMyT) of lens cells has been linked to the most common vision-disrupting complication of cataract surgery-namely, posterior capsule opacification (PCO; secondary cataract). Although inhibitors of the ErbB family of receptor tyrosine kinases have been shown to block some PCO-associated processes in model systems, our knowledge of ErbB signaling in the lens is very limited. Here, we investigate the expression of ErbBs and their ligands in primary cultures of chick lens epithelial cells (dissociated cell-derived monolayer cultures [DCDMLs]) and how TGFβ affects ErbB function. Methods DCDMLs were analyzed by immunofluorescence microscopy and Western blotting under basal and profibrotic conditions. Results Small-molecule ErbB kinase blockers, including the human therapeutic lapatinib, selectively inhibit TGFβ-induced EMyT of DCDMLs. Lens cells constitutively express ErbB1 (EGFR), ErbB2, and ErbB4 protein on the plasma membrane and release into the medium ErbB-activating ligand. Culturing DCDMLs with TGFβ increases soluble bioactive ErbB ligand and markedly alters ErbBs, reducing total and cell surface ErbB2 and ErbB4 while increasing ErbB1 expression and homodimer formation. Similar, TGFβ-dependent changes in relative ErbB expression are induced when lens cells are exposed to the profibrotic substrate fibronectin. A single, 1-hour treatment with lapatinib inhibits EMyT in DCDMLs assessed 6 days later. Short-term exposure to lower doses of lapatinib is also capable of eliciting a durable response when combined with suboptimal levels of a mechanistically distinct multikinase inhibitor. Conclusions Our findings support ErbB1 as a therapeutic target for fibrotic PCO, which could be leveraged to pharmaceutically preserve the vision of millions of patients with cataracts.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
7
|
Parreno J, Emin G, Vu MP, Clark JT, Aryal S, Patel SD, Cheng C. Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells. Front Cell Dev Biol 2022; 10:983178. [PMID: 36176273 PMCID: PMC9514789 DOI: 10.3389/fcell.2022.983178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
The transparent ocular lens in the anterior chamber of the eye is responsible for fine focusing of light onto the retina. The lens is entirely cellular with bulk of the tissue composed of fiber cells, and the anterior hemisphere of the lens is covered by a monolayer of epithelial cells. Lens epithelial cells are important for maintaining fiber cell homeostasis and for continual growth of the lens tissue throughout life. Cataracts, defined as any opacity in the lens, remain the leading cause of blindness in the world. Following cataract surgery, lens epithelial cells can undergo a process of epithelial-to-mesenchymal transition (EMT), leading to secondary cataracts due to posterior capsular opacification (PCO). Since the epithelial cells make up only a small fraction of the lens, specialized techniques are required to study lens epithelial cell biology and pathology. Studies using native lens epithelial cells often require pooling of samples to obtain enough cells to make sufficient samples for traditional molecular biology techniques. Here, we provide detailed protocols that enable the study of native mouse lens epithelial cells, including immunostaining of the native lens epithelium in flat mounts, extraction of RNA and proteins from pairs of lens epithelial monolayers, and isolation of lens epithelial cells for primary culture. These protocols will enable researchers to gain better insight on representative molecular expression and cellular structure of lens epithelial cells. We also provide comparative data between native, primary culture, and immortalized lens epithelial cells and discuss the advantages and disadvantages of each technique presented.
Collapse
Affiliation(s)
- Justin Parreno
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
- *Correspondence: Justin Parreno, ; Catherine Cheng,
| | - Grace Emin
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Michael P. Vu
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Jackson T. Clark
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaili D. Patel
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Catherine Cheng
- School of Optometry and Vision Science Program, Indiana University, Bloomington, IN, United States
- *Correspondence: Justin Parreno, ; Catherine Cheng,
| |
Collapse
|
8
|
Xiong L, Sun Y, Huang J, Ma P, Wang X, Wang J, Chen B, Chen J, Huang M, Huang S, Liu Y. Long Non-Coding RNA H19 Prevents Lens Fibrosis through Maintaining Lens Epithelial Cell Phenotypes. Cells 2022; 11:cells11162559. [PMID: 36010635 PMCID: PMC9406623 DOI: 10.3390/cells11162559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
The integrity of lens epithelial cells (LECs) lays the foundation for lens function and transparency. By contrast, epithelial-mesenchymal transition (EMT) of LECs leads to lens fibrosis, such as anterior subcapsular cataracts (ASC) and fibrotic forms of posterior capsule opacification (PCO). However, the underlying mechanisms remain unclear. Here, we aimed to explore the role of long non-coding RNA (lncRNA) H19 in regulating TGF-β2-induced EMT during lens fibrosis, revealing a novel lncRNA-based regulatory mechanism. In this work, we identified that lncRNA H19 was highly expressed in LECs, but downregulated by exposure to TGF-β2. In both human lens epithelial explants and SRA01/04 cells, knockdown of H19 aggravated TGF-β2-induced EMT, while overexpressing H19 partially reversed EMT and restored lens epithelial phenotypes. Semi-in vivo whole lens culture and H19 knockout mice demonstrated the indispensable role of H19 in sustaining lens clarity through maintaining LEC features. Bioinformatic analyses further implied a potential H19-centered regulatory mechanism via Smad-dependent pathways, confirmed by in vitro experiments. In conclusion, we uncovered a novel role of H19 in inhibiting TGF-β2-induced EMT of the lens by suppressing Smad-dependent signaling, providing potential therapeutic targets for treating lens fibrosis.
Collapse
|
9
|
Taiyab A, West-Mays J. Lens Fibrosis: Understanding the Dynamics of Cell Adhesion Signaling in Lens Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2022; 10:886053. [PMID: 35656546 PMCID: PMC9152183 DOI: 10.3389/fcell.2022.886053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Injury to the ocular lens perturbs cell-cell and cell-capsule/basement membrane interactions leading to a myriad of interconnected signaling events. These events include cell-adhesion and growth factor-mediated signaling pathways that can ultimately result in the induction and progression of epithelial-mesenchymal transition (EMT) of lens epithelial cells and fibrosis. Since the lens is avascular, consisting of a single layer of epithelial cells on its anterior surface and encased in a matrix rich capsule, it is one of the most simple and desired systems to investigate injury-induced signaling pathways that contribute to EMT and fibrosis. In this review, we will discuss the role of key cell-adhesion and mechanotransduction related signaling pathways that regulate EMT and fibrosis in the lens.
Collapse
|
10
|
Patnaik JL, Christopher KL, Pedler MG, Shieh B, Petrash CC, Wagner BD, Mandava N, Lynch AM, Palestine AG, Petrash JM. The Protective Effect of Metformin Use on Early Nd:YAG Laser Capsulotomy. Invest Ophthalmol Vis Sci 2021; 62:24. [PMID: 34415985 PMCID: PMC8383914 DOI: 10.1167/iovs.62.10.24] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose To determine the effect of metformin on early Nd:YAG laser treatment for posterior capsule opacification (PCO) and to explore a molecular mechanism to explain a possible protective effect of metformin against PCO. Methods We conducted: 1) a retrospective cohort study of patient eyes undergoing phacoemulsification at our institution; and 2) laboratory investigation of the effect of metformin on the behavior of lens epithelial cells in the context of an animal model for PCO. Population-averaged Cox proportional hazards modeling was used to estimate risk for time to Nd:YAG. For laboratory studies, expression of markers for epithelial-to-mesenchymal transition (EMT) implicated in PCO pathogenesis was measured in tissue culture and following extracapsular lens extraction in a mouse model. Results The rate of Nd:YAG laser capsulotomy was 13.1% among the 9798 eyes. Both metformin use and diabetes were protective factors for Nd:YAG laser capsulotomy in univariate analysis. However, in multivariable analysis with nondiabetics as the reference group, only metformin use among diabetics was significantly protective of Nd:YAG (hazard ratio: 0.68, 95% CI: 0.54–0.85, P = 0.0008), while eyes of patients with diabetes without metformin use did not significantly differ (P = 0.5026). Treatment of lens epithelial cells with metformin reduced the level of the EMT markers ⍺-SMA and pERK induced by TGF-β2. Similarly, metformin treatment reduced ⍺-SMA expression in lens epithelial cells following extracapsular lens extraction in a mouse model. Conclusions The protective effect of metformin against early Nd:YAG may relate to its ability to downregulate EMT in residual lens epithelial cells that otherwise trend toward myofibroblast development and PCO.
Collapse
Affiliation(s)
- Jennifer L Patnaik
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Karen L Christopher
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Michelle G Pedler
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Biehuoy Shieh
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Carson C Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Brandie D Wagner
- Department of Biostatistics, Colorado School of Public Health, Aurora, Colorado, United States
| | - Naresh Mandava
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Anne M Lynch
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Alan G Palestine
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - J Mark Petrash
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
11
|
Disatham J, Brennan L, Chauss D, Kantorow J, Afzali B, Kantorow M. A functional map of genomic HIF1α-DNA complexes in the eye lens revealed through multiomics analysis. BMC Genomics 2021; 22:497. [PMID: 34215186 PMCID: PMC8254356 DOI: 10.1186/s12864-021-07795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND During eye lens development the embryonic vasculature regresses leaving the lens without a direct oxygen source. Both embryonically and throughout adult life, the lens contains a decreasing oxygen gradient from the surface to the core that parallels the natural differentiation of immature surface epithelial cells into mature core transparent fiber cells. These properties of the lens suggest a potential role for hypoxia and the master regulator of the hypoxic response, hypoxia-inducible transcription factor 1 (HIF1), in the regulation of genes required for lens fiber cell differentiation, structure and transparency. Here, we employed a multiomics approach combining CUT&RUN, RNA-seq and ATACseq analysis to establish the genomic complement of lens HIF1α binding sites, genes activated or repressed by HIF1α and the chromatin states of HIF1α-regulated genes. RESULTS CUT&RUN analysis revealed 8375 HIF1α-DNA binding complexes in the chick lens genome. One thousand one hundred ninety HIF1α-DNA binding complexes were significantly clustered within chromatin accessible regions (χ2 test p < 1 × 10- 55) identified by ATACseq. Formation of the identified HIF1α-DNA complexes paralleled the activation or repression of 526 genes, 116 of which contained HIF1α binding sites within 10kB of the transcription start sites. Some of the identified HIF1α genes have previously established lens functions while others have novel functions never before examined in the lens. GO and pathway analysis of these genes implicate HIF1α in the control of a wide-variety of cellular pathways potentially critical for lens fiber cell formation, structure and function including glycolysis, cell cycle regulation, chromatin remodeling, Notch and Wnt signaling, differentiation, development, and transparency. CONCLUSIONS These data establish the first functional map of genomic HIF1α-DNA complexes in the eye lens. They identify HIF1α as an important regulator of a wide-variety of genes previously shown to be critical for lens formation and function and they reveal a requirement for HIF1α in the regulation of a wide-variety of genes not yet examined for lens function. They support a requirement for HIF1α in lens fiber cell formation, structure and function and they provide a basis for understanding the potential roles and requirements for HIF1α in the development, structure and function of more complex tissues.
Collapse
Affiliation(s)
- Joshua Disatham
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 USA
| | - Lisa Brennan
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892 USA
| | | | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD 20892 USA
| | - Marc Kantorow
- Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Rd., Boca Raton, FL 33431 USA
| |
Collapse
|
12
|
Factors Affecting Posterior Capsule Opacification in the Development of Intraocular Lens Materials. Pharmaceutics 2021; 13:pharmaceutics13060860. [PMID: 34200928 PMCID: PMC8230425 DOI: 10.3390/pharmaceutics13060860] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 01/01/2023] Open
Abstract
Posterior capsule opacification (PCO) is the most common complication arising from the corrective surgery used to treat cataract patients. PCO arises when lens epithelial cells (LEC) residing in the capsular bag post-surgery undergo hyper-proliferation and transdifferentiation into myofibroblasts, migrating from the posterior capsule over the visual axis of the newly implanted intraocular lens (IOL). The developmental pathways underlying PCO are yet to be fully understood and the current literature is contradictory regarding the impact of the recognised risk factors of PCO. The aim of this review is firstly to collate the known biochemical pathways that lead to PCO development, providing an up-to-date chronological overview from surgery to established PCO formation. Secondly, the risk factors of PCO are evaluated, focussing on the impact of IOLs’ properties. Finally, the latest experimental model designs used in PCO research are discussed to demonstrate the ongoing development of clinical PCO models, the efficacy of newly developed IOL technology, and potential therapeutic interventions. This review will contribute to current PCO literature by presenting an updated overview of the known developmental pathways of PCO, an evaluation of the impact of the risk factors underlying its development, and the latest experimental models used to investigate PCO. Furthermore, the review should provide developmental routes for research into the investigation of potential therapeutic interventions and improvements in IOL design in the aid of preventing PCO for new and existing patients.
Collapse
|
13
|
Qin C, Liu S, Wen S, Han Y, Chen S, Qie J, Chen H, Lin Q. Enhanced PCO prevention of drug eluting IOLs via endocytosis and autophagy effects of a PAMAM dendrimer. J Mater Chem B 2021; 9:793-800. [PMID: 33336672 DOI: 10.1039/d0tb02530e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-loaded intraocular lenses (IOLs) have received considerable attention in treating complications that arise after cataract surgery, especially posterior capsular opacification (PCO). However, for a better therapeutic effect, the drug concentration in IOLs usually needs to be increased. Herein, we developed multilayer (doxorubicin (DOX)@polyaminoamide (PAMAM) (D@P)/heparin sodium (HEP))5 modified IOLs, which efficiently enhance the inhibitory effect on PCO using the enhanced autophagy effect of a cationic PAMAM. The chemotherapeutic drug DOX was encapsulated in PAMAM to formulate cationic DOX@PAMAM nanoparticles. Subsequently, negatively charged HEP and D@P nanoparticles (NPs) were assembled on the aminated artificial IOL surface using the layer-by-layer (LBL) assembly technique. The (D@P/HEP)5 IOLs were implanted into rabbit eyes to evaluate the prevention of PCO. In vitro and in vivo research studies showed that the D@P NPs exhibited enhanced cellular uptake owing to the cell-penetrating cationic characteristics, while demonstrating enhanced autophagy. D@P NPs are more effective at the same DOX concentration when compared to free DOX. Multilayer-modified (D@P/HEP)5 IOLs can efficiently inhibit PCO after cataract surgery. This study provides a strategy for improving the therapeutic effect of antiproliferative drug DOX by using a cationic dendrimer, which, in turn, increases the level of autophagy of cells. These LBL-based multilayer IOLs have broad application prospects in the treatment of complications after cataract surgery.
Collapse
Affiliation(s)
- Chen Qin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Spada S, Tocci A, Di Modugno F, Nisticò P. Fibronectin as a multiregulatory molecule crucial in tumor matrisome: from structural and functional features to clinical practice in oncology. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:102. [PMID: 33731188 PMCID: PMC7972229 DOI: 10.1186/s13046-021-01908-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Deciphering extracellular matrix (ECM) composition and architecture may represent a novel approach to identify diagnostic and therapeutic targets in cancer. Among the ECM components, fibronectin and its fibrillary assembly represent the scaffold to build up the entire ECM structure, deeply affecting its features. Herein we focus on this extraordinary protein starting from its complex structure and defining its role in cancer as prognostic and theranostic marker.
Collapse
Affiliation(s)
- Sheila Spada
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Annalisa Tocci
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
15
|
Long-term myofibroblast persistence in the capsular bag contributes to the late spontaneous in-the-bag intraocular lens dislocation. Sci Rep 2020; 10:20532. [PMID: 33239706 PMCID: PMC7689492 DOI: 10.1038/s41598-020-77207-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Late spontaneous in-the-bag intraocular lens (IOL) dislocation is a complication presenting 6 months or later after cataract surgery. We aimed to characterize the cells in the lens capsules (LCs) of 18 patients with spontaneous late in-the-bag IOL dislocation. Patients' average age was 82.6 ± 1.5 years (range 72-98), and most of them had pseudoexfoliation syndrome (PEX). Cells from the LCs were positive for myofibroblast (αSMA), proliferation (Ki-67, PCNA), early lens development/lens progenitor (SOX2, PAX6), chemokine receptor (CXCR4), and transmembrane (N-cadherin) markers, while negative for epithelial (E-cadherin) marker. Moreover, the cells produced abundant fibronectin, type I and type V collagen in the nearby extracellular matrix (ECM). During ex vivo cultivation of dislocated IOL-LCs in toto, the cells proliferated and likely migrated onto the IOL's anterior side. EdU proliferation assay confirmed the proliferation potential of the myofibroblasts (MFBs) in dislocated IOL-LCs. Primary cultured lens epithelial cells/MFBs isolated from the LC of dislocated IOLs could induce collagen matrix contraction and continuously proliferated, migrated, and induced ECM remodeling. Taken together, this indicates that long-lived MFBs of dislocated IOLs might contribute to the pathogenic mechanisms in late in-the-bag IOL dislocation.
Collapse
|
16
|
Wormstone IM, Wormstone YM, Smith AJO, Eldred JA. Posterior capsule opacification: What's in the bag? Prog Retin Eye Res 2020; 82:100905. [PMID: 32977000 DOI: 10.1016/j.preteyeres.2020.100905] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/18/2022]
Abstract
Cataract, a clouding of the lens, is the most common cause of blindness in the world. It has a marked impact on the wellbeing and productivity of individuals and has a major economic impact on healthcare providers. The only means of treating cataract is by surgical intervention. A modern cataract operation generates a capsular bag, which comprises a proportion of the anterior capsule and the entire posterior capsule. The bag remains in situ, partitions the aqueous and vitreous humours, and in the majority of cases, houses an intraocular lens (IOL). The production of a capsular bag following surgery permits a free passage of light along the visual axis through the transparent intraocular lens and thin acellular posterior capsule. Lens epithelial cells, however, remain attached to the anterior capsule, and in response to surgical trauma initiate a wound-healing response that ultimately leads to light scatter and a reduction in visual quality known as posterior capsule opacification (PCO). There are two commonly-described forms of PCO: fibrotic and regenerative. Fibrotic PCO follows classically defined fibrotic processes, namely hyperproliferation, matrix contraction, matrix deposition and epithelial cell trans-differentiation to a myofibroblast phenotype. Regenerative PCO is defined by lens fibre cell differentiation events that give rise to Soemmerring's ring and Elschnig's pearls and becomes evident at a later stage than the fibrotic form. Both fibrotic and regenerative forms of PCO contribute to a reduction in visual quality in patients. This review will highlight the wealth of tools available for PCO research, provide insight into our current knowledge of PCO and discuss putative management of PCO from IOL design to pharmacological interventions.
Collapse
Affiliation(s)
- I M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| | - Y M Wormstone
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - A J O Smith
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - J A Eldred
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
17
|
LncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis. Exp Eye Res 2020; 200:108251. [PMID: 32950535 DOI: 10.1016/j.exer.2020.108251] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Long noncoding RNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) takes part in diabetic cataract progression. This research aims to analyze the function and mechanism of KCNQ1OT1 on viability, migration and epithelial-mesenchymal transition (EMT) in lens epithelial cells. METHODS 20 diabetic cataract posterior lens capsule tissues and normal samples were collected. Lens epithelial cells (SRA01/04) were stimulated via high glucose (HG). The levels of KCNQ1OT1, miR-26a-5p, integrin αV (ITGAV), TGF-β, Smad3 and phosphorylated (p)-Smad3 were measured via quantitative real-time polymerase chain reaction or Western blot. Cell viability, migration and EMT were analyzed via MTT, wound healing, transwell and Western blot assays. The target relationship between miR-26a-5p and KCNQ1OT1 or ITGAV was determined via luciferase reporter assay. RESULTS KCNQ1OT1 was up-regulated and miR-26a-5p level was reduced in diabetic cataract tissues and HG-treated SRA01/04 cells. Silence of KCNQ1OT1 or miR-26a-5p up-regulation repressed cell viability, migration and EMT in SRA01/04 cells stimulated via HG. KCNQ1OT1 could target miR-26a-5p and controlled cell viability, migration and EMT via regulating miR-26a-5p. ITGAV was targeted via miR-26a-5p and positively regulated via KCNQ1OT1. ITGAV overexpression promoted cell viability, migration and EMT in HG-treated SRA01/04 cells, which were mitigated by KCNQ1OT1 silence. KCNQ1OT1 knockdown mitigated HG-induced the activation of TGF-β/Smad3 signaling by regulating miR-26a-5p. CONCLUSION KCNQ1OT1 knockdown represses cell viability, migration and EMT through miR-26a-5p/ITGAV/TGF-β/Smad3 axis in SRA01/04 cells under HG condition, providing a new target for the treatment of diabetic cataract.
Collapse
|
18
|
Shihan MH, Kanwar M, Wang Y, Jackson EE, Faranda AP, Duncan MK. Fibronectin has multifunctional roles in posterior capsular opacification (PCO). Matrix Biol 2020; 90:79-108. [PMID: 32173580 DOI: 10.1016/j.matbio.2020.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 12/26/2022]
Abstract
Fibrotic posterior capsular opacification (PCO), one of the major complications of cataract surgery, occurs when lens epithelial cells (LCs) left behind post cataract surgery (PCS) undergo epithelial to mesenchymal transition, migrate into the optical axis and produce opaque scar tissue. LCs left behind PCS robustly produce fibronectin, although its roles in fibrotic PCO are not known. In order to determine the function of fibronectin in PCO pathogenesis, we created mice lacking the fibronectin gene (FN conditional knock out -FNcKO) from the lens. While animals from this line have normal lenses, upon lens fiber cell removal which models cataract surgery, FNcKO LCs exhibit a greatly attenuated fibrotic response from 3 days PCS onward as assessed by a reduction in surgery-induced cell proliferation, and fibrotic extracellular matrix (ECM) production and deposition. This is correlated with less upregulation of Transforming Growth Factor β (TGFβ) and integrin signaling in FNcKO LCs PCS concomitant with sustained Bone Morphogenetic Protein (BMP) signaling and elevation of the epithelial cell marker E cadherin. Although the initial fibrotic response of FNcKO LCs was qualitatively normal at 48 h PCS as measured by the upregulation of fibrotic marker protein αSMA, RNA sequencing revealed that the fibrotic response was already quantitatively attenuated at this time, as measured by the upregulation of mRNAs encoding molecules that control, and are controlled by, TGFβ signaling, including many known markers of fibrosis. Most notably, gremlin-1, a known regulator of TGFβ superfamily signaling, was upregulated sharply in WT LCs PCS, while this response was attenuated in FNcKO LCs. As exogenous administration of either active TGFβ1 or gremlin-1 to FNcKO lens capsular bags rescued the attenuated fibrotic response of fibronectin null LCs PCS including the loss of SMAD2/3 phosphorylation, this suggests that fibronectin plays multifunctional roles in fibrotic PCO development.
Collapse
Affiliation(s)
- Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Mallika Kanwar
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Erin E Jackson
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|