1
|
Wang L, Li Y, He Y, Fang Y, Mimuro H, Midgley AC, Yoshida S. Macropinocytosis regulates cytokine expression through Erk signaling in LPS-stimulated macrophages. Cell Struct Funct 2025; 50:103-113. [PMID: 40058796 DOI: 10.1247/csf.25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Macropinocytosis, a type of large-scale endocytosis process, is induced in macrophages by extracellular stimuli, including lipopolysaccharide (LPS). In addition to uptake function, emerging evidence supports a link between macropinocytosis and LPS-induced signal transduction. Following LPS stimulation, membrane ruffles are induced to form cup-like structures known as macropinocytic cups, a necessary precursory step for macropinocytosis. We have recently shown that Akt is activated at the cups and is an upstream regulator of the Iκ-B/NF-κB pathway implicated in the production of IL-1α and IL-6. Here, we further investigated the molecular mechanisms and show that the macropinocytic cups also regulated the Ras/Mek/Erk/c-Fos pathway to modulate IL-1β expression independently of the Akt pathway. In addition, we observed that the cup-dependent Akt pathway downregulated the expression of IL-10, in which the activation of the Erk pathway was critical. Taken together, we propose that macropinocytic cups separately modulate the Akt and Erk pathways in cytokine expression.Key words: macropinocytosis, Erk, IL-1β, IL-10.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Yuchen Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Hitomi Mimuro
- Division of Genome-Wide Infectious Microbiology, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
- Nankai International Advanced Research Institute
| |
Collapse
|
2
|
Sun X, Li Y, He Y, Cheng L, Wang L, Wei J, Chen J, Du L, Shen Z, Xie Y, Midgley AC, Jiang W, Yoshida S. Aberrant expression of GTPase-activating protein ARAP1 triggers circular dorsal ruffles associated with malignancy in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2025; 23:75. [PMID: 39934854 PMCID: PMC11816549 DOI: 10.1186/s12964-025-02084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Circular dorsal ruffles (CDRs) are large and rounded membrane ruffles that function as precursors of macropinocytosis. We recently reported that CDRs form in Hep3B hepatocellular carcinoma (HCC) cells, but not in Huh7 and HepG2 HCC cells or LO2 cells, suggesting that an unknown molecular mechanism implicates CDRs in Hep3B malignancy through macropinocytosis uptake of excessive extracellular nutrients. In this study, we investigated the cellular role and the mechanism of CDRs in Hep3B cells by focusing on the GTPase-activating protein ARAP1. METHODS ARAP1 knock-out (KO) cells were generated. Confocal microscopy and high-resolution scanning electron microscopy (SEM) were used for identification of the target proteins and structure analysis, respectively. Proteasome inhibitor MG132, mitochondrial function inhibitor CCCP, ARF1 inhibitor Golgicide A, and macropinocytosis inhibitor EIPA were used to investigate the molecular mechanism. Cell proliferation and Transwell migration/invasion assays were used to investigate the role of ARAP1 in cellular malignancy. RESULTS ARAP1 was localized to CDRs, which had reduced size following ARAP1 KO. CDRs comprised small vertical lamellipodia, the expression pattern of which was disrupted in ARAP1 KO cells. Extracellular solute uptake, rate of cell growth, and malignant potential were attenuated in KO cells. ARAP1 was also localized to mitochondria in Hep3B cells but not in the control cell lines. Mitochondrial fission protein was increased in KO cells. CCCP treatment blocked CDRs in Hep3B cells but not in controls. Surprisingly, ARAP1 expression level in Hep3B cells was lower than in Huh7, HepG2, and LO2 cells. MG132 treatment increased the ARAP1 levels in Hep3B cells, but not in Huh7 cells, revealing that ARAP1 is actively degraded in Hep3B cells. CONCLUSIONS These results strongly suggest that the aberrant expression of ARAP1 in Hep3B cells modulates CDRs via mitochondrial function, thereby resulting in excess uptake of nutrients as an initial event in cancer development. Based on these findings, we propose that the molecular mechanisms underlying the formation of CDRs, focusing on ARAP1, may serve as an effective therapeutic target in some types of HCC and cancers.
Collapse
Affiliation(s)
- Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Longjiao Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jianan Chen
- Organ Transplant Department, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Linxuan Du
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, School of Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, Tianjin, China
| | - Yan Xie
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300384, China.
- Liver Transplantation Department, Tianjin First Center Hospital, Tianjin, China.
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Wentao Jiang
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300384, China.
- Liver Transplantation Department, Tianjin First Center Hospital, Tianjin, China.
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Research Institute of Transplant Medicine, Nankai University, Tianjin, China.
- Nankai International Advanced Research Institute, Shenzhen, China.
- Nankai University College of Life Sciences, Tianjin, 300071, China.
| |
Collapse
|
3
|
Yan G, Zhou J, Yin J, Gao D, Zhong X, Deng X, Kang H, Sun A. Membrane Ruffles: Composition, Function, Formation and Visualization. Int J Mol Sci 2024; 25:10971. [PMID: 39456754 PMCID: PMC11507850 DOI: 10.3390/ijms252010971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane ruffles are cell actin-based membrane protrusions that have distinct structural characteristics. Linear ruffles with columnar spike-like and veil-like structures assemble at the leading edge of cell membranes. Circular dorsal ruffles (CDRs) have no supporting columnar structures but their veil-like structures, connecting from end to end, present an enclosed ring-shaped circular outline. Membrane ruffles are involved in multiple cell functions such as cell motility, macropinocytosis, receptor internalization, fluid viscosity sensing in a two-dimensional culture environment, and protecting cells from death in response to physiologically compressive loads. Herein, we review the state-of-the-art knowledge on membrane ruffle structure and function, the growth factor-induced membrane ruffling process, and the growth factor-independent ruffling mode triggered by calcium and other stimulating factors, together with the respective underlying mechanisms. We also summarize the inhibitors used in ruffle formation studies and their specificity. In the last part, an overview is given of the various techniques in which the membrane ruffles have been visualized up to now.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongyan Kang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; (G.Y.); (J.Z.); (J.Y.); (D.G.); (X.Z.); (X.D.)
| |
Collapse
|
4
|
Wang L, Sun X, Chen J, Li Y, He Y, Wei J, Shen Z, Yoshida S. Macropinocytic cups function as signal platforms for the mTORC2-AKT pathway to modulate LPS-induced cytokine expression in macrophages. J Leukoc Biol 2024; 116:738-752. [PMID: 38513294 DOI: 10.1093/jleuko/qiae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/30/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Macropinocytosis is a large-scale endocytosis process primarily observed in phagocytes as part of their cellular function to ingest antigens. Once phagocytes encounter gram-negative bacteria, the receptor proteins identify lipopolysaccharides (LPSs), which trigger radical membrane ruffles that gradually change to cup-like structures. The open area of the cups closes to generate vesicles called macropinosomes. The target bacteria are isolated by the cups and engulfed by the cells as the cups close. In addition to its ingestion function, macropinocytosis also regulates the AKT pathway in macrophages. In the current study, we report that macropinocytic cups are critical for LPS-induced AKT phosphorylation (pAKT) and cytokine expression in macrophages. High-resolution scanning electron microscope observations detailed the macropinocytic cup structures induced by LPS stimulation. Confocal microscopy revealed that AKT and the kinase molecule mTORC2 were localized in the cups. The biochemical analysis showed that macropinocytosis inhibition blocked LPS-induced pAKT. RNA sequencing, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay analyses revealed that the inhibition of macropinocytosis or the AKT pathway causes a decrease in the expression of proinflammatory cytokines interlukin-6 and interlukin-1α. Moreover, activation of the transcription factor nuclear factor κB, which regulates the cytokine expression downstream of the AKT/IκB pathway, was hindered when macropinocytosis or AKT was inhibited. These results indicate that LPS-induced macropinocytic cups function as signal platforms for the AKT pathway to regulate the cytokine expression by modulating nuclear factor κB activity in LPS-stimulated macrophages. Based on these findings, we propose that macropinocytosis may be a good therapeutic target for controlling cytokine expression.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jianan Chen
- School of Medicine, Nankai University, No. 94 Weijin Road, Tianjin, 300071, China
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Zhongyang Shen
- Organ Transplant Department, Tianjin First Central Hospital, School of Medicine, Nankai University, No. 24 Fukang Road, Tianjin, China
- Tianjin Key Laboratory for Organ Transplantation, No. 20 Keyan West Road, Tianjin, China
- Research Institute of Transplant Medicine, Nankai University, No. 20 Keyan West Road, Tianjin, China
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| |
Collapse
|
5
|
Kay RR, Lutton JE, King JS, Bretschneider T. Making cups and rings: the 'stalled-wave' model for macropinocytosis. Biochem Soc Trans 2024; 52:1785-1794. [PMID: 38934501 PMCID: PMC7616836 DOI: 10.1042/bst20231426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Macropinocytosis is a broadly conserved endocytic process discovered nearly 100 years ago, yet still poorly understood. It is prominent in cancer cell feeding, immune surveillance, uptake of RNA vaccines and as an invasion route for pathogens. Macropinocytic cells extend large cups or flaps from their plasma membrane to engulf droplets of medium and trap them in micron-sized vesicles. Here they are digested and the products absorbed. A major problem - discussed here - is to understand how cups are shaped and closed. Recently, lattice light-sheet microscopy has given a detailed description of this process in Dictyostelium amoebae, leading to the 'stalled-wave' model for cup formation and closure. This is based on membrane domains of PIP3 and active Ras and Rac that occupy the inner face of macropinocytic cups and are readily visible with suitable reporters. These domains attract activators of dendritic actin polymerization to their periphery, creating a ring of protrusive F-actin around themselves, thus shaping the walls of the cup. As domains grow, they drive a wave of actin polymerization across the plasma membrane that expands the cup. When domains stall, continued actin polymerization under the membrane, combined with increasing membrane tension in the cup, drives closure at lip or base. Modelling supports the feasibility of this scheme. No specialist coat proteins or contractile activities are required to shape and close cups: rings of actin polymerization formed around PIP3 domains that expand and stall seem sufficient. This scheme may be widely applicable and begs many biochemical questions.
Collapse
Affiliation(s)
- Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, U.K
| | - Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K
| | - Jason S King
- Department of Biomedical Sciences, Western Bank, Sheffield S10 2TN, U.K
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
6
|
Yoshie S, Kuriyama M, Maekawa M, Xu W, Niidome T, Futaki S, Hirose H. ATP2B4 is an essential gene for epidermal growth factor-induced macropinocytosis in A431 cells. Genes Cells 2024; 29:512-520. [PMID: 38597132 DOI: 10.1111/gtc.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Macropinocytosis (MPC) is a large-scale endocytosis pathway that involves actin-dependent membrane ruffle formation and subsequent ruffle closure to generate macropinosomes for the uptake of fluid-phase cargos. MPC is categorized into two types: constitutive and stimuli-induced. Constitutive MPC in macrophages relies on extracellular Ca2+ sensing by a calcium-sensing receptor. However, the link between stimuli-induced MPC and Ca2+ remains unclear. Here, we find that both intracellular and extracellular Ca2+ are required for epidermal growth factor (EGF)-induced MPC in A431 human epidermoid carcinoma cells. Through investigation of mammalian homologs of coelomocyte uptake defective (CUP) genes, we identify ATP2B4, encoding for a Ca2+ pump called the plasma membrane calcium ATPase 4 (PMCA4), as a Ca2+-related regulator of EGF-induced MPC. Knockout (KO) of ATP2B4, as well as depletion of extracellular/intracellular Ca2+, inhibited ruffle closure and macropinosome formation, without affecting ruffle formation. We demonstrate the importance of PMCA4 activity itself, independent of interactions with other proteins via its C-terminus known as a PDZ domain-binding motif. Additionally, we show that ATP2B4-KO reduces EGF-stimulated Ca2+ oscillation during MPC. Our findings suggest that EGF-induced MPC requires ATP2B4-dependent Ca2+ dynamics.
Collapse
Affiliation(s)
- Shunsuke Yoshie
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | | | - Masashi Maekawa
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
7
|
Lutton JE, Coker HLE, Paschke P, Munn CJ, King JS, Bretschneider T, Kay RR. Formation and closure of macropinocytic cups in Dictyostelium. Curr Biol 2023; 33:3083-3096.e6. [PMID: 37379843 PMCID: PMC7614961 DOI: 10.1016/j.cub.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment.
Collapse
Affiliation(s)
- Judith E Lutton
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
| | - Helena L E Coker
- CAMDU, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Jason S King
- School of Biosciences, Western Bank, Sheffield S10 2TN, UK.
| | - Till Bretschneider
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
8
|
Hua R, Wei J, Torres M, He Y, Li Y, Sun X, Wang L, Inoki K, Yoshida S. Identification of circular dorsal ruffles as signal platforms for the AKT pathway in glomerular podocytes. J Cell Physiol 2023; 238:1063-1079. [PMID: 36924084 DOI: 10.1002/jcp.30996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced by growth factors to function as precursors of the large-scale endocytosis called macropinocytosis. In addition to their role in cellular uptake, recent research using cell line systems has shown that CDRs/macropinocytosis regulate the canonical AKT-mTORC1 growth factor signaling pathway. However, as CDRs have not been observed in tissues, their physiological relevance has remained unclear. Here, utilizing ultrahigh-resolution scanning electron microscopy, we first report that CDRs are expressed in glomerular podocytes ex vivo and in vivo, and we visually captured the transformation process to macropinocytosis. Moreover, through biochemical and imaging analyses, we show that AKT phosphorylation localized to CDRs upstream of mTORC1 activation in podocyte cell lines and isolated glomeruli. These results demonstrate the physiological role of CDRs as signal platforms for the AKT-mTORC1 pathway in glomerular podocytes at the tissue level. As mTORC1 plays critical roles in podocyte metabolism, and aberrant activation of mTORC1 triggers podocytopathies, our results strongly suggest that targeting CDR formation could represent a potential therapeutic approach for these diseases.
Collapse
Affiliation(s)
- Rui Hua
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinzi Wei
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Mauricio Torres
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaowei Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Li Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Internal medicine and Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China.,Nankai International Advanced Research Institute, Shenzhen, China
| |
Collapse
|
9
|
Kohno T, Kojima T. Atypical Macropinocytosis Contributes to Malignant Progression: A Review of Recent Evidence in Endometrioid Endometrial Cancer Cells. Cancers (Basel) 2022; 14:cancers14205056. [PMID: 36291839 PMCID: PMC9599675 DOI: 10.3390/cancers14205056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary A novel type of macropinocytosis has been identified as a trigger for the malignant progression of endometrial cancer. Transiently reducing epithelial barrier homeostasis leads to macropinocytosis by splitting between adjacent cells in endometrioid endometrial cancer. Macropinocytosis causes morphological changes in well-differentiated to poorly differentiated cancer cells. Inhibition of macropinocytosis promotes a persistent dormant state in the intrinsic KRAS-mutated cancer cell line Sawano. This review focuses on the mechanisms of atypical macropinocytosis and its effects on cellular function, and it describes the physiological processes involved in inducing resting conditions in endometrioid endometrial cancer cells. Abstract Macropinocytosis is an essential mechanism for the non-specific uptake of extracellular fluids and solutes. In recent years, additional functions have been identified in macropinocytosis, such as the intracellular introduction pathway of drugs, bacterial and viral infection pathways, and nutritional supplement pathway of cancer cells. However, little is known about the changes in cell function after macropinocytosis. Recently, it has been reported that macropinocytosis is essential for endometrial cancer cells to initiate malignant progression in a dormant state. Macropinocytosis is formed by a temporary split of adjacent bicellular junctions of epithelial sheets, rather than from the apical surface or basal membrane, as a result of the transient reduction of tight junction homeostasis. This novel type of macropinocytosis has been suggested to be associated with the malignant pathology of endometriosis and endometrioid endometrial carcinoma. This review outlines the induction of malignant progression of endometrial cancer cells by macropinocytosis based on a new mechanism and the potential preventive mechanism of its malignant progression.
Collapse
|
10
|
Circular dorsal ruffles disturb the growth factor-induced PI3K-AKT pathway in hepatocellular carcinoma Hep3B cells. Cell Commun Signal 2022; 20:102. [PMID: 35799301 PMCID: PMC9264614 DOI: 10.1186/s12964-022-00911-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular dorsal ruffles (CDRs) are rounded membrane ruffles induced on the dorsal surfaces of cells stimulated by growth factors (GF). They can serve as signal platforms to activate AKT protein kinase. After GF stimulation, phosphatidylinositol 3-kinase (PI3K) generates phosphatidylinositol (3,4,5)-triphosphate (PIP3) in the plasma membrane. PIP3 accumulates inside CDRs, recruits AKT into the structures, and phosphorylates them (pAKT). Given the importance of the PI3K-AKT pathway in GF signaling, CDRs are likely involved in cell growth. Interestingly, some cancer cell lines express CDRs. We hypothesized that CDRs contribute to carcinogenesis by modulating the AKT pathway. In the present study, we identified CDR-expressing cancer cell lines and investigated their cellular functions. Methods CDR formation was examined in six cancer cell lines in response to epidermal growth factor (EGF) and insulin. The morphology of the CDRs was characterized, and the related signaling molecules were observed using confocal and scanning electron microscopy. The role of CDRs in the AKT pathway was studied using biochemical analysis. The actin inhibitor cytochalasin D (Cyto D) and the PI3K inhibitor TGX221 were used to block CDRs. Results GF treatment induced CDRs in the hepatocellular carcinoma (HCC) Hep3B cell line, but not in others, including HCC cell lines HepG2 and Huh7, and the LO2 hepatocyte cell line. Confocal microscopy and western blot analysis showed that the PI3K-PIP3-AKT pathway was activated at the CDRs and that receptor proteins were recruited to the structures. Cyto D and TGX221 completely blocked CDRs and partially attenuated GF-induced pAKT. These results indicate that CDRs regulate the receptor-mediated PI3K-AKT pathway in Hep3B cells and the existence of CDR-independent pAKT mechanisms. Conclusions Our results showed that CDRs modulate the AKT pathway in Hep3B cells. Since CDRs were not observed in other HCC and hepatocyte cell lines, we propose that CDRs in Hep3B would determine the carcinoma characteristic of the cell by aberrantly triggering the AKT pathway. Signaling molecules involved in CDR formation are promising therapeutic targets for some types of HCC. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00911-6.
Collapse
|
11
|
Piezo1 activation using Yoda1 inhibits macropinocytosis in A431 human epidermoid carcinoma cells. Sci Rep 2022; 12:6322. [PMID: 35428847 PMCID: PMC9012786 DOI: 10.1038/s41598-022-10153-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/09/2022] [Indexed: 11/08/2022] Open
Abstract
Macropinocytosis is a type of endocytosis accompanied by actin rearrangement-driven membrane deformation, such as lamellipodia formation and membrane ruffling, followed by the formation of large vesicles, macropinosomes. Ras-transformed cancer cells efficiently acquire exogenous amino acids for their survival through macropinocytosis. Thus, inhibition of macropinocytosis is a promising strategy for cancer therapy. To date, few specific agents that inhibit macropinocytosis have been developed. Here, focusing on the mechanosensitive ion channel Piezo1, we found that Yoda1, a Piezo1 agonist, potently inhibits macropinocytosis induced by epidermal growth factor (EGF). The inhibition of ruffle formation by Yoda1 was dependent on the extracellular Ca2+ influx through Piezo1 and on the activation of the calcium-activated potassium channel KCa3.1. This suggests that Ca2+ ions can regulate EGF-stimulated macropinocytosis. We propose the potential for macropinocytosis inhibition through the regulation of a mechanosensitive channel activity using chemical tools.
Collapse
|
12
|
Abstract
Phagocytes play critical roles in the maintenance of organismal homeostasis and immunity. Central to their role is their ability to take up and process exogenous material via the related processes of phagocytosis and macropinocytosis. The mechanisms and functions underlying macropinocytosis have remained severely understudied relative to phagocytosis. In recent years, however, there has been a renaissance in macropinocytosis research. Phagocytes can engage in various forms of macropinocytosis including an "induced" form and a "constitutive" form. This chapter, however, will focus on constitutive macropinocytosis and its role in the maintenance of immunity. Functions previously attributed to macropinocytosis, including antigen presentation and immune surveillance, will be revisited in light of recent revelations and emerging concepts will be highlighted.
Collapse
Affiliation(s)
- Johnathan Canton
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
13
|
Abstract
The distinct movements of macropinosome formation and maturation have corresponding biochemical activities which occur in a defined sequence of stages and transitions between those stages. Each stage in the process is regulated by variously phosphorylated derivatives of phosphatidylinositol (PtdIns) which reside in the cytoplasmic face of the membrane lipid bilayer. PtdIns derivatives phosphorylated at the 3' position of the inositol moiety, called 3' phosphoinositides (3'PIs), regulate different stages of the sequence. 3'PIs are synthesized by numerous phosphoinositide 3'-kinases (PI3K) and other lipid kinases and phosphatases, which are themselves regulated by small GTPases of the Ras superfamily. The combined actions of these enzymes localize four principal species of 3'PI to distinct domains of the plasma membrane or to discrete organelles, with distinct biochemical activities confined to those domains. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol (3,4)-bisphosphate (PtdIns(3,4)P2) regulate the early stages of macropinosome formation, which include cell surface ruffling and constrictions of circular ruffles which close into macropinosomes. Phosphatidylinositol 3-phosphate (PtdIns3P) regulates macropinosome fusion with other macropinosomes and early endocytic organelles. Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) mediates macropinosome maturation and shrinkage, through loss of ions and water, and subsequent traffic to lysosomes. The different characteristic rates of macropinocytosis in different cell types indicate levels of regulation which may be governed by the cell's capacity to generate 3'PIs.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Nobukazu Araki
- Department of Histology and Cell Biology, School of Medicine, Kagawa University, Miki, Kagawa, Japan
| |
Collapse
|
14
|
Kohno T, Konno T, Kikuchi S, Kondoh M, Kojima T. Translocation of LSR from tricellular corners causes macropinocytosis at cell-cell interface as a trigger for breaking out of contact inhibition. FASEB J 2021; 35:e21742. [PMID: 34403506 DOI: 10.1096/fj.202100299r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022]
Abstract
Withdrawal from contact inhibition is necessary for epithelial cancer precursor cells to initiate cell growth and motility. Nevertheless, little is understood about the mechanism for the sudden initiation of cell growth under static conditions. We focused on cellular junctions as one region where breaking out of contact inhibition occurs. In well-differentiated endometrial cancer cells, Sawano, the ligand administration for tricellular tight junction protein LSR, which transiently decreased the robust junction property, caused an abrupt increase in cell motility and consequent excessive multilayered cell growth despite being under contact inhibition conditions. We observed that macropinocytosis essentially and temporarily occurred as an antecedent event for the above process at intercellular junctions without disruption of the junction apparatus but not at the apical plasma membrane. Collectively, we concluded that the formation of macropinocytosis, which is derived from tight junction-mediated signaling, was triggered for the initiation of cell growth in static precancerous epithelium.
Collapse
Affiliation(s)
- Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University, Sapporo, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
15
|
Zdżalik-Bielecka D, Poświata A, Kozik K, Jastrzębski K, Schink KO, Brewińska-Olchowik M, Piwocka K, Stenmark H, Miączyńska M. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci U S A 2021; 118:e2024596118. [PMID: 34244439 PMCID: PMC8285903 DOI: 10.1073/pnas.2024596118] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AXL, a member of the TAM (TYRO3, AXL, MER) receptor tyrosine kinase family, and its ligand, GAS6, are implicated in oncogenesis and metastasis of many cancer types. However, the exact cellular processes activated by GAS6-AXL remain largely unexplored. Here, we identified an interactome of AXL and revealed its associations with proteins regulating actin dynamics. Consistently, GAS6-mediated AXL activation triggered actin remodeling manifested by peripheral membrane ruffling and circular dorsal ruffles (CDRs). This further promoted macropinocytosis that mediated the internalization of GAS6-AXL complexes and sustained survival of glioblastoma cells grown under glutamine-deprived conditions. GAS6-induced CDRs contributed to focal adhesion turnover, cell spreading, and elongation. Consequently, AXL activation by GAS6 drove invasion of cancer cells in a spheroid model. All these processes required the kinase activity of AXL, but not TYRO3, and downstream activation of PI3K and RAC1. We propose that GAS6-AXL signaling induces multiple actin-driven cytoskeletal rearrangements that contribute to cancer-cell invasion.
Collapse
Affiliation(s)
- Daria Zdżalik-Bielecka
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| | - Agata Poświata
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamila Kozik
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Kay Oliver Schink
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | | | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Harald Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland;
| |
Collapse
|
16
|
Stow JL, Hung Y, Wall AA. Macropinocytosis: Insights from immunology and cancer. Curr Opin Cell Biol 2020; 65:131-140. [PMID: 32745890 DOI: 10.1016/j.ceb.2020.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022]
Abstract
Macropinocytosis is increasingly recognized for its versatile adaptations and functions as a highly conserved, ubiquitous pathway for the bulk uptake of fluid, particulate cargo, and membranes. Innate immune cells and transformed cancer cells share the capacity for both constitutive and induced macropinocytosis, which is used for immune surveillance, ingestion of pathogens, immune response shaping, and enhancement of scavenging for nutrients as fuel for cell survival and proliferation. Immunology and cancer biology are leading a resurgence of interest in defining the molecular and physiological regulation of macropinocytosis, partly in pursuit of ways to control macropinocytic uptake in disease settings. New approaches, including high-resolution live imaging, screening of cell surface molecular inventories, biophysics, and exploration of cell microenvironments, have converged to provide new insights into macropinosome induction, formation, and maturation. Recent studies reveal mechanisms for fluid control in and by macrophage macropinosomes that impinge on membrane trafficking and cell migration. EGFR, PTEN, V-ATPase, syndecan 1, and galectin-3 have roles variably in the metabolic regulation of Ras or PI3K signaling for Rac1-mediated macropinocytosis in cancer. These molecular pathways and mechanisms contribute to the impressive adaptability of macropinocytosis in many cells and tissues and in disease.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Yu Hung
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adam A Wall
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
17
|
Casamento A, Boucrot E. Molecular mechanism of Fast Endophilin-Mediated Endocytosis. Biochem J 2020; 477:2327-2345. [PMID: 32589750 PMCID: PMC7319585 DOI: 10.1042/bcj20190342] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022]
Abstract
Endocytosis mediates the cellular uptake of micronutrients and cell surface proteins. Clathrin-mediated endocytosis (CME) is the housekeeping pathway in resting cells but additional Clathrin-independent endocytic (CIE) routes, including Fast Endophilin-Mediated Endocytosis (FEME), internalize specific cargoes and support diverse cellular functions. FEME is part of the Dynamin-dependent subgroup of CIE pathways. Here, we review our current understanding of the molecular mechanism of FEME. Key steps are: (i) priming, (ii) cargo selection, (iii) membrane curvature and carrier formation, (iv) membrane scission and (v) cytosolic transport. All steps are controlled by regulatory mechanisms mediated by phosphoinositides and by kinases such as Src, LRRK2, Cdk5 and GSK3β. A key feature of FEME is that it is not constitutively active but triggered upon the stimulation of selected cell surface receptors by their ligands. In resting cells, there is a priming cycle that concentrates Endophilin into clusters on discrete locations of the plasma membrane. In the absence of receptor activation, the patches quickly abort and new cycles are initiated nearby, constantly priming the plasma membrane for FEME. Upon activation, receptors are swiftly sorted into pre-existing Endophilin clusters, which then bud to form FEME carriers within 10 s. We summarize the hallmarks of FEME and the techniques and assays required to identify it. Next, we review similarities and differences with other CIE pathways and proposed cargoes that may use FEME to enter cells. Finally, we submit pending questions and future milestones and discuss the exciting perspectives that targeting FEME may boost treatments against cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandra Casamento
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, U.K
- Institute of Structural and Molecular Biology, Birkbeck College, Malet Street, London WC1E 7HX, U.K
| |
Collapse
|
18
|
Arafiles JVV, Hirose H, Akishiba M, Tsuji S, Imanishi M, Futaki S. Stimulating Macropinocytosis for Intracellular Nucleic Acid and Protein Delivery: A Combined Strategy with Membrane-Lytic Peptides To Facilitate Endosomal Escape. Bioconjug Chem 2020; 31:547-553. [PMID: 32017537 DOI: 10.1021/acs.bioconjchem.0c00064] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Delivery of biomacromolecules via endocytic pathways requires the efficient accumulation of cargo molecules into endosomes, followed by their release to the cytosol. We propose a unique intracellular delivery strategy for bioactive molecules using a new potent macropinocytosis-inducing peptide derived from stromal-derived factor 1α (SN21). This peptide allowed extracellular materials to enter cells through the activation of macropinocytosis. To provide the ability to release internalized cargoes from endosomes, we conjugated SN21 with membrane-lytic peptides. The combination of a macropinocytosis-inducing peptide and a membrane-lytic peptide successfully delivered functional siRNA and proteins, which include antibodies, Cre recombinase, and an artificial transcription regulator protein having a transcription activator-like effector (TALE) motif. This study shows the feasibility of combining the physiological stimulation of macropinocytosis with the physicochemical disruption of endosomes as a strategy for intracellular delivery.
Collapse
Affiliation(s)
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Misao Akishiba
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shogo Tsuji
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
19
|
Abstract
Macropinosome formation occurs as a localized sequence of biochemical activities and associated morphological changes, which may be considered a form of signal transduction leading to the construction of an organelle. Macropinocytosis may also convey information about the availability of extracellular nutrients to intracellular regulators of metabolism. Consistent with this idea, activation of the metabolic regulator mechanistic target of rapamycin complex-1 (mTORC1) in response to acute stimulation by growth factors and extracellular amino acids requires internalization of amino acids by macropinocytosis. This suggests that macropinocytosis is necessary for mTORC1-dependent growth of metazoan cells, both as a route for delivery of amino acids to sensors associated with lysosomes and as a platform for growth factor-dependent signalling to mTORC1 via phosphatidylinositol 3-kinase (PI3K) and the Akt pathway. Because the biochemical signals required for the construction of macropinosomes are also required for cell growth, and inhibition of macropinocytosis inhibits growth factor signalling to mTORC1, we propose that signalling by growth factor receptors is organized into stochastic, structure-dependent cascades of chemical reactions that both build a macropinosome and stimulate mTORC1. More generally, as discrete units of signal transduction, macropinosomes may be subject to feedback regulation by metabolism and cell dimensions. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| | - Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School , Ann Arbor, MI 48109-5620 , USA
| |
Collapse
|
20
|
He J, Wink S, de Bont H, Le Dévédec S, Zhang Y, van de Water B. FRET biosensor-based kinase inhibitor screen for ERK and AKT activity reveals differential kinase dependencies for proliferation in TNBC cells. Biochem Pharmacol 2019; 169:113640. [DOI: 10.1016/j.bcp.2019.113640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/13/2019] [Indexed: 11/26/2022]
|
21
|
Salloum G, Jakubik CT, Erami Z, Heitz SD, Bresnick AR, Backer JM. PI3Kβ is selectively required for growth factor-stimulated macropinocytosis. J Cell Sci 2019; 132:jcs.231639. [PMID: 31409694 DOI: 10.1242/jcs.231639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/16/2019] [Indexed: 12/16/2022] Open
Abstract
Macropinocytosis is an actin-dependent but clathrin-independent endocytic process by which cells nonselectively take up large aliquots of extracellular material. Macropinocytosis is used for immune surveillance by dendritic cells, as a route of infection by viruses and protozoa, and as a nutrient uptake pathway in tumor cells. In this study, we explore the role of class I phosphoinositide 3-kinases (PI3Ks) during ligand-stimulated macropinocytosis. We find that macropinocytosis in response to receptor tyrosine kinase activation is strikingly dependent on a single class I PI3K isoform, namely PI3Kβ (containing the p110β catalytic subunit encoded by PIK3CB). Loss of PI3Kβ expression or activity blocks macropinocytosis at early steps, before the formation of circular dorsal ruffles, but also plays a role in later steps, downstream from Rac1 activation. PI3Kβ is also required for the elevated levels of constitutive macropinocytosis found in tumor cells that are defective for the PTEN tumor suppressor. Our data shed new light on PI3K signaling during macropinocytosis, and suggest new therapeutic uses for pharmacological inhibitors of PI3Kβ.
Collapse
Affiliation(s)
- Gilbert Salloum
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles T Jakubik
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zahra Erami
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Samantha D Heitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jonathan M Backer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA .,Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Sugiyama MG, Fairn GD, Antonescu CN. Akt-ing Up Just About Everywhere: Compartment-Specific Akt Activation and Function in Receptor Tyrosine Kinase Signaling. Front Cell Dev Biol 2019; 7:70. [PMID: 31131274 PMCID: PMC6509475 DOI: 10.3389/fcell.2019.00070] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022] Open
Abstract
The serine/threonine kinase Akt is a master regulator of many diverse cellular functions, including survival, growth, metabolism, migration, and differentiation. Receptor tyrosine kinases are critical regulators of Akt, as a result of activation of phosphatidylinositol-3-kinase (PI3K) signaling leading to Akt activation upon receptor stimulation. The signaling axis formed by receptor tyrosine kinases, PI3K and Akt, as well as the vast range of downstream substrates is thus central to control of cell physiology in many different contexts and tissues. This axis must be tightly regulated, as disruption of PI3K-Akt signaling underlies the pathology of many diseases such as cancer and diabetes. This sophisticated regulation of PI3K-Akt signaling is due in part to the spatial and temporal compartmentalization of Akt activation and function, including in specific nanoscale domains of the plasma membrane as well as in specific intracellular membrane compartments. Here, we review the evidence for localized activation of PI3K-Akt signaling by receptor tyrosine kinases in various specific cellular compartments, as well as that of compartment-specific functions of Akt leading to control of several fundamental cellular processes. This spatial and temporal control of Akt activation and function occurs by a large number of parallel molecular mechanisms that are central to regulation of cell physiology.
Collapse
Affiliation(s)
- Michael G. Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Costin N. Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
23
|
Williams TD, Peak-Chew SY, Paschke P, Kay RR. Akt and SGK protein kinases are required for efficient feeding by macropinocytosis. J Cell Sci 2019; 132:jcs.224998. [PMID: 30617109 DOI: 10.1242/jcs.224998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022] Open
Abstract
Macropinocytosis is an actin-driven process of large-scale and non-specific fluid uptake used for feeding by some cancer cells and the macropinocytosis model organism Dictyostelium discoideum In Dictyostelium, macropinocytic cups are organized by 'macropinocytic patches' in the plasma membrane. These contain activated Ras, Rac and phospholipid PIP3, and direct actin polymerization to their periphery. We show that a Dictyostelium Akt (PkbA) and an SGK (PkbR1) protein kinase act downstream of PIP3 and, together, are nearly essential for fluid uptake. This pathway enables the formation of larger macropinocytic patches and macropinosomes, thereby dramatically increasing fluid uptake. Through phosphoproteomics, we identify a RhoGAP, GacG, as a PkbA and PkbR1 target, and show that it is required for efficient macropinocytosis and expansion of macropinocytic patches. The function of Akt and SGK in cell feeding through control of macropinosome size has implications for cancer cell biology.
Collapse
Affiliation(s)
| | | | - Peggy Paschke
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
24
|
First person – Sei Yoshida. J Cell Sci 2018. [DOI: 10.1242/jcs.226373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Sei Yoshida is the first author on ‘Dorsal ruffles enhance activation of Akt by growth factors’, published in Journal of Cell Science. Sei completed this work in the lab of Joel Swanson, University of Michigan Medical School, USA. He is currently an assistant research scientist in the lab of Ling Qi, also at the University of Michigan Medical School.
Collapse
|