1
|
Gatenby RA, Teer JK, Tsai KY, Brown JS. Parallel and convergent dynamics in the evolution of primary breast and lung adenocarcinomas. Commun Biol 2025; 8:775. [PMID: 40399443 PMCID: PMC12095661 DOI: 10.1038/s42003-025-08123-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/23/2025] [Indexed: 05/23/2025] Open
Abstract
Cancer development requires an evolutionary transformation from mammalian cells fully regulated by and integrated into multicellular tissue to cancer cells that, as single cell protists, are individually subject to Darwinian selection. Through genetic and epigenetic mechanisms of inheritance, the evolving cancer phenotype must acquire independence from host controls, downregulate differentiated functions that benefit the host but not individual cells, and generate phenotypic traits that increase fitness in the context of the selection forces within the local microenvironment. Here, we investigate this evolutionary transition in breast (BRCA) and lung (LUAD, without EGFR, KRAS or BRAF driver mutations) adenocarcinomas using bulk mutation and expression data from the TCGA database. We define evolution selection for genes and molecular pathways based on 1) changes in gene expression compared to normal tissue, and 2) significantly larger or smaller observed mutation rates compared to those expected based on the gene size. We find BRCA and LUAD disable different genes and gene pathways associated with tissue-specific signaling and differentiated functions but promote common molecular pathways associated with cell cycle, cell-cell interactions, cytoskeleton, voltage gated ion channels, and microenvironmental niche construction. Thus, tissue-specific parallel evolution in early cancer development is followed by convergence to a common cancer phenotype.
Collapse
Affiliation(s)
- Robert A Gatenby
- Cancer Biology and Evolution Program, Tampa, FL, USA.
- Integrated Mathematical Oncology Department, Tampa, FL, USA.
| | - Jamie K Teer
- Biostatistics and Bioinformatics Department, Tampa, FL, USA
| | - Kenneth Y Tsai
- Cancer Biology and Evolution Program, Tampa, FL, USA
- Pathology Department Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Tampa, FL, USA
- Integrated Mathematical Oncology Department, Tampa, FL, USA
| |
Collapse
|
2
|
Modanwal S, Mishra A, Mishra N. An integrative analysis of GEO data to identify possible therapeutic biomarkers of prostate cancer and targeting potential protein through Zea mays phytochemicals by virtual screening approaches. J Biomol Struct Dyn 2025; 43:709-729. [PMID: 38217083 DOI: 10.1080/07391102.2023.2283163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 01/14/2024]
Abstract
Prostate cancer (PC) is a prevalent type of cancer among men. Delaying the treatment of patients with upgraded or upstaged cancer may lead to unmanageable circumstances. The aim of this study is to contribute to the finding of biomarkers that are specific to PC and identify drug candidates derived from plants. The information about cancer is critical for clinicians to make decisions about patient treatment in the era of precision medicine. Advances in genomics technology have opened up new possibilities for identifying genes that are associated with cancer, including PC. This study identifies novel differentially expressed genes for PC. The seven PC microarray datasets were selected from the National Center for Biotechnology Information (NCBI)/Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) were found based on a fold change of |logFC| ≥ 1 and an adjusted p-value of <0.05. The DEGs were further studied using several bioinformatics tools, including STRING, CytoHubba, SRplot, Coremine Medical database, FunRich and GeneMANIA, cBioPortal. The six new potential biomarkers, GAGE2A, GAGE12G, GAGE2E, GAGE13, GAGE12F and CSAG1 were identified. These biomarkers are associated with biological processes (BPs) such as cell division, and gene expression regulation, so these genes may have a crucial role in PC progression and may serve as potential biomarkers for PC. A total of 497 phytochemicals from corn plants have been screened against the target protein and found LTS0176591 as the best lead molecule with docking score of -6.31 kcal/mol. Further, molecular mechanics-generalized born surface area (MM-GBSA), molecular dynamics simulation, principal component analysis (PCA), free energy landscape (FEL) and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) were carried out to validate the findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shristi Modanwal
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ashutosh Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Nidhi Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Dong Z, Qian J, Law TSM, Chau MHK, Cao Y, Xue S, Tong S, Zhao Y, Kwok YK, Ng K, Chan DYL, Chiu PKF, Ng CF, Chung CHS, Mak JSM, Leung TY, Chung JPW, Morton CC, Choy KW. Mate-pair genome sequencing reveals structural variants for idiopathic male infertility. Hum Genet 2023; 142:363-377. [PMID: 36526900 DOI: 10.1007/s00439-022-02510-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Currently, routine genetic investigation for male infertility includes karyotyping analysis and PCR for Y chromosomal microdeletions to provide prognostic information such as sperm retrieval success rate. However, over 85% of male infertility remain idiopathic. We assessed 101 male patients with primary infertility in a retrospective cohort analysis who have previously received negative results from standard-of-care tests. Mate-pair genome sequencing (large-insert size library), an alternative long-DNA sequencing method, was performed to detect clinically significant structural variants (SVs) and copy-number neutral absence of heterozygosity (AOH). Candidate SVs were filtered against our in-house cohort of 1077 fertile men. Genes disrupted by potentially clinically significant variants were correlated with single-cell gene expression profiles of human fetal and postnatal testicular developmental lineages and adult germ cells. Follow-up studies were conducted for each patient with clinically relevant finding(s). Molecular diagnoses were made in 11.1% (7/63) of patients with non-obstructive azoospermia and 13.2% (5/38) of patients with severe oligozoospermia. Among them, 12 clinically significant SVs were identified in 12 cases, including five known syndromes, one inversion, and six SVs with direct disruption of genes by intragenic rearrangements or complex insertions. Importantly, a genetic defect related to intracytoplasmic sperm injection (ICSI) failure was identified in a patient with non-obstructive azoospermia, illustrating the additional value of an etiologic diagnosis in addition to determining sperm retrieval rate. Our study reveals a landscape of various genomic variants in 101 males with idiopathic infertility, not only advancing understanding of the underlying mechanisms of male infertility, but also impacting clinical management.
Collapse
Affiliation(s)
- Zirui Dong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China. .,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China. .,The Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jicheng Qian
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Tracy Sze Man Law
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Matthew Hoi Kin Chau
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Ye Cao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China.,The Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuwen Xue
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Steve Tong
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yilin Zhao
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yvonne K Kwok
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Karen Ng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Peter K-F Chiu
- SH Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Fai Ng
- SH Ho Urology Centre, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Cathy Hoi Sze Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jennifer Sze Man Mak
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tak Yeung Leung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.,The Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Jacqueline Pui Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.,The Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China.,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China
| | - Cynthia C Morton
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Harvard Medical School, Boston, MA, 02115, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Kwong Wai Choy
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China. .,Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong, China. .,The Fertility Preservation Research Center, Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China. .,The Chinese University of Hong Kong-Baylor College of Medicine Joint Center for Medical Genetics, Hong Kong, China.
| |
Collapse
|
4
|
Ansari S, Nikpour P. Identification of Cancer/Testis Antigens Related to Gastric Cancer Prognosis Based on Co-Expression Network and Integrated Transcriptome Analyses. Adv Biomed Res 2023; 12:52. [PMID: 37057240 PMCID: PMC10086657 DOI: 10.4103/abr.abr_400_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 04/15/2023] Open
Abstract
Background Gastric cancer is a worldwide life-threatening cancer. The underlying cause of it is still unknown. We have noticed that some cancer/testis antigens (CTAs) are up-regulated in gastric cancer. The role of these genes in gastric cancer development is not fully understood. The main aim of the current study was to comprehensively investigate CTAs' expression and function in stomach adenocarcinoma (STAD). Materials and Methods A comprehensive list of CTA genes was compiled from different databases. Transcriptome profiles of STAD were downloaded from the cancer genome atlas (TCGA) database and analyzed. Differentially-expressed CTAs were identified. Pathway enrichment analysis, weighted gene correlation network analysis (WGCNA), and overall survival (OS) analysis were performed on differentially-expressed CTA genes. Results Pathway enrichment analysis indicates that CTA genes are involved in protein binding, ribonucleic acid processing, and reproductive tissues. WGCNA showed that six differentially-expressed CTA genes, namely Melanoma antigen gene (MAGE) family member A3, A6, A12 and chondrosarcoma associated gene (CSAG) 1, 2, and 3, were correlated. Up-regulation of MAGEA11, MAGEC3, Per ARNT SIM domain containing 1 (PASD1), placenta-specific protein 1 (PLAC1) and sperm protein associated with the nucleus X-linked family member (SPANXB1) were significantly associated with lower OS of patients. Conclusion MAGEA11, MAGEC3, PASD1, PLAC1, and SPANXB1 can be investigated as prognostic biomarkers in basic and clinical studies. Further functional experiments are needed to understand the exact interaction mechanisms of these genes.
Collapse
Affiliation(s)
- Sara Ansari
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Dr. Parvaneh Nikpour, Department of Genetics and Molecular Biology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
5
|
Habib I, Anjum F, Mohammad T, Sulaimani MN, Shafie A, Almehmadi M, Yadav DK, Sohal SS, Hassan MI. Differential gene expression and network analysis in head and neck squamous cell carcinoma. Mol Cell Biochem 2022; 477:1361-1370. [PMID: 35142951 DOI: 10.1007/s11010-022-04379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have collected genomic data of HNSCC patients from The Cancer Genome Atlas (TCGA) and analyzed them to get deeper insights into the gene expression pattern. Initially, 793 differentially expressed genes (DEGs) were categorized, and their enrichment analysis was performed. Later, a protein-protein interaction network for the DEGs was constructed using the STRING plugin in Cytoscape to study their interactions. A set of 10 hub genes was selected based on Maximal Clique Centrality score, and later their survival analysis was studied. The elucidated set of 10 genes, i.e., PRAME, MAGEC2, MAGEA12, LHX1, MAGEA3, CSAG1, MAGEA6, LCE6A, LCE2D, LCE2C, referred to as potential candidates to be explored as HNSCC biomarkers. The Kaplan-Meier overall survival of the selected genes suggested that the alterations in the candidate genes were linked to the decreased survival of the HNSCC patients. Altogether, the results of this study signify that the genomic alterations and differential expression of the selected genes can be explored in therapeutic interpolations of HNSCC, exploiting early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Insan Habib
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Australia
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|