1
|
Bühler L, de Moura AC, Giovenardi M, Goffin V, Rasia-Filho AA. Sex-related gene expression in the posterodorsal medial amygdala of cycling female rats along with prolactin modulation of lordosis behavior. Brain Res 2025; 1857:149602. [PMID: 40147695 DOI: 10.1016/j.brainres.2025.149602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The rat posterodorsal medial amygdala (MePD) is sexually dimorphic, has a high concentration of receptors for gonadal hormones and prolactin (PRL), and modulates reproduction. To unravel genetic and functional data for this relevant node of the social behavior network, we studied the expression of ERα, ERβ, GPER1, Kiss1, Kiss1R, PRGR, PRL, PRLR, EGR1, JAK2, STAT5A, and STAT5B in the MePD of males and females along the estrous cycle using the RT-qPCR technique. We also investigated whether PRL in the MePD would affect the sexual behavior display of proestrus females by microinjecting saline, the PRL receptor antagonist Del1-9-G129R-hPRL (1 µM and 10 µM), or PRL (1 nM) and Del1-9-G129R-hPRL (10 µM) 3 h before the onset of the dark-cycle period. The estrogen-dependent lordosis behavior, indicative of sexual receptivity of proestrus females, was recorded and compared before (control) and after (test) microinjections in these groups. Sex differences were found in the right and left MePD gene expression. ERα and Kiss1R, as well as PRL, Short PRLR, and STAT5B expression is higher in cycling females than males. Kiss1 expression is higher in males than females, and GPER1 is higher during diestrus than proestrus. Furthermore, Del1-9-G129R-hPRL in the MePD significantly reduced the full display and quotient of lordosis in proestrus females, an effect restored by the co-microinjection of PRL. In conjunction, the expression of studied genes showed specific sex and estrous cycle phase features, and PRL action in the MePD plays an essential role in the display of lordosis during the ovulatory period.
Collapse
Affiliation(s)
- Letícia Bühler
- Graduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 9035-003, Brazil
| | - Ana Carolina de Moura
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| | - Vincent Goffin
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades, F-75015 Paris, France.
| | - Alberto A Rasia-Filho
- Graduate Program in Neurosciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul 9035-003, Brazil; Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil; Department of Basic Sciences/Physiology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| |
Collapse
|
2
|
Kim W, Chung C. Effect of dynamic interaction of estrous cycle and stress on synaptic transmission and neuronal excitability in the lateral habenula. FASEB J 2024; 38:e70275. [PMID: 39734271 DOI: 10.1096/fj.202402296rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress. Given the important role of LHb in depressive disorders, we aimed to investigate the synaptic differences between male and female LHb and to examine the possible impact of the estrous cycle on neurotransmission in LHb. We found that the passive and active properties of LHb neurons differed according to the estrous cycle. Spontaneous excitatory postsynaptic currents exhibited higher amplitudes during the diestrus stage and lower frequencies in females than in males, whereas inhibitory postsynaptic currents showed no significant differences. Acute stress-induced hyperpolarization of resting membrane potentials (RMP) was observed in both sexes, with notable changes in female silent and tonic neurons. Stress exposure eliminated estrous cycle-dependent RMP differences and introduced cycle-specific excitability changes, especially in the metestrus and diestrus stages, suggesting that the hormonal cycle may set the synaptic tone of the LHb, thus modulating stress responses in females. Our study provides invaluable groundwork for understanding the detailed interaction between the estrous cycle and stress exposure in female LHb.
Collapse
Affiliation(s)
- Woonhee Kim
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| |
Collapse
|
3
|
Kniffin AR, Briand LA. Sex differences in glutamate transmission and plasticity in reward related regions. Front Behav Neurosci 2024; 18:1455478. [PMID: 39359325 PMCID: PMC11445661 DOI: 10.3389/fnbeh.2024.1455478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Disruptions in glutamate homeostasis within the mesolimbic reward circuitry may play a role in the pathophysiology of various reward related disorders such as major depressive disorders, anxiety, and substance use disorders. Clear sex differences have emerged in the rates and symptom severity of these disorders which may result from differing underlying mechanisms of glutamatergic signaling. Indeed, preclinical models have begun to uncover baseline sex differences throughout the brain in glutamate transmission and synaptic plasticity. Glutamatergic synaptic strength can be assessed by looking at morphological features of glutamatergic neurons including spine size, spine density, and dendritic branching. Likewise, electrophysiology studies evaluate properties of glutamatergic neurons to provide information of their functional capacity. In combination with measures of glutamatergic transmission, synaptic plasticity can be evaluated using protocols that induce long-term potentiation or long-term depression. This review will consider preclinical rodent literature directly comparing glutamatergic transmission and plasticity in reward related regions of males and females. Additionally, we will suggest which regions are exhibiting evidence for sexually dimorphic mechanisms, convergent mechanisms, or no sex differences in glutamatergic transmission and plasticity and highlight gaps in the literature for future investigation.
Collapse
Affiliation(s)
- Alyssa R. Kniffin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Prakash N, Matos HY, Sebaoui S, Tsai L, Tran T, Aromolaran A, Atrachji I, Campbell N, Goodrich M, Hernandez-Pineda D, Jesus Herrero M, Hirata T, Lischinsky J, Martinez W, Torii S, Yamashita S, Hosseini H, Sokolowski K, Esumi S, Kawasawa YI, Hashimoto-Torii K, Jones KS, Corbin JG. Connectivity and molecular profiles of Foxp2- and Dbx1-lineage neurons in the accessory olfactory bulb and medial amygdala. J Comp Neurol 2024; 532:e25545. [PMID: 37849047 PMCID: PMC10922300 DOI: 10.1002/cne.25545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
In terrestrial vertebrates, the olfactory system is divided into main (MOS) and accessory (AOS) components that process both volatile and nonvolatile cues to generate appropriate behavioral responses. While much is known regarding the molecular diversity of neurons that comprise the MOS, less is known about the AOS. Here, focusing on the vomeronasal organ (VNO), the accessory olfactory bulb (AOB), and the medial amygdala (MeA), we reveal that populations of neurons in the AOS can be molecularly subdivided based on their ongoing or prior expression of the transcription factors Foxp2 or Dbx1, which delineate separate populations of GABAergic output neurons in the MeA. We show that a majority of AOB neurons that project directly to the MeA are of the Foxp2 lineage. Using single-neuron patch-clamp electrophysiology, we further reveal that in addition to sex-specific differences across lineage, the frequency of excitatory input to MeA Dbx1- and Foxp2-lineage neurons differs between sexes. Together, this work uncovers a novel molecular diversity of AOS neurons, and lineage and sex differences in patterns of connectivity.
Collapse
Affiliation(s)
- Nandkishore Prakash
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Heidi Y Matos
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Sonia Sebaoui
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Luke Tsai
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tuyen Tran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Adejimi Aromolaran
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Isabella Atrachji
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Nya Campbell
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Meredith Goodrich
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - David Hernandez-Pineda
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Maria Jesus Herrero
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Tsutomu Hirata
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Julieta Lischinsky
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Wendolin Martinez
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shisui Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Satoshi Yamashita
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Hassan Hosseini
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Katie Sokolowski
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Shigeyuki Esumi
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Pennsylvania State University
College of Medicine, Hershey, PA, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| | - Kevin S Jones
- Department of Pharmacology, University of Michigan Medical
School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan
Medical School, Ann Arbor, MI 48109, USA
| | - Joshua G Corbin
- Center for Neuroscience Research, Children’s
Research Institute, Children’s National Hospital, Washington DC, USA
| |
Collapse
|
5
|
Abstract
Rapid advances in the neural control of social behavior highlight the role of interconnected nodes engaged in differential information processing to generate behavior. Many innate social behaviors are essential to reproductive fitness and therefore fundamentally different in males and females. Programming these differences occurs early in development in mammals, following gonadal differentiation and copious androgen production by the fetal testis during a critical period. Early-life programming of social behavior and its adult manifestation are separate but yoked processes, yet how they are linked is unknown. This review seeks to highlight that gap by identifying four core mechanisms (epigenetics, cell death, circuit formation, and adult hormonal modulation) that could connect developmental changes to the adult behaviors of mating and aggression. We further propose that a unique social behavior, adolescent play, bridges the preweaning to the postpubertal brain by engaging the same neural networks underpinning adult reproductive and aggressive behaviors.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA;
| |
Collapse
|
6
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Glial Cell Modulation of Dendritic Spine Structure and Synaptic Function. ADVANCES IN NEUROBIOLOGY 2023; 34:255-310. [PMID: 37962798 DOI: 10.1007/978-3-031-36159-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glia comprise a heterogeneous group of cells involved in the structure and function of the central and peripheral nervous system. Glial cells are found from invertebrates to humans with morphological specializations related to the neural circuits in which they are embedded. Glial cells modulate neuronal functions, brain wiring and myelination, and information processing. For example, astrocytes send processes to the synaptic cleft, actively participate in the metabolism of neurotransmitters, and release gliotransmitters, whose multiple effects depend on the targeting cells. Human astrocytes are larger and more complex than their mice and rats counterparts. Astrocytes and microglia participate in the development and plasticity of neural circuits by modulating dendritic spines. Spines enhance neuronal connectivity, integrate most postsynaptic excitatory potentials, and balance the strength of each input. Not all central synapses are engulfed by astrocytic processes. When that relationship occurs, a different pattern for thin and large spines reflects an activity-dependent remodeling of motile astrocytic processes around presynaptic and postsynaptic elements. Microglia are equally relevant for synaptic processing, and both glial cells modulate the switch of neuroendocrine secretion and behavioral display needed for reproduction. In this chapter, we provide an overview of the structure, function, and plasticity of glial cells and relate them to synaptic maturation and modulation, also involving neurotrophic factors. Together, neurons and glia coordinate synaptic transmission in both normal and abnormal conditions. Neglected over decades, this exciting research field can unravel the complexity of species-specific neural cytoarchitecture as well as the dynamic region-specific functional interactions between diverse neurons and glial subtypes.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
7
|
Rasia-Filho AA, Calcagnotto ME, von Bohlen Und Halbach O. Introduction: What Are Dendritic Spines? ADVANCES IN NEUROBIOLOGY 2023; 34:1-68. [PMID: 37962793 DOI: 10.1007/978-3-031-36159-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spines are cellular specializations that greatly increase the connectivity of neurons and modulate the "weight" of most postsynaptic excitatory potentials. Spines are found in very diverse animal species providing neural networks with a high integrative and computational possibility and plasticity, enabling the perception of sensorial stimuli and the elaboration of a myriad of behavioral displays, including emotional processing, memory, and learning. Humans have trillions of spines in the cerebral cortex, and these spines in a continuum of shapes and sizes can integrate the features that differ our brain from other species. In this chapter, we describe (1) the discovery of these small neuronal protrusions and the search for the biological meaning of dendritic spines; (2) the heterogeneity of shapes and sizes of spines, whose structure and composition are associated with the fine-tuning of synaptic processing in each nervous area, as well as the findings that support the role of dendritic spines in increasing the wiring of neural circuits and their functions; and (3) within the intraspine microenvironment, the integration and activation of signaling biochemical pathways, the compartmentalization of molecules or their spreading outside the spine, and the biophysical properties that can affect parent dendrites. We also provide (4) examples of plasticity involving dendritic spines and neural circuits relevant to species survival and comment on (5) current research advancements and challenges in this exciting research field.
Collapse
Affiliation(s)
- Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Graduate Program in Psychiatry and Behavioral Science, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
8
|
Gutierrez-Castellanos N, Husain BFA, Dias IC, Lima SQ. Neural and behavioral plasticity across the female reproductive cycle. Trends Endocrinol Metab 2022; 33:769-785. [PMID: 36253276 DOI: 10.1016/j.tem.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/05/2022]
Abstract
Sex is fundamental for the evolution and survival of most species. However, sex can also pose danger, because it increases the risk of predation and disease transmission, among others. Thus, in many species, cyclic fluctuations in the concentration of sex hormones coordinate sexual receptivity and attractiveness with female reproductive capacity, promoting copulation when fertilization is possible and preventing it otherwise. In recent decades, numerous studies have reported a wide variety of sex hormone-dependent plastic rearrangements across the entire brain, including areas relevant for female sexual behavior. By contrast, how sex hormone-induced plasticity alters the computations performed by such circuits, such that collectively they produce the appropriate periodic switches in female behavior, is mostly unknown. In this review, we highlight the myriad sex hormone-induced neuronal changes known so far, the full repertoire of behavioral changes across the reproductive cycle, and the few examples where the relationship between sex hormone-dependent plasticity, neural activity, and behavior has been established. We also discuss current challenges to causally link the actions of sex hormones to the modification of specific cellular pathways and behavior, focusing on rodents as a model system while drawing a comparison between rodents and humans wherever possible.
Collapse
Affiliation(s)
| | - Basma F A Husain
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Inês C Dias
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Research, Champalimaud Foundation, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
9
|
Guily P, Lassalle O, Chavis P, Manzoni OJ. Sex-specific divergent maturational trajectories in the postnatal rat basolateral amygdala. iScience 2022; 25:103815. [PMID: 35198880 PMCID: PMC8841815 DOI: 10.1016/j.isci.2022.103815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
In rodents and humans, the basolateral amygdala (BLA), essential for emotional behaviors, is profoundly reorganized during adolescence. We compared in both sexes the morphology, neuronal, and synaptic properties of BLA neurons in rats at puberty and adulthood. BLA neurons were more excitable in males than in females at adulthood. At pubescence, male action potentials were smaller and shorter than females’ while fast afterhyperpolarizations were larger in males. During postnatal maturation, spine length increased and decreased in females and males, respectively, while there was a reduction in spine head size in females. Excitatory synaptic properties, estimated from stimuli-response relationships, spontaneous post-synaptic currents, and AMPA/NMDA ratio also displayed sex-specific maturational differences. Finally, the developmental courses of long-term potentiation and depression were sexually dimorphic. These data reveal divergent maturational trajectories in the BLA of male and female rats and suggest sex-specific substrates to the BLA linked behaviors at adolescence and adulthood. The BLA is immature at puberty and its development toward adulthood is sex-specific At adulthood, neuronal excitability is lower in females than in males The maturation of spine morphology is more pronounced in females The developmental courses of LTP and LTD are sexually divergent
Collapse
Affiliation(s)
- Pauline Guily
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier Lassalle
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Pascale Chavis
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier J. Manzoni
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
- Corresponding author
| |
Collapse
|
10
|
Johnson CS, Hong W, Micevych PE. Posterodorsal Medial Amygdala Regulation of Female Social Behavior: GABA versus Glutamate Projections. J Neurosci 2021; 41:8790-8800. [PMID: 34470806 PMCID: PMC8528505 DOI: 10.1523/jneurosci.1103-21.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/21/2022] Open
Abstract
Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.
Collapse
Affiliation(s)
- Caroline S Johnson
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Weizhe Hong
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Paul E Micevych
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
11
|
Florido A, Velasco ER, Soto-Faguás CM, Gomez-Gomez A, Perez-Caballero L, Molina P, Nadal R, Pozo OJ, Saura CA, Andero R. Sex differences in fear memory consolidation via Tac2 signaling in mice. Nat Commun 2021; 12:2496. [PMID: 33941789 PMCID: PMC8093426 DOI: 10.1038/s41467-021-22911-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/25/2021] [Indexed: 11/08/2022] Open
Abstract
Memory formation is key for brain functioning. Uncovering the memory mechanisms is helping us to better understand neural processes in health and disease. Moreover, more specific treatments for fear-related disorders such as posttraumatic stress disorder and phobias may help to decrease their negative impact on mental health. In this line, the Tachykinin 2 (Tac2) pathway in the central amygdala (CeA) has been shown to be sufficient and necessary for the modulation of fear memory consolidation. CeA-Tac2 antagonism and its pharmacogenetic temporal inhibition impair fear memory in male mice. Surprisingly, we demonstrate here the opposite effect of Tac2 blockade on enhancing fear memory consolidation in females. Furthermore, we show that CeA-testosterone in males, CeA-estradiol in females and Akt/GSK3β/β-Catenin signaling both mediate the opposite-sex differential Tac2 pathway regulation of fear memory.
Collapse
Affiliation(s)
- A Florido
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - E R Velasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - C M Soto-Faguás
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - A Gomez-Gomez
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - L Perez-Caballero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - P Molina
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Unitat de Fisiologia Animal, Departament de Biologia Cel·lular, Fisiologia i Immunologia. Facultat de Biociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - R Nadal
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - O J Pozo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - C A Saura
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Department de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - R Andero
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
12
|
Rasia-Filho AA, Guerra KTK, Vásquez CE, Dall’Oglio A, Reberger R, Jung CR, Calcagnotto ME. The Subcortical-Allocortical- Neocortical continuum for the Emergence and Morphological Heterogeneity of Pyramidal Neurons in the Human Brain. Front Synaptic Neurosci 2021; 13:616607. [PMID: 33776739 PMCID: PMC7991104 DOI: 10.3389/fnsyn.2021.616607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Human cortical and subcortical areas integrate emotion, memory, and cognition when interpreting various environmental stimuli for the elaboration of complex, evolved social behaviors. Pyramidal neurons occur in developed phylogenetic areas advancing along with the allocortex to represent 70-85% of the neocortical gray matter. Here, we illustrate and discuss morphological features of heterogeneous spiny pyramidal neurons emerging from specific amygdaloid nuclei, in CA3 and CA1 hippocampal regions, and in neocortical layers II/III and V of the anterolateral temporal lobe in humans. Three-dimensional images of Golgi-impregnated neurons were obtained using an algorithm for the visualization of the cell body, dendritic length, branching pattern, and pleomorphic dendritic spines, which are specialized plastic postsynaptic units for most excitatory inputs. We demonstrate the emergence and development of human pyramidal neurons in the cortical and basomedial (but not the medial, MeA) nuclei of the amygdala with cells showing a triangular cell body shape, basal branched dendrites, and a short apical shaft with proximal ramifications as "pyramidal-like" neurons. Basomedial neurons also have a long and distally ramified apical dendrite not oriented to the pial surface. These neurons are at the beginning of the allocortex and the limbic lobe. "Pyramidal-like" to "classic" pyramidal neurons with laminar organization advance from the CA3 to the CA1 hippocampal regions. These cells have basal and apical dendrites with specific receptive synaptic domains and several spines. Neocortical pyramidal neurons in layers II/III and V display heterogeneous dendritic branching patterns adapted to the space available and the afferent inputs of each brain area. Dendritic spines vary in their distribution, density, shapes, and sizes (classified as stubby/wide, thin, mushroom-like, ramified, transitional forms, "atypical" or complex forms, such as thorny excrescences in the MeA and CA3 hippocampal region). Spines were found isolated or intermingled, with evident particularities (e.g., an extraordinary density in long, deep CA1 pyramidal neurons), and some showing a spinule. We describe spiny pyramidal neurons considerably improving the connectional and processing complexity of the brain circuits. On the other hand, these cells have some vulnerabilities, as found in neurodegenerative Alzheimer's disease and in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Alberto A. Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn T. Knak Guerra
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Escobar Vásquez
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Aline Dall’Oglio
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Roman Reberger
- Medical Engineering Program, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Cláudio R. Jung
- Institute of Informatics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Elisa Calcagnotto
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry and Biochemistry Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
13
|
Fels JA, Casalena GA, Manfredi G. Sex and oestrogen receptor β have modest effects on gene expression in the mouse brain posterior cortex. Endocrinol Diabetes Metab 2021; 4:e00191. [PMID: 33532622 PMCID: PMC7831211 DOI: 10.1002/edm2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
Introduction Sex differences in brain cortical function affect cognition, behaviour and susceptibility to neural diseases, but the molecular basis of sexual dimorphism in cortical function is still largely unknown. Oestrogen and oestrogen receptors (ERs), specifically ERβ, the most abundant ER in the cortex, may play a role in determining sex differences in gene expression, which could underlie functional sex differences. However, further investigation is needed to address brain region specificity of the effects of sex and ERβ on gene expression. The goal of this study was to investigate sex differences in gene expression in the mouse posterior cortex, where sex differences in transcription have never been examined, and to determine how genetic ablation of ERβ affects transcription. Methods In this study, we performed unbiased transcriptomics on RNA from the posterior cortex of adult wild-type and ERβ knockout mice (n = 4/sex/genotype). We used unbiased clustering to analyse whole-transcriptome changes between the groups. We also performed differential expression analysis on the data using DESeq2 to identify specific changes in gene expression. Results We found only 27 significantly differentially expressed genes (DEGs) in wild-type (WT) males vs females, of which 17 were autosomal genes. Interestingly, in ERβKO males vs females all the autosomal DEGs were lost. Gene Ontology analysis of the subset of DEGs with sex differences only in the WT cortex revealed a significant enrichment of genes annotated with the function 'cation channel activity'. Moreover, within each sex we found only a few DEGs in ERβKO vs WT mice (8 and 5 in males and females, respectively). Conclusions Overall, our results suggest that in the adult mouse posterior cortex there are surprisingly few sex differences in gene expression, and those that exist are mainly related to cation channel activity. Additionally, they indicate that brain region-specific functional effects of ERβ may be largely post-transcriptional.
Collapse
Affiliation(s)
- Jasmine A. Fels
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| | | | - Giovanni Manfredi
- Feil Family Brain and Mind Research InstituteWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
14
|
Abstract
Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to "activation" of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.
Collapse
Affiliation(s)
- Kimberly J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
15
|
Sex Differences in Biophysical Signatures across Molecularly Defined Medial Amygdala Neuronal Subpopulations. eNeuro 2020; 7:ENEURO.0035-20.2020. [PMID: 32493755 PMCID: PMC7333980 DOI: 10.1523/eneuro.0035-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022] Open
Abstract
The medial amygdala (MeA) is essential for processing innate social and non-social behaviors, such as territorial aggression and mating, which display in a sex-specific manner. While sex differences in cell numbers and neuronal morphology in the MeA are well established, if and how these differences extend to the biophysical level remain unknown. Our previous studies revealed that expression of the transcription factors, Dbx1 and Foxp2, during embryogenesis defines separate progenitor pools destined to generate different subclasses of MEA inhibitory output neurons. We have also previously shown that Dbx1-lineage and Foxp2-lineage neurons display different responses to innate olfactory cues and in a sex-specific manner. To examine whether these neurons also possess sex-specific biophysical signatures, we conducted a multidimensional analysis of the intrinsic electrophysiological profiles of these transcription factor defined neurons in the male and female MeA. We observed striking differences in the action potential (AP) spiking patterns across lineages, and across sex within each lineage, properties known to be modified by different voltage-gated ion channels. To identify the potential mechanism underlying the observed lineage-specific and sex-specific differences in spiking adaptation, we conducted a phase plot analysis to narrow down putative ion channel candidates. Of these candidates, we found a subset expressed in a lineage-biased and/or sex-biased manner. Thus, our results uncover neuronal subpopulation and sex differences in the biophysical signatures of developmentally defined MeA output neurons, providing a potential physiological substrate for how the male and female MeA may process social and non-social cues that trigger innate behavioral responses.
Collapse
|
16
|
Lenschow C, Lima SQ. In the mood for sex: neural circuits for reproduction. Curr Opin Neurobiol 2020; 60:155-168. [DOI: 10.1016/j.conb.2019.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022]
|
17
|
Abstract
Estrogens are critical in driving sex-typical social behaviours that are ethologically relevant in mammals. This is due to both production of local estrogens and signaling by these ligands, particularly in an interconnected set of nuclei called the social behavioural network (SBN). The SBN is a sexually dimorphic network studied predominantly in rodents that is thought to underlie the display of social behaviour in mammals. Signalling by the predominant endogenous estrogen, 17β-estradiol, can be either via the classical genomic or non-classical rapid pathway. In the classical genomic pathway, 17β-estradiol binds the intracellular estrogen receptors (ER) α and β which act as ligand-dependent transcription factors to regulate transcription. In the non-genomic pathway, 17β-estradiol binds a putative plasma membrane ER (mER) such as GPR30/GPER1 to rapidly signal via kinases or calcium flux. Though GPER1's role in sexual dimorphism has been explored to a greater extent in cardiovascular physiology, less is known about its role in the brain. In the last decade, activation of GPER1 has been shown to be important for lordosis and social cognition in females. In this review we will focus on several mechanisms that may contribute to sexually dimorphic behaviors including the colocalization of these estrogen receptors in the SBN, interplay between the signaling pathways activated by these different estrogen receptors, and the role of these receptors in development and the maintenance of the SBN, all of which remain underexplored.
Collapse
|
18
|
Llorente R, Marraudino M, Carrillo B, Bonaldo B, Simon-Areces J, Abellanas-Pérez P, Rivero-Aguilar M, Fernandez-Garcia JM, Pinos H, Garcia-Segura LM, Collado P, Grassi D. G Protein-Coupled Estrogen Receptor Immunoreactivity Fluctuates During the Estrous Cycle and Show Sex Differences in the Amygdala and Dorsal Hippocampus. Front Endocrinol (Lausanne) 2020; 11:537. [PMID: 32849310 PMCID: PMC7426398 DOI: 10.3389/fendo.2020.00537] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled estrogen receptor (GPER) in the amygdala and the dorsal hippocampus mediates actions of estradiol on anxiety, social recognition and spatial memory. In addition, GPER participates in the estrogenic regulation of synaptic function in the amygdala and in the process of adult neurogenesis in the dentate gyrus. While the distribution of the canonical estrogen receptors α and β in the amygdala and dorsal hippocampus are well characterized, little is known about the regional distribution of GPER in these brain regions and whether this distribution is affected by sex or the stages of the estrous cycle. In this study we performed a morphometric analysis of GPER immunoreactivity in the posterodorsal medial, anteroventral medial, basolateral, basomedial and central subdivisions of the amygdala and in all the histological layers of CA1 and the dentate gyrus of the dorsal hippocampal formation. The number of GPER immunoreactive cells was estimated in these different structures. GPER immunoreactivity was detected in all the assessed subdivisions of the amygdaloid nucleus and dorsal hippocampal formation. The number of GPER immunoreactive cells was higher in males than in estrus females in the central (P = 0.001) and the posterodorsal medial amygdala (P < 0.05); higher in males than in diestrus females in the strata orients (P < 0.01) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer of the dentate gyrus (P < 0.01); higher in diestrus females than in males in the basolateral amygdala (P < 0.05); higher in diestrus females than in estrus females in the central (P < 0.01), posterodorsal medial (P < 0.01) and basolateral amygdala (P < 0.01) and higher in estrus females than in diestrus females in the strata oriens (P < 0.05) and radiatum-lacunosum-moleculare (P < 0.05) of CA1-CA3 and in the molecular layer (P < 0.05) and the hilus of the dentate gyrus (P < 0.05). The findings suggest that estrogenic regulation of the amygdala and hippocampus through GPER may be different in males and in females and may fluctuate during the estrous cycle.
Collapse
Affiliation(s)
- Ricardo Llorente
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
| | - Marilena Marraudino
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Beatriz Carrillo
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Brigitta Bonaldo
- Department of Neuroscience Rita Levi Montalcini, Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Julia Simon-Areces
- Department of Physiotherapy, Podology and Dance, Universidad Europea de Madrid, Madrid, Spain
| | | | | | - Jose M. Fernandez-Garcia
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Luis M. Garcia-Segura
- Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
| | - Daniela Grassi
- Department of Preclinical Odontology, Universidad Europea de Madrid, Madrid, Spain
- Department of Psychobiology, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Instituto Mixto de Investigación Escuela Nacional de Sanidad-UNED (IMIENS), Madrid, Spain
- Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Daniela Grassi ;
| |
Collapse
|
19
|
Zancan M, Moura DJ, Morás AM, Steffens L, de Moura AC, Giovenardi M, Rasia-Filho AA. Neurotrophic factors in the posterodorsal medial amygdala of male and cycling female rats. Brain Res Bull 2019; 155:92-101. [PMID: 31812781 DOI: 10.1016/j.brainresbull.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/01/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The posterodorsal medial amygdala (MePD) has a high concentration of receptors for gonadal hormones, is a sexually dimorphic region and dynamically controls the reproductive behavior of both males and females. Neurotrophic factors can promote dendritic spine remodeling and change synaptic input strength in a region-specific manner. Here, we analyzed the gene and protein expression of brain-derived neurotrophic factor (BDNF), insulin-like growth factor-I (IGF-1), polysialylated neural cell adhesion molecule (PSA-NCAM) and Ephrin-A4 in the MePD of adult males and females in diestrus, proestrus and estrus using real-time qPCR and fluorescent immunohistochemistry. The first approach showed their amplification except for Igf1 and the latter revealed that BDNF, IGF-1, PSA-NCAM and Ephrin-A4 are expressed in the MePD of the adult rats. Protein expression of these neurotrophic factors showed no differences between groups. However, proestrus females displayed a higher number of labelled puncta than males for BDNF expression and diestrus females for IGF-1 expression. In conjunction, results indicate that IGF-1 might be released rather than synthetized in the MePD, and the expression of specific neurotrophic factors varies specifically during proestrus. The dynamic modulation of BDNF and IGF-1 during this cyclic phase is coincident with synaptic changes and spine density remodeling in the MePD, the disinhibition of gonadotrophin secretion for ovulation and the display of sexual behavior.
Collapse
Affiliation(s)
- Mariana Zancan
- Federal University of Health Sciences/DCBS-Physiology, Porto Alegre, RS, Brazil; Federal University of Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre, RS, Brazil
| | - Dinara J Moura
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Luiza Steffens
- Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil
| | - Ana Carolina de Moura
- Federal University of Health Sciences/ Graduate Program in Health Sciences, Porto Alegre, RS, Brazil
| | - Márcia Giovenardi
- Federal University of Health Sciences/ Graduate Program in Health Sciences, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Federal University of Health Sciences/DCBS-Physiology, Porto Alegre, RS, Brazil; Federal University of Rio Grande do Sul/Graduate Program in Neurosciences, Porto Alegre, RS, Brazil; Federal University of Health Sciences/Graduate Program in Biosciences, Porto Alegre, RS, Brazil.
| |
Collapse
|