1
|
García-del Río A, Prieto-Fernández E, Egia-Mendikute L, Antoñana-Vildosola A, Jimenez-Lasheras B, Lee SY, Barreira-Manrique A, Zanetti SR, de Blas A, Velasco-Beltrán P, Bosch A, Aransay AM, Palazon A. Factor-inhibiting HIF (FIH) promotes lung cancer progression. JCI Insight 2023; 8:e167394. [PMID: 37707961 PMCID: PMC10619494 DOI: 10.1172/jci.insight.167394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Factor-inhibiting HIF (FIH) is an asparagine hydroxylase that acts on hypoxia-inducible factors (HIFs) to control cellular adaptation to hypoxia. FIH is expressed in several tumor types, but its impact in tumor progression remains largely unexplored. We observed that FIH was expressed on human lung cancer tissue. Deletion of FIH in mouse and human lung cancer cells resulted in an increased glycolytic metabolism, consistent with increased HIF activity. FIH-deficient lung cancer cells exhibited decreased proliferation. Analysis of RNA-Seq data confirmed changes in the cell cycle and survival and revealed molecular pathways that were dysregulated in the absence of FIH, including the upregulation of angiomotin (Amot), a key component of the Hippo tumor suppressor pathway. We show that FIH-deficient tumors were characterized by higher immune infiltration of NK and T cells compared with FIH competent tumor cells. In vivo studies demonstrate that FIH deletion resulted in reduced tumor growth and metastatic capacity. Moreover, high FIH expression correlated with poor overall survival in non-small cell lung cancer (NSCLC). Our data unravel FIH as a therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ana García-del Río
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Borja Jimenez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Adrián Barreira-Manrique
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Samanta Romina Zanetti
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ander de Blas
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Paloma Velasco-Beltrán
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Ana M. Aransay
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Genome Analysis Platform, CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Saward BG, Leissing TM, Clifton IJ, Tumber A, Timperley CM, Hopkinson RJ, Schofield CJ. Biochemical and Structural Insights into FIH-Catalysed Hydroxylation of Transient Receptor Potential Ankyrin Repeat Domains. Chembiochem 2023; 24:e202200576. [PMID: 36448355 PMCID: PMC10946520 DOI: 10.1002/cbic.202200576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Transient receptor potential (TRP) channels have important roles in environmental sensing in animals. Human TRP subfamily A member 1 (TRPA1) is responsible for sensing allyl isothiocyanate (AITC) and other electrophilic sensory irritants. TRP subfamily vanilloid member 3 (TRPV3) is involved in skin maintenance. TRPV3 is a reported substrate of the 2-oxoglutarate oxygenase factor inhibiting hypoxia-inducible factor (FIH). We report biochemical and structural studies concerning asparaginyl hydroxylation of the ankyrin repeat domains (ARDs) of TRPA1 and TRPV3 catalysed by FIH. The results with ARD peptides support a previous report on FIH-catalysed TRPV3 hydroxylation and show that, of the 12 potential TRPA1 sequences investigated, one sequence (TRPA1 residues 322-348) undergoes hydroxylation at Asn336. Structural studies reveal that the TRPA1 and TRPV3 ARDs bind to FIH with a similar overall geometry to most other reported FIH substrates. However, the binding mode of TRPV3 to FIH is distinct from that of other substrates.
Collapse
Affiliation(s)
- Benjamin G. Saward
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | - Thomas M. Leissing
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | - Ian J. Clifton
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | - Anthony Tumber
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| | | | - Richard J. Hopkinson
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
- Present address: Leicester Institute for Structural and Chemical Biology and School of ChemistryUniversity of LeicesterHenry Wellcome Building, Lancaster RoadLeicesterLE1 7RHUK
| | - Christopher J. Schofield
- Department of Chemistry and theIneos Oxford Institute for Antimicrobial ResearchChemistry Research LaboratoryMansfield RoadUniversity of OxfordOxfordOX1 3TAUK
| |
Collapse
|
3
|
DeFrates KG, Engström J, Sarma NA, Umar A, Shin J, Cheng J, Xie W, Pochan D, Omar AK, Messersmith PB. The influence of molecular design on structure-property relationships of a supramolecular polymer prodrug. Proc Natl Acad Sci U S A 2022; 119:e2208593119. [PMID: 36279462 PMCID: PMC9636931 DOI: 10.1073/pnas.2208593119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Supramolecular self-assemblies of hydrophilic macromolecules functionalized with hydrophobic, structure-directing components have long been used for drug delivery. In these systems, loading of poorly soluble compounds is typically achieved through physical encapsulation during or after formation of the supramolecular assembly, resulting in low encapsulation efficiencies and limited control over release kinetics, which are predominately governed by diffusion and carrier degradation. To overcome these limitations, amphiphilic prodrugs that leverage a hydrophobic drug as both the therapeutic and structure-directing component can be used to create supramolecular materials with higher loading and controlled-release kinetics using biodegradable or enzymatically cleavable linkers. Here, we report the design, synthesis, and characterization of a library of supramolecular polymer prodrugs based on poly(ethylene glycol) (PEG) and the proregenerative drug 1,4-dihydrophenonthrolin-4-one-3-carboxylic acid (DPCA). Structure-property relationships were elucidated through experimental characterization of prodrug behavior in both the wet and dry states using scattering techniques and electron microscopy and corroborated by coarse-grained modeling. Molecular architecture and the hydrophobic-to-hydrophilic ratio of PEG-DPCA conjugates strongly influenced their physical state in water, ranging from fully soluble to supramolecular spherical assemblies and nanofibers. Molecular design and supramolecular structure, in turn, were shown to dramatically alter hydrolytic and enzymatic release and cellular transport of DPCA. In addition to potentially expanding therapeutic options for DPCA through control of supramolecular assemblies, the design principles elaborated here may inform the development of other supramolecular prodrugs based on hydrophobic small-molecule compounds.
Collapse
Affiliation(s)
- Kelsey G. DeFrates
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Joakim Engström
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Nivedina A. Sarma
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Athiyya Umar
- Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Jisoo Shin
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Jing Cheng
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Weiran Xie
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Darrin Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Ahmad K. Omar
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Phillip B. Messersmith
- Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
4
|
Zhao H, Wang S, Zhou Y, Ertay A, Williamson PTF, Ewing RM, Tang X, Wang J, Wang Y. Integrated analysis reveals effects of bioactive ingredients from Limonium Sinense (Girard) Kuntze on hypoxia-inducible factor (HIF) activation. FRONTIERS IN PLANT SCIENCE 2022; 13:994036. [PMID: 36388517 PMCID: PMC9646520 DOI: 10.3389/fpls.2022.994036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Limonium Sinense (Girard) Kuntze is a traditional Chinese medicinal herb, showing blood replenishment, anti-tumour, anti-hepatitis, and immunomodulation activities amongst others. However, the mechanism of its pharmacological activities remains largely unknown. Here, we investigated the effects of bioactive ingredients from Limonium Sinense using an integrated approach. Water extracts from Limonium Sinense (LSW) showed a strong growth inhibitory effect on multiple cells in both 2D and 3D cultures. Global transcriptomic profiling and further connectivity map (CMap) analysis identified several similarly acting therapeutic candidates, including Tubulin inhibitors and hypoxia-inducible factor (HIF) modulators. The effect of LSW on the cell cycle was verified with flow cytometry showing a G2/M phase arrest. Integrated analysis suggested a role for gallic acid in mediating HIF activation. Taken together, this study provides novel insights into the bioactive ingredients in Limonium Sinense, highlighting the rich natural resource and therapeutic values of herbal plants.
Collapse
Affiliation(s)
- Hualong Zhao
- School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ayse Ertay
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Philip T. F. Williamson
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rob M. Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Xinhui Tang
- School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China
| | - Jialian Wang
- School of Marine and Biological Engineering, Yancheng Teachers’ University, Yancheng, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
5
|
Brereton CJ, Yao L, Davies ER, Zhou Y, Vukmirovic M, Bell JA, Wang S, Ridley RA, Dean LSN, Andriotis OG, Conforti F, Brewitz L, Mohammed S, Wallis T, Tavassoli A, Ewing RM, Alzetani A, Marshall BG, Fletcher SV, Thurner PJ, Fabre A, Kaminski N, Richeldi L, Bhaskar A, Schofield CJ, Loxham M, Davies DE, Wang Y, Jones MG. Pseudohypoxic HIF pathway activation dysregulates collagen structure-function in human lung fibrosis. eLife 2022; 11:e69348. [PMID: 35188460 PMCID: PMC8860444 DOI: 10.7554/elife.69348] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix (ECM) stiffening with downstream activation of mechanosensitive pathways is strongly implicated in fibrosis. We previously reported that altered collagen nanoarchitecture is a key determinant of pathogenetic ECM structure-function in human fibrosis (Jones et al., 2018). Here, through human tissue, bioinformatic and ex vivo studies we provide evidence that hypoxia-inducible factor (HIF) pathway activation is a critical pathway for this process regardless of the oxygen status (pseudohypoxia). Whilst TGFβ increased the rate of fibrillar collagen synthesis, HIF pathway activation was required to dysregulate post-translational modification of fibrillar collagen, promoting pyridinoline cross-linking, altering collagen nanostructure, and increasing tissue stiffness. In vitro, knockdown of Factor Inhibiting HIF (FIH), which modulates HIF activity, or oxidative stress caused pseudohypoxic HIF activation in the normal fibroblasts. By contrast, endogenous FIH activity was reduced in fibroblasts from patients with lung fibrosis in association with significantly increased normoxic HIF pathway activation. In human lung fibrosis tissue, HIF-mediated signalling was increased at sites of active fibrogenesis whilst subpopulations of human lung fibrosis mesenchymal cells had increases in both HIF and oxidative stress scores. Our data demonstrate that oxidative stress can drive pseudohypoxic HIF pathway activation which is a critical regulator of pathogenetic collagen structure-function in fibrosis.
Collapse
Affiliation(s)
- Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Liudi Yao
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
- Leslie Dan Faculty of Pharmacy, University of TorontoTorontoCanada
| | - Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Siyuan Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lareb SN Dean
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Orestis G Andriotis
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Lennart Brewitz
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Soran Mohammed
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Timothy Wallis
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Ali Tavassoli
- School of Chemistry, University of SouthamptonSouthamptonUnited Kingdom
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Benjamin G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Sophie V Fletcher
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- University Hospital SouthamptonSouthamptonUnited Kingdom
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU WienViennaAustria
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College DublinDublinIreland
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of MedicineNew HavenUnited States
| | - Luca Richeldi
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli IRCCSRomeItaly
| | - Atul Bhaskar
- Faculty of Engineering and Physical Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research LaboratoryOxfordUnited Kingdom
| | - Matthew Loxham
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of SouthamptonSouthamptonUnited Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital SouthamptonSouthamptonUnited Kingdom
- Institute for Life Sciences, University of SouthamptonSouthamptonUnited Kingdom
| |
Collapse
|
6
|
Yuan D, Yang Z, Chen Y, Li S, Tan B, Yu Q. Hypoxia-induced SPOP attenuates the mobility of trophoblast cells through inhibition of the PI3K/AKT/GSK3β pathway. Cell Biol Int 2021; 45:599-611. [PMID: 33200474 DOI: 10.1002/cbin.11501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/20/2020] [Accepted: 11/11/2020] [Indexed: 12/19/2022]
Abstract
Placental hypoxia has been implicated in pregnancy pathologies such as pre-eclampsia and intrauterine growth restriction. However, the underlying mechanism by which the trophoblasts respond to hypoxia remains unclear. Speckle-type POZ protein (SPOP), an E3 ubiquitin ligase adapter, was previously reported to play important roles in various physiological and pathological processes. This study aims to investigate the expression and biological functions of SPOP after exposure to cobalt chloride (CoCl2 )-mimicked hypoxia conditions using human trophoblast-derived choriocarcinoma cell lines and extravillous cytotrophoblast. These data showed that SPOP protein was directly induced by CoCl2 -mimicked hypoxia and regulated by HIF-1α at the posttranscription level. CoCl2 treatment could dramatically influence the localization of SPOP in trophoblasts, especially the accumulation of SPOP into the nucleus. In addition, both CoCl2 -mimicked hypoxia and induction of endogenous SPOP expression by lentivirus transfection attenuated the migration and invasion abilities of trophoblasts. Furthermore, we demonstrated that SPOP was involved in CoCl2 -induced the inhibition of the PI3K/AKT/GSK3β pathway in placental trophoblasts. Taken together, these data indicate that accumulation of HIF-1α augments the expression of SPOP in trophoblasts, which impairs trophoblastic mobility by targeting the PI3K/AKT/GSK3β pathway. This potentially leads to insufficient uterine spiral artery remodeling and suboptimal placental perfusion, and thus the development of pregnancy-related complication.
Collapse
Affiliation(s)
- Dong Yuan
- Department of Gynecology, Chongqing Medical University Affiliated Second Hospital, Chongqing, China
| | - Zhu Yang
- Department of Gynecology, Chongqing Medical University Affiliated Second Hospital, Chongqing, China.,Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yiyu Chen
- Department of Clinical Laboratory, Chongqing Medical University Affiliated Stomatological Hospital, Chongqing, China
| | - Siyuan Li
- Department of Laboratory Medicine, Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Benxu Tan
- Department of Oncology, Chongqing Medical University Affiliated First Hospital, Chongqing, China
| | - Qiubo Yu
- Molecular Medical Laboratory, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
First person – Yihua Wang. J Cell Sci 2018. [DOI: 10.1242/jcs.226407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Yihua Wang is the first author on ‘Nuclear entry and export of FIH are mediated by HIF1α and exportin1, respectively’, published in Journal of Cell Science. Yihua is a Lecturer in Biological Sciences at the University of Southampton, studying cell signalling in lung fibrosis and cancer, drug target validation and gene function analysis.
Collapse
|