1
|
Wirshing AC, Petrucco CA, Lew DJ. Chemical transformation of the multibudding yeast, Aureobasidium pullulans. J Cell Biol 2024; 223:e202402114. [PMID: 38935076 PMCID: PMC11211067 DOI: 10.1083/jcb.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Aureobasidium pullulans is a ubiquitous polymorphic black yeast with industrial and agricultural applications. It has recently gained attention amongst cell biologists for its unconventional mode of proliferation in which multinucleate yeast cells make multiple buds within a single cell cycle. Here, we combine a chemical transformation method with genome-targeted homologous recombination to yield ∼60 transformants/μg of DNA in just 3 days. This protocol is simple, inexpensive, and requires no specialized equipment. We also describe vectors with codon-optimized green and red fluorescent proteins for A. pullulans and use these tools to explore novel cell biology. Quantitative imaging of a strain expressing cytosolic and nuclear markers showed that although the nuclear number varies considerably among cells of similar volume, total nuclear volume scales with cell volume over an impressive 70-fold size range. The protocols and tools described here expand the toolkit for A. pullulans biologists and will help researchers address the many other puzzles posed by this polyextremotolerant and morphologically plastic organism.
Collapse
Affiliation(s)
- Alison C.E. Wirshing
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Claudia A. Petrucco
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Daniel J. Lew
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
2
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
3
|
Vijayan A, Mody TA, Yu Q, Wolny A, Cerrone L, Strauss S, Tsiantis M, Smith RS, Hamprecht FA, Kreshuk A, Schneitz K. A deep learning-based toolkit for 3D nuclei segmentation and quantitative analysis in cellular and tissue context. Development 2024; 151:dev202800. [PMID: 39036998 PMCID: PMC11273294 DOI: 10.1242/dev.202800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024]
Abstract
We present a new set of computational tools that enable accurate and widely applicable 3D segmentation of nuclei in various 3D digital organs. We have developed an approach for ground truth generation and iterative training of 3D nuclear segmentation models, which we applied to popular CellPose, PlantSeg and StarDist algorithms. We provide two high-quality models trained on plant nuclei that enable 3D segmentation of nuclei in datasets obtained from fixed or live samples, acquired from different plant and animal tissues, and stained with various nuclear stains or fluorescent protein-based nuclear reporters. We also share a diverse high-quality training dataset of about 10,000 nuclei. Furthermore, we advanced the MorphoGraphX analysis and visualization software by, among other things, providing a method for linking 3D segmented nuclei to their surrounding cells in 3D digital organs. We found that the nuclear-to-cell volume ratio varies between different ovule tissues and during the development of a tissue. Finally, we extended the PlantSeg 3D segmentation pipeline with a proofreading tool that uses 3D segmented nuclei as seeds to correct cell segmentation errors in difficult-to-segment tissues.
Collapse
Affiliation(s)
- Athul Vijayan
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Tejasvinee Atul Mody
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Qin Yu
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Collaboration for joint PhD degree between European Molecular Biology Laboratory and Heidelberg University, Faculty of Biosciences, Heidelberg 69117, Germany
| | - Adrian Wolny
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Lorenzo Cerrone
- Interdsisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg 69120, Germany
| | - Soeren Strauss
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Miltos Tsiantis
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Richard S. Smith
- Department of Comparative Developmental and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Computational and Systems Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Fred A. Hamprecht
- Interdsisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg 69120, Germany
| | - Anna Kreshuk
- European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Kay Schneitz
- Plant Developmental Biology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
4
|
Lemière J, Real-Calderon P, Holt LJ, Fai TG, Chang F. Control of nuclear size by osmotic forces in Schizosaccharomyces pombe. eLife 2022; 11:76075. [PMID: 35856499 PMCID: PMC9410708 DOI: 10.7554/elife.76075] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
The size of the nucleus scales robustly with cell size so that the nuclear-to-cell volume ratio (N/C ratio) is maintained during cell growth in many cell types. The mechanism responsible for this scaling remains mysterious. Previous studies have established that the N/C ratio is not determined by DNA amount but is instead influenced by factors such as nuclear envelope mechanics and nuclear transport. Here, we developed a quantitative model for nuclear size control based upon colloid osmotic pressure and tested key predictions in the fission yeast Schizosaccharomyces pombe. This model posits that the N/C ratio is determined by the numbers of macromolecules in the nucleoplasm and cytoplasm. Osmotic shift experiments showed that the fission yeast nucleus behaves as an ideal osmometer whose volume is primarily dictated by osmotic forces. Inhibition of nuclear export caused accumulation of macromolecules in the nucleoplasm, leading to nuclear swelling. We further demonstrated that the N/C ratio is maintained by a homeostasis mechanism based upon synthesis of macromolecules during growth. These studies demonstrate the functions of colloid osmotic pressure in intracellular organization and size control.
Collapse
Affiliation(s)
- Joël Lemière
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States,Centro Andaluz de Biología del DesarrolloSevillaSpain
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone HealthNew YorkUnited States
| | - Thomas G Fai
- Department of Mathematics and Volen Center for Complex Systems, Brandeis UniversityWalthamUnited States
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
5
|
Ramírez-Nuñez O, Jové M, Torres P, Sol J, Fontdevila L, Romero-Guevara R, Andrés-Benito P, Ayala V, Rossi C, Boada J, Povedano M, Ferrer I, Pamplona R, Portero-Otin M. Nuclear lipidome is altered in amyotrophic lateral sclerosis: A pilot study. J Neurochem 2021; 158:482-499. [PMID: 33905537 DOI: 10.1111/jnc.15373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022]
Abstract
Nucleocytosolic transport, a membrane process, is impaired in motor neurons in amyotrophic lateral sclerosis (ALS). This study analyzes the nuclear lipidome in motor neurons in ALS and examines molecular pathways linked to the major lipid alterations. Nuclei were obtained from the frozen anterior horn of the lumbar spinal cord of ALS patients and age-matched controls. Lipidomic profiles of this subcellular fraction were obtained using liquid chromatography and mass spectrometry. We validated the mechanisms behind presumable lipidomic changes by exploring ALS surrogate models including human motor neurons (derived from ALS lines and controls) subjected to oxidative stress, the hSOD-G93A transgenic mice, and samples from an independent cohort of ALS patients. Among the differential lipid species, we noted 41 potential identities, mostly belonging to phospholipids (particularly ether phospholipids, as plasmalogens), as well as diacylglycerols and triacylglycerides. Decreased expression of alkyldihydroxyacetonephosphate synthase (AGPS)-a critical peroxisomal enzyme in plasmalogen synthesis-is found in motor neuron disease models; this occurs in parallel with an increase in the expression of sterol carrier protein 2 (SCP2) mRNA in ALS and Scp2 levels in G93A transgenic mice. Further, we identified diminished expression of diacylglycerol-related enzymes, such as phospholipase C βI (PLCβI) and protein kinase CβII (PKCβII), linked to diacylglycerol metabolism. Finally, lipid droplets were recognized in the nuclei, supporting the identification of triacylglycerides as differential lipids. Our results point to the potentially pathogenic role of altered composition of nuclear membrane lipids and lipids in the nucleoplasm in the anterior horn of the spinal cord in ALS. Overall, these data support the usefulness of subcellular lipidomics applied to neurodegenerative diseases.
Collapse
Affiliation(s)
- Omar Ramírez-Nuñez
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mariona Jové
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Pascual Torres
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain.,Institut Català de la Salut, Lleida, Spain.,Research Support Unit Lleida, Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Lleida, Spain
| | - Laia Fontdevila
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | | | - Pol Andrés-Benito
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Victòria Ayala
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Chiara Rossi
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Jordi Boada
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Mònica Povedano
- Neurology Service, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Isidro Ferrer
- Departament of Pathology and Experimental Therapeutics, Hospital Universitari de Bellvitge, IDIBELL, Universitat de Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Barcelona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, School of Medicine, IRBLleida-UdL, Lleida, Spain
| |
Collapse
|
6
|
Nagy Z, Medgyes-Horváth A, Vörös E, Sveiczer Á. Strongly oversized fission yeast cells lack any size control and tend to grow linearly rather than bilinearly. Yeast 2020; 38:206-221. [PMID: 33244789 DOI: 10.1002/yea.3535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
During the mitotic cycle, the rod-shaped fission yeast cells grow only at their tips. The newly born cells grow first unipolarly at their old end, but later in the cycle, the 'new end take-off' event occurs, resulting in bipolar growth. Photographs were taken of several steady-state and induction synchronous cultures of different cell cycle mutants of fission yeast, generally larger than wild type. Length measurements of many individual cells were performed from birth to division. For all the measured growth patterns, three different functions (linear, bilinear and exponential) were fitted, and the most adequate one was chosen by using specific statistical criteria, considering the altering parameter numbers. Although the growth patterns were heterogeneous in all the cultures studied, we could find some tendencies. In cultures with sufficiently wide size distribution, cells large enough at birth tend to grow linearly, whereas the other cells generally tend to grow bilinearly. We have found that among bilinearly growing cells, the larger they are at birth, the rate change point during their bilinear pattern occurs earlier in the cycle. This shifting near to the beginning of the cycle might finally cause a linear pattern, if the cells are even larger. In all of the steady-state cultures studied, a size control mechanism operates to maintain homeostasis. By contrast, strongly oversized cells of induction synchronous cultures lack any sizer, and their cycle rather behaves like an adder. We could determine the critical cell size for both the G1 and G2 size controls, where these mechanisms become cryptic. TAKE AWAY: Most individual fission yeast cells in steady-state cultures grow bilinearly. In strongly oversized fission yeast cells, linear growth dominates over bilinear. Above birth length thresholds, both the G1 and G2 size controls become cryptic.
Collapse
Affiliation(s)
- Zsófia Nagy
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Anna Medgyes-Horváth
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Eszter Vörös
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Ákos Sveiczer
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
7
|
Baybay EK, Esposito E, Hauf S. Pomegranate: 2D segmentation and 3D reconstruction for fission yeast and other radially symmetric cells. Sci Rep 2020; 10:16580. [PMID: 33024177 PMCID: PMC7538417 DOI: 10.1038/s41598-020-73597-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 11/09/2022] Open
Abstract
Three-dimensional (3D) segmentation of cells in microscopy images is crucial to accurately capture signals that extend across optical sections. Using brightfield images for segmentation has the advantage of being minimally phototoxic and leaving all other channels available for signals of interest. However, brightfield images only readily provide information for two-dimensional (2D) segmentation. In radially symmetric cells, such as fission yeast and many bacteria, this 2D segmentation can be computationally extruded into the third dimension. However, current methods typically make the simplifying assumption that cells are straight rods. Here, we report Pomegranate, a pipeline that performs the extrusion into 3D using spheres placed along the topological skeletons of the 2D-segmented regions. The diameter of these spheres adapts to the cell diameter at each position. Thus, Pomegranate accurately represents radially symmetric cells in 3D even if cell diameter varies and regardless of whether a cell is straight, bent or curved. We have tested Pomegranate on fission yeast and demonstrate its ability to 3D segment wild-type cells as well as classical size and shape mutants. The pipeline is available as a macro for the open-source image analysis software Fiji/ImageJ. 2D segmentations created within or outside Pomegranate can serve as input, thus making this a valuable extension to the image analysis portfolio already available for fission yeast and other radially symmetric cell types.
Collapse
Affiliation(s)
- Erod Keaton Baybay
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Eric Esposito
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Silke Hauf
- Department of Biological Sciences and Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|