1
|
Mercer M, Dasgupta A, Pawłowski K, Buszczak M. Bourbon and Mycbp function with Otu to promote Sxl protein expression in the Drosophila female germline. Proc Natl Acad Sci U S A 2025; 122:e2426524122. [PMID: 40215271 PMCID: PMC12012553 DOI: 10.1073/pnas.2426524122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 04/24/2025] Open
Abstract
In Drosophila ovaries, germ cells differentiate through several stages of cyst development before entering meiosis. This early differentiation program depends on both the stepwise deployment of specific regulatory mechanisms and on maintenance of germline sexual identity. The study of female sterile mutations that result in formation of germ cell tumors has been invaluable in identifying the mechanisms that control these developmental events. Here, we characterize the germ cell-enriched gene bourbon (bbn), null mutants of which cause the formation of a mixture of agametic ovarioles and cystic germ cell tumors. We performed proteomic analysis and found Bbn forms a complex with Ovarian tumor (Otu), a protein previously linked with regulation of the sex determination factor Sex lethal (Sxl), and the Drosophila ortholog of c-Myc binding protein (Mycbp). Loss of Mycbp also results in the formation of cystic germ cell tumors. Bbn promotes the stability of Otu and fosters interactions between Otu and Mycbp. Germ cells from bbn and Mycbp mutants display a loss of Sxl expression specifically in the germline. Transgenic rescue experiments show the bbn sterile phenotype is independent from Sxl splicing defects. Further evidence suggests Otu physically interacts with and promotes Sxl protein stability. This function does not depend on Otu's deubiquitinase activity. Last, we find the human orthologs of Otu and Mycbp, OTUD4, and MYCBP, also physically interact, suggesting conservation of function. Together these data provide insights into how a conserved complex promotes the germline expression of Sxl protein and the differentiation of Drosophila germ cells.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Anirban Dasgupta
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI Research Laboratories, University of Texas Southwestern Medical School, Dallas, TX75390
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
2
|
Vogel K, Isono E. Erasing marks: Functions of plant deubiquitylating enzymes in modulating the ubiquitin code. THE PLANT CELL 2024; 36:3057-3073. [PMID: 38656977 PMCID: PMC11371157 DOI: 10.1093/plcell/koae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Plant cells need to respond to environmental stimuli and developmental signals accurately and promptly. Ubiquitylation is a reversible posttranslational modification that enables the adaptation of cellular proteostasis to internal or external factors. The different topologies of ubiquitin linkages serve as the structural basis for the ubiquitin code, which can be interpreted by ubiquitin-binding proteins or readers in specific processes. The ubiquitylation status of target proteins is regulated by ubiquitylating enzymes or writers, as well as deubiquitylating enzymes (DUBs) or erasers. DUBs can remove ubiquitin molecules from target proteins. Arabidopsis (A. thaliana) DUBs belong to 7 protein families and exhibit a wide range of functions and play an important role in regulating selective protein degradation processes, including proteasomal, endocytic, and autophagic protein degradation. DUBs also shape the epigenetic landscape and modulate DNA damage repair processes. In this review, we summarize the current knowledge on DUBs in plants, their cellular functions, and the molecular mechanisms involved in the regulation of plant DUBs.
Collapse
Affiliation(s)
- Karin Vogel
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
| | - Erika Isono
- Department of Biology, University of Konstanz, Konstanz 78464, Germany
- Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki 444-8585 Aichi, Japan
| |
Collapse
|
3
|
Ci M, Zhao G, Li C, Liu R, Hu X, Pan J, Shen Y, Zhang G, Li Y, Zhang L, Liang P, Cui H. OTUD4 promotes the progression of glioblastoma by deubiquitinating CDK1 and activating MAPK signaling pathway. Cell Death Dis 2024; 15:179. [PMID: 38429268 PMCID: PMC10907623 DOI: 10.1038/s41419-024-06569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Glioblastoma, IDH-Wild type (GBM, CNS WHO Grade 4) is a highly heterogeneous and aggressive primary malignant brain tumor with high morbidity, high mortality, and poor patient prognosis. The global burden of GBM is increasing notably due to limited treatment options, drug delivery problems, and the lack of characteristic molecular targets. OTU deubiquitinase 4 (OTUD4) is a potential predictive factor for several cancers such as breast cancer, liver cancer, and lung cancer. However, its function in GBM remains unknown. In this study, we found that high expression of OTUD4 is positively associated with poor prognosis in GBM patients. Moreover, we provided in vitro and in vivo evidence that OTUD4 promotes the proliferation and invasion of GBM cells. Mechanism studies showed that, on the one hand, OTUD4 directly interacts with cyclin-dependent kinase 1 (CDK1) and stabilizes CDK1 by removing its K11, K29, and K33-linked polyubiquitination. On the other hand, OTUD4 binds to fibroblast growth factor receptor 1 (FGFR1) and reduces FGFR1's K6 and K27-linked polyubiquitination, thereby indirectly stabilizing CDK1, ultimately influencing the activation of the downstream MAPK signaling pathway. Collectively, our results revealed that OTUD4 promotes GBM progression via OTUD4-CDK1-MAPK axis, and may be a prospective therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Mingxin Ci
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Chongyang Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Xiaosong Hu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Jun Pan
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yang Shen
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Guanghui Zhang
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Yongsen Li
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Li Zhang
- Department of Radiology and Nuclear Medicine, The First Hospital of HeBei Medical University, Hebei, 050000, China.
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400715, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
4
|
Campos Alonso M, Knobeloch KP. In the moonlight: non-catalytic functions of ubiquitin and ubiquitin-like proteases. Front Mol Biosci 2024; 11:1349509. [PMID: 38455765 PMCID: PMC10919355 DOI: 10.3389/fmolb.2024.1349509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Proteases that cleave ubiquitin or ubiquitin-like proteins (UBLs) are critical players in maintaining the homeostasis of the organism. Concordantly, their dysregulation has been directly linked to various diseases, including cancer, neurodegeneration, developmental aberrations, cardiac disorders and inflammation. Given their potential as novel therapeutic targets, it is essential to fully understand their mechanisms of action. Traditionally, observed effects resulting from deficiencies in deubiquitinases (DUBs) and UBL proteases have often been attributed to the misregulation of substrate modification by ubiquitin or UBLs. Therefore, much research has focused on understanding the catalytic activities of these proteins. However, this view has overlooked the possibility that DUBs and UBL proteases might also have significant non-catalytic functions, which are more prevalent than previously believed and urgently require further investigation. Moreover, multiple examples have shown that either selective loss of only the protease activity or complete absence of these proteins can have different functional and physiological consequences. Furthermore, DUBs and UBL proteases have been shown to often contain domains or binding motifs that not only modulate their catalytic activity but can also mediate entirely different functions. This review aims to shed light on the non-catalytic, moonlighting functions of DUBs and UBL proteases, which extend beyond the hydrolysis of ubiquitin and UBL chains and are just beginning to emerge.
Collapse
Affiliation(s)
- Marta Campos Alonso
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus-Peter Knobeloch
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Luo L, Li T, Zeng Z, Li H, He X, Chen Y. CSE reduces OTUD4 triggering lung epithelial cell apoptosis via PAI-1 degradation. Cell Death Dis 2023; 14:614. [PMID: 37726265 PMCID: PMC10509146 DOI: 10.1038/s41419-023-06131-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Ovarian tumor family deubiquitinase 4 (OTUD4), a member of the OTU deubiquitinating enzyme, is implicated to decrease in cancer to regulate cell apoptosis. However, the role of OTUD4 in cigarette smoke induced epithelial cell apoptosis and its mechanism have not been elucidated. In this study, we showed that OTUD4 protein reduced in CSE treated mice and airway epithelial cells. OTUD4 silence aggravated cell apoptosis and emphysematous change in the lung tissue of cigarette smoke extract (CSE) treated mice. Additionally, restoration of OTUD4 in the lung of mice alleviated CSE induced apoptosis and emphysematous morphology change. The effect of OTUD4 on cell apoptosis was also confirmed in vitro. Through protein profile screening, we identified that OTUD4 may interact with plasminogen activator inhibitor 1(PAI-1). We further confirmed that OTUD4 interacted with PAI-1 for de-ubiquitination and inhibiting CSE induced PAI-1 degradation. Furthermore, the protective role of OTUD4 in airway epithelial cells apoptosis was blocked by PAI-1 deactivation. Taken together, our data suggest that OTUD4 regulates cigarette smoke (CS)-triggered airway epithelial cell apoptosis via modulating PAI-1 degradation. Targeting OUTD4/PAI-1 signaling might potentially provide a therapeutic target against the lung cell apoptosis in cigarette smoke (CS)-induced emphysema.
Collapse
Affiliation(s)
- Lijuan Luo
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Tiao Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Herui Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xue He
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China.
| |
Collapse
|
6
|
Winden KD, Pham TT, Teaney NA, Ruiz J, Chen R, Chen C, Sahin M. Increased degradation of FMRP contributes to neuronal hyperexcitability in tuberous sclerosis complex. Cell Rep 2023; 42:112838. [PMID: 37494191 PMCID: PMC10529098 DOI: 10.1016/j.celrep.2023.112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder, but new therapies have been impeded by a lack of understanding of the pathological mechanisms. Tuberous sclerosis complex (TSC) and fragile X syndrome are associated with alterations in the mechanistic target of rapamycin (mTOR) and fragile X messenger ribonucleoprotein 1 (FMRP), which have been implicated in the development of ASD. Previously, we observed that transcripts associated with FMRP were down-regulated in TSC2-deficient neurons. In this study, we find that FMRP turnover is dysregulated in TSC2-deficient rodent primary neurons and human induced pluripotent stem cell (iPSC)-derived neurons and is dependent on the E3 ubiquitin ligase anaphase-promoting complex. We also demonstrate that overexpression of FMRP can partially rescue hyperexcitability in TSC2-deficient iPSC-derived neurons. These data indicate that FMRP dysregulation represents an important pathological mechanism in the development of abnormal neuronal activity in TSC and illustrate a molecular convergence between these two neurogenetic disorders.
Collapse
Affiliation(s)
- Kellen D Winden
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Truc T Pham
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicole A Teaney
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Juan Ruiz
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Cidi Chen
- Human Neuron Core, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, Zhang J, Moses AM, Youn JY. A New Phase of Networking: The Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. Chem Rev 2023. [PMID: 36662637 PMCID: PMC10375481 DOI: 10.1021/acs.chemrev.2c00608] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
Collapse
Affiliation(s)
- Sean R Millar
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karl J Schreiber
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Yi-Cheng Tsai
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jiyun Won
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Jianping Zhang
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5T 3A1, Canada.,The Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
8
|
Kedia S, Aghanoori MR, Burns KML, Subha M, Williams L, Wen P, Kopp D, Erickson SL, Harvey EM, Chen X, Hua M, Perez JU, Ishraque F, Yang G. Ubiquitination and deubiquitination of 4E-T regulate neural progenitor cell maintenance and neurogenesis by controlling P-body formation. Cell Rep 2022; 40:111070. [PMID: 35830814 DOI: 10.1016/j.celrep.2022.111070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/19/2022] Open
Abstract
During embryogenesis, neural stem/progenitor cells (NPCs) proliferate and differentiate to form brain tissues. Here, we show that in the developing murine cerebral cortex, the balance between the NPC maintenance and differentiation is coordinated by ubiquitin signals that control the formation of processing bodies (P-bodies), cytoplasmic membraneless organelles critical for cell state regulation. We find that the deubiquitinase Otud4 and the E3 ligase Trim56 counter-regulate the ubiquitination status of a core P-body protein 4E-T to orchestrate the assembly of P-bodies in NPCs. Aberrant induction of 4E-T ubiquitination promotes P-body assembly in NPCs and causes a delay in their cell cycle progression and differentiation. In contrast, loss of 4E-T ubiquitination abrogates P-bodies and results in premature neurogenesis. Thus, our results reveal a critical role of ubiquitin-dependent regulation of P-body formation in NPC maintenance and neurogenesis during brain development.
Collapse
Affiliation(s)
- Shreeya Kedia
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Mohamad-Reza Aghanoori
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kaylan M L Burns
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Maneesha Subha
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Laura Williams
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Pengqiang Wen
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Drayden Kopp
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Sarah L Erickson
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Emily M Harvey
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Xin Chen
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michelle Hua
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Jose Uriel Perez
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Fatin Ishraque
- Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada
| | - Guang Yang
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Calgary, AB T2N 4N1, Canada; Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Owerko Centre, ACHRI, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
9
|
Role of the Ubiquitin System in Stress Granule Metabolism. Int J Mol Sci 2022; 23:ijms23073624. [PMID: 35408984 PMCID: PMC8999021 DOI: 10.3390/ijms23073624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Eukaryotic cells react to various stress conditions with the rapid formation of membrane-less organelles called stress granules (SGs). SGs form by multivalent interactions between RNAs and RNA-binding proteins and are believed to protect stalled translation initiation complexes from stress-induced degradation. SGs contain hundreds of different mRNAs and proteins, and their assembly and disassembly are tightly controlled by post-translational modifications. The ubiquitin system, which mediates the covalent modification of target proteins with the small protein ubiquitin (‘ubiquitylation’), has been implicated in different aspects of SG metabolism, but specific functions in SG turnover have only recently emerged. Here, we summarize the evidence for the presence of ubiquitylated proteins at SGs, review the functions of different components of the ubiquitin system in SG formation and clearance, and discuss the link between perturbed SG clearance and the pathogenesis of neurodegenerative disorders. We conclude that the ubiquitin system plays an important, medically relevant role in SG biology.
Collapse
|
10
|
Gotor NL, Armaos A, Calloni G, Torrent Burgas M, Vabulas R, De Groot NS, Tartaglia GG. RNA-binding and prion domains: the Yin and Yang of phase separation. Nucleic Acids Res 2020; 48:9491-9504. [PMID: 32857852 PMCID: PMC7515694 DOI: 10.1093/nar/gkaa681] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Proteins and RNAs assemble in membrane-less organelles that organize intracellular spaces and regulate biochemical reactions. The ability of proteins and RNAs to form condensates is encoded in their sequences, yet it is unknown which domains drive the phase separation (PS) process and what are their specific roles. Here, we systematically investigated the human and yeast proteomes to find regions promoting condensation. Using advanced computational methods to predict the PS propensity of proteins, we designed a set of experiments to investigate the contributions of Prion-Like Domains (PrLDs) and RNA-binding domains (RBDs). We found that one PrLD is sufficient to drive PS, whereas multiple RBDs are needed to modulate the dynamics of the assemblies. In the case of stress granule protein Pub1 we show that the PrLD promotes sequestration of protein partners and the RBD confers liquid-like behaviour to the condensate. Our work sheds light on the fine interplay between RBDs and PrLD to regulate formation of membrane-less organelles, opening up the avenue for their manipulation.
Collapse
Affiliation(s)
- Nieves Lorenzo Gotor
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Alexandros Armaos
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, RNA System Biology Lab, Via Enrico Melen 83, 16152 Genoa, Italy
| | - Giulia Calloni
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main,60438, Germany
| | - Marc Torrent Burgas
- Systems Biology of Infection Lab, Department of Biochemistry and Molecular Biology, Biosciences Faculty, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - R Martin Vabulas
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt am Main, 60438, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main,60438, Germany
- Charité – Universitätsmedizin Berlin, Institute of Biochemistry, 10117 Berlin, Germany
| | - Natalia Sanchez De Groot
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gian Gaetano Tartaglia
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain and Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Center for Human Technologies, Istituto Italiano di Tecnologia, RNA System Biology Lab, Via Enrico Melen 83, 16152 Genoa, Italy
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 23 Passeig Lluis Companys, 08010 Barcelona, Spain
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
11
|
The function and regulation of OTU deubiquitinases. Front Med 2019; 14:542-563. [PMID: 31884527 DOI: 10.1007/s11684-019-0734-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.
Collapse
|
12
|
Thapa P, Shanmugam N, Pokrzywa W. Ubiquitin Signaling Regulates RNA Biogenesis, Processing, and Metabolism. Bioessays 2019; 42:e1900171. [PMID: 31778250 DOI: 10.1002/bies.201900171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/29/2019] [Indexed: 12/17/2022]
Abstract
The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin-proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the UPS and different types of RNA are reviewed. This interplay mainly involves specific RNA-binding E3 ligases that link RNA-dependent processes with protein ubiquitylation. The emerging understanding of their modes of RNA binding, their RNA targets, and their molecular and cellular functions are primarily focused on. It is discussed how the UPS adapted to interact with different types of RNA and how RNA molecules influence the ubiquitin signaling components.
Collapse
Affiliation(s)
- Pankaj Thapa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Nilesh Shanmugam
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| | - Wojciech Pokrzywa
- Laboratory of Protein Metabolism in Development and Aging, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
| |
Collapse
|